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Abstract: Coronary artery disease (CAD), is a global cardiovascular disease that is characterized by myocardial ischemia and hypoxia 
caused by coronary artery occlusion. Circular RNAs (CircRNAs) is a particular kind of endogenous non-coding RNA, which can 
affect the occurrence and development of CAD. Concurrently, several circRNAs display stable persistence in CAD patients, 
attributable to their exceptional exonuclease resistance, thereby harboring the capacity to evolve into a biomarker for CAD diagnosis 
and prognosis. This article endeavors to clarify the pivotal role of circRNAs in the intricate pathophysiological processes underlying 
CAD patients or CAD disease models based on their unique biological characteristics and functionalities, and further discuss their 
prospects in clinical applications of CAD. 
Keywords: anti-nuclease activity, endothelial cells, vascular smooth muscle cells; myocardial cells; cardiac fibroblasts, diagnostic 
biomarkers

Introduction
Coronary artery disease (CAD) remains one of the leading causes of global morbidity and mortality, characterized by 
myocardial ischemia and hypoxia resulting from the narrowing or occlusion of coronary arteries. Based on its distinct 
onset characteristics and treatment principles, it is categorized into six main types: stable angina, unstable angina, ST- 
segment elevation myocardial infarction (STEMI), non-ST-segment elevation myocardial infarction (NSTEMI), sudden 
cardiac death, and ischemic cardiomyopathy.1 Despite significant advances in therapeutic approaches, early diagnosis and 
improved prognosis remain the central challenges in CAD management. Although traditional biomarkers (eg, troponin, 
creatine kinase) are widely used for CAD diagnosis, they still exhibit limitations, including insufficient sensitivity and 
specificity, as well as the inability to dynamically assess plaque stability or disease progression.2

CircRNAs represent a class of endogenous non-coding RNAs characterized by their unique closed circular structure, 
capable of modulating gene expression in eukaryotic cells.3 Their distinctive functional mechanisms include acting as 
miRNA sponges, binding to proteins, and participating in translation processes. Compared with other non-coding RNAs, 
circRNAs exhibit superior resistance to nuclease degradation, conferring enhanced cellular stability that renders them 
particularly suitable as long-acting regulatory molecules.4

In recent years, research on circRNAs in coronary artery disease (CAD) has gradually gained attention. At the 
mechanistic level, circRNAs have been identified as key regulators in CAD. Particularly in cardiovascular cells 
associated with CAD, circRNAs can precisely modulate critical pathophysiological processes—such as vascular 
endothelial function and phenotypic switching of smooth muscle cells—by acting as competing endogenous RNAs 
(ceRNAs) or directly interacting with proteins. Consequently, they influence atherosclerotic plaque stability, vascular 
remodeling, and inflammatory responses.5–7 These findings not only deepen our understanding of CAD pathogenesis but 
also provide a theoretical foundation for developing circRNA-targeted therapies. Moreover, compared with healthy 
individuals, CAD patients exhibit significantly differential expression of circRNAs in peripheral blood. Owing to their 
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superior stability and cell-type-specific expression patterns, circRNAs demonstrate unique advantages over conventional 
biomarkers (eg, troponin, creatine kinase isoenzymes) in the early diagnosis and disease stratification of CAD, suggesting 
their potential as alternative diagnostic biomarkers for CAD.8

Through established literature inclusion criteria, this review screened extensive publications to elucidate the mole-
cular mechanisms and biological functions of circRNAs in CAD pathogenesis. These rigorous screening criteria 
represent a key innovative feature of our review. Compared to previous studies, this paper aims to comprehensively 
explore the molecular mechanisms of circRNAs in CAD from the pathophysiological perspective of cardiovascular cells, 
with particular emphasis on the functional characteristics conferred by their circular structure (such as miRNA sponge 
effects and protein decoy functions, among others). Based on these unique biological characteristics—the key advantages 
that distinguish circRNAs from traditional biomarkers—we further evaluate their clinical translational potential as novel 
diagnostic markers and RNA-based therapeutic targets, thereby providing a theoretical foundation for developing 
breakthrough diagnostic and therapeutic strategies for CAD.

Coronary Artery Disease
Coronary artery disease (CAD), as one of the most prevalent cardiovascular diseases worldwide, has a complex pathogenesis 
involving the interplay of endothelial dysfunction, lipid deposition, inflammatory responses, and the proliferation and migration 
of vascular smooth muscle cells (VSMCs). Atherosclerosis (AS) is the core pathological process of CAD, initiated by endothelial 
injury induced by various factors.9 In this process, oxidative stress and inflammatory factors upregulate the expression of 
endothelial cell adhesion molecules (VCAM-1/ICAM-1), promoting monocyte infiltration and their differentiation into macro-
phages. These macrophages then engulf oxidized low-density lipoprotein (ox-LDL) to form foam cells, which constitute the early 
lipid core of atherosclerotic plaques.10–12 As the lesion progresses, VSMCs proliferate and migrate into the intima, forming 
a fibrous cap to stabilize the plaque.13 When the plaque ruptures, exposed prothrombotic substances can trigger thrombosis, 
leading to acute coronary occlusion and subsequently inducing myocardial infarction (MI).14 Recent studies have revealed that 
ferroptosis plays a critical role in ischemic myocardial injury, and targeted regulation of glutathione peroxidase 4 (GPX4) may 
represent a potential therapeutic strategy.15 Furthermore, although reperfusion therapy can restore blood flow, it may exacerbate 
oxidative stress and inflammatory responses, further contributing to myocardial ischemia-reperfusion injury (MI/RI). The 
underlying mechanisms include ROS burst-induced oxidative stress and NLRP3 inflammasome activation, which promotes 
IL-1β release and exacerbates inflammatory responses.16 Current research focuses on targeting these related pathways to identify 
novel biomarkers and therapeutic targets for MI/RI, with certain molecules already demonstrating clinical translation potential. 
Current research hotspots also include the roles of non-coding RNAs (eg, lncRNA, circRNA, miRNA) and gut microbiota 
metabolites in CAD, offering novel avenues for disease diagnosis and therapeutic development.7,17,18

CircRNAs
As an emerging non-coding RNA, the biogenesis of circRNAs mainly relies on the reverse splicing of mRNA precursors, 
a splicing process different from conventional linear mRNA precursors.19 During this process, an enclosed circular 
structure is formed when the downstream and upstream splice sites (connecting the 3’and 5’ ends) unite.20 This process is 
influenced by multiple factors, including RNA binding proteins (RBPs), cis-acting elements, and other non-coding 
RNAs.21,22

The essential role of circRNAs is becoming more and more clear with the continuous advancement of circRNA- 
related research. It mainly includes the following aspects: First of all, by influencing processes like DNA methylation or 
histone modification, circRNAs may control the expression of genes.23–25 Secondly, circRNAs can bind to specific 
proteins, affecting their function and localization, thereby regulating intracellular signaling pathways.26 Meanwhile, 
certain circRNAs have also been identified as functioning as protein scaffolds to participate in cellular biological 
processes. For example, Ding F et al demonstrated that circHIPK3 functions as a protein scaffold, facilitating the 
interaction between the E3 ubiquitin ligase β-TrCP and HuR within the cytoplasm. This interaction promotes the 
ubiquitination and subsequent degradation of HuR, which plays a role in mitigating heart aging.27 Thirdly, some 
circRNAs (eg, circFGFR1, circSfl, and circZNF609, etc). m6A modification sites or internal ribosomal entry sites 
(IRES) can directly initiate translation processes and produce proteins or peptides, and this process is particularly 
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prominent during cellular stress,28–31 they may directly affect the protein composition of cells in diseases. However, it is 
worth noting that compared to traditional mRNA translation efficiency, the translation of circRNAs is relatively 
inefficient.32 Although previous studies have demonstrated the presence of circRNA-translated proteins in tissues or 
cells of human hearts and mice, these results still need further verification with stricter quality control and false discovery 
rate indicators,33 the idea of circRNAs acting as an effective protein template remains controversial. Ultimately, by 
sponging miRNAs, circRNAs may prevent the expression of miRNAs, impacting critical processes like autophagy, 
apoptosis, and inflammation.34 This functional mechanism, which is one of the crucial links in the onset and progression 
of CAD disease, will be emphasized and thoroughly explored in this work.

The degradation mechanism of circRNAs is relatively complex and needs more study to reveal its internal laws. The 
unique closed-loop structure of circRNAs gives them the ability to resist exonucleases (such as RNase R). However, 
through some specific pathways, we can still effectively regulate the circRNA degradation processes. Studies have shown 
that some endonucleases (such as RNase L and RNase H1) are essential for the degradation of circRNAs. RNase H1 has 
been reported to act on the R loop formed by circRNA ciankrd52 and DNA to trigger the degradation of ciankrd52.35 

Partial circRNAs can be extensively degraded by RNase L under the conditions of inflammation or infection.36 In 
addition, certain specific binding proteins may also guide circRNA degradation, for example, Ago 2 promotes the 
degradation of specific circRNA by interacting with miR-671 and miR-1224.37,38 At the same time, the m6A modifica-
tion uncovers the degradation process of circRNA by engaging with YTHDF2 and HRSP12, as well as through the 
RNase P/MRP pathway.39,40

CircRNAs Regulate the Pathophysiological Processes of Cardiovascular 
Cells
We conducted a systematic literature search in PubMed using the following search strategy: (“Coronary Artery Disease” 
OR “CAD” OR “coronary atherosclerosis” OR “Myocardial Infarction” OR “Myocardial Ischemia reperfusion injury”) 
AND (“RNA, Circular” OR “circRNA” OR “circular RNA”) to identify relevant literature. The inclusion criteria for 
literature were: 1) publications between 2019–2024; 2) clinical studies or basic research (cellular or animal experiments) 
with definitive functional evidence; 3) cell lines including cardiomyocytes, vascular endothelial cells, vascular smooth 
muscle cells, and cardiac fibroblasts. After screening, a total of 107 CAD-related circRNAs were ultimately identified 
from 134 articles. The included literature provides reliable evidence for elucidating the molecular mechanisms of 
circRNAs in CAD. We conducted a systematic analysis of these research findings, with a focus on exploring the 
regulatory networks of circRNAs in different cardiovascular cell types and evaluating their potential for clinical 
translation.

Vascular Endothelial Cells
Endothelial dysfunction is a key initiating factor in CAD, and endothelial cells (ECs) play a crucial role in maintaining 
vascular health. They not only regulate vascular tension but also release contractile and thrombotic factors during 
injury.41 Specific circRNAs, as sponges of miRNAs, can cause endothelial dysfunction and early atherosclerosis by 
reversing the inhibition of miRNAs on the expression of vasodilation-related mRNA. circROBO2 was demonstrated by 
Qinghu Ye et al to be greatly upregulated in cardiac microvascular endothelial cells (CMECs) induced by ox-LDL, and it 
could positively regulate TRIM14 through sponge miR-186-5p, thereby restraining angiogenesis and cell proliferation, 
promoting CMEC apoptosis, and contributing to the occurrence of coronary atherosclerosis.42 In contrast, NGS and 
functional assays have demonstrated that circMBOAT2 promotes angiogenesis via the miR-495/NOTCH1 axis, exerting 
protective effects on vascular repair following MI/RI.43 It can be seen that by modulating the pathophysiological 
processes of ECs, circRNAs have a significant impact on the progression and prognosis of CAD. Of course, in addition 
to the aforementioned circRNAs, more circRNAs have been revealed to play vital functions in the pathophysiological 
mechanisms of ECs through in vivo or in vitro experiments in recent years. The mechanistic studies of circRNAs 
summarized in Table 1 have all been validated through functional assays.

International Journal of General Medicine 2025:18                                                                             https://doi.org/10.2147/IJGM.S524189                                                                                                                                                                                                                                                                                                                                                                                                   3131

Cheng et al

Powered by TCPDF (www.tcpdf.org)



Table 1 Summary of circRNAs Related to the Pathophysiological Processes of Endothelial Cells in CAD

CircRNAs Expression Species Cell lines Mechanism Pathophysiological 
Processes

Effection Validation method Ref

CircZBTB46 Up-regulated Mice HCAEC hnRNPA2B1 /PTEN / 
AKT/mTOR

Apoptosis ↓ 
Proliferation ↑ 
Migration ↑

Promotes 
AS

Functional (in vitro/vivo) [6]

Circ_100338 Down-regulated - HUVEC miR-200a-3p /FUS Proliferation ↑ 
Migration↑ 
Tube formation ↑

Inhibits MI/ 
RI

Functional (in vitro) [44]

CircROBO2 Up-regulated Human CMEC miR-186-5p /TRIM14 Apoptosis ↑ 
Tube formation ↓ 
Proliferation ↓

Promotes 
AS

Functional (in vitro) [42]

Circ_0049979 Down-regulated Mice HUVEC miR-653 /Cx43 Proliferation ↑ 
Migration↑ 
Tube formation ↑

Inhibits AS Functional (in vitro/vivo) [45]

Circ_0004104 Up-regulated Human VEC miR-100 /TNFAIP8 Proliferation ↓ 
Apoptosis ↑ 
Inflammation ↑

Promotes 
AS

Functional (in vitro) [46]

Circ_0001445 Down-regulated Human HAEC miR-208b-5p /ABCG1 Proliferation ↑ 
Migration↑ 
Inflammation ↓

Inhibits AS Functional (in vitro) [47]

CircFASTKD1 Up-regulated Mice HUVEC/ 
HCMEC

miR-106a /LATS1/2 Tube formation ↓ 
Migration↓

Promotes 
MI

Functional (in vitro/vivo) [48]

CircHECW2 Up-regulated Human HCMEC miR-942-5p/TLR4 Proliferation ↓ 
Tube formation ↓ 
Apoptosis ↑

Promotes 
AS

Functional (in vitro) [49]

Circ_0030042 Down-regulated Mice HUVEC Sponges eIF4A3 Autophagy ↓ Promotes 
AS

Functional (in vitro/vivo) [50]

CircANRIL Up-regulated Rats EC - Oxidative stress ↑ 
Inflammation ↑

Promotes 
AS

Functional (in vitro/vivo) [51]

CircFndc3b Down-regulated Mice HUVEC/ 
MCEC

FUS/VEGFA Tube formation ↑ 
Migration ↑ 
Proliferation ↑

Inhibits MI Microarray + Functional 
(in vivo)

[52]

CircMBOAT2 Up-regulated Human HUVEC miR-495 /NOTCH1 Tube formation ↑ 
Migration ↑

Promotes 
ANG

NGS+ Functional 
(in vitro/vivo)

[43]

CircDLGAP4 Down-regulated Mice HUVEC miR-143 /HECTD1 Apoptosis ↓ 
Migration ↓.

Inhibits MI/ 
RI

Functional (in vitro/vivo) [53]

CircHIPK3 Down-regulated Mice HCAEC miR-133a /CTGF Tube formation ↑ 
Migration ↑ 
Proliferation ↑

Inhibits MI Functional (in vitro) [54]

CircWhsc1 Up-regulated Mice/ 
Rats

NCEC TRIM59 /STAT3 /cyclin B2 Proliferation ↑ Inhibits MI Functional (in vitro/vivo) [55]

CircERBB2IP Up-regulated Mice CMEC miR-145a-5p /Smad5 Tube formation ↑ 
Migration ↑ 
Proliferation ↑

Inhibits MI Functional (in vitro/vivo) [56]

Circ_0001785 Down-regulated Human/ 
Mice

HUVEC miR-513a-5p /TGFBR3 Proliferation ↑ 
Apoptosis ↓ 
Migration ↓

Inhibits AS Functional (in vitro/vivo) [57]

Circ_0001445 Down-regulated - HUVEC SRSF1/β-cate Tube formation ↑ 
Proliferation ↑ 
Apoptosis ↓ 
Migration ↓

Inhibits AS Functional (in vitro) [58]

(Continued)
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Vascular Smooth Muscle Cells
The changes that occur in vascular smooth muscle cells (VSMCs) structure and function are the cytopathological basis 
for the formation and progression of atherosclerotic plaque in CAD. Regulating the biological functions of VSMCs can 
effectively intervene in the evolution of CAD.60 Based on the functionally validated circRNAs summarized in Table 2 

Table 1 (Continued). 

CircRNAs Expression Species Cell lines Mechanism Pathophysiological 
Processes

Effection Validation method Ref

Circ_0007623 Up-regulated Mice HUVEC miR-297 /VEGFA Tube formation ↑ 
Migration ↑ 
Proliferation ↑ 
Apoptosis ↓

Inhibits MI Functional (in vitro/vivo) [59]

Abbreviations: HCAEC, Human coronary artery endothelial cell; EC, Endothelial cell; CMEC, Cardiac microvascular endothelial cell; HUVEC, Human umbilical vein 
endothelial cell; VEC, Vascular endothelial cell; HAEC, Human aortic endothelial cell; HCMEC, Human cardiac microvascular endothelial cell; MCEC, Mouse cardiac 
endothelial cell; NCEC, Neonatal cardiac endothelial cell; AS, Atherosclerosis; MI/RI, Myocardial ischemia reperfusion injury; MI, myocardial infarction; ANG, Angiogenesis; 
CAD, Coronary artery disease; ↑, Promotes; ↓, Inhibits.

Table 2 Summary of circRNAs Related to the Pathophysiological Processes of Vascular Smooth Muscle Cells in CAD

CircRNAs Expression Species Cell lines Mechanism Pathophysiological 
processes

Effection Validation method Ref

CircZBTB46 Up-regulated Mice HCASMC hnRNPA2B1/PTEN/AKT/ 
mTOR

Apoptosis ↓ 
Proliferation ↑ 
Migration ↑

Promotes 
AS

Functional (in vitro/vivo) [6]

Circ_0031891 Up-regulated Human HA-VSMC miR-579-3p /HMGB1 Dedifferentiation ↑ 
Proliferation ↑ 
Migration ↑

Promotes 

AS

Functional (in vivo) [61]

CircRUSC2 Up-regulated - HCASMC miR-661 /SYK Proliferation ↑ 
Migration ↑ 
Apoptosis ↓

Promotes 

AS

Functional (in vitro) [62]

CircDHCR24 Up-regulated - HA-VSMC miR-149-5p /MMP9 Proliferation ↑ 
Migration ↑

Promotes RS Microarray + Functional 
(in vitro)

[63]

CircROBO2 Up-regulated Human HASMC miR-149 /TRAF6 
/NF-κB

Proliferation ↑ 
Migration ↑ 
Apoptosis ↓

Promotes 
AS

Microarray + Functional 
(in vitro)

[64]

Circ_0006251 Up-regulated - VSMC miR-361-3p /TET3 

/PPM1B

Proliferation ↑ 
Migration ↑ 
Apoptosis ↓

Promotes 

AS

Functional (in vitro) [65]

CircMAP3K5 Down-regulated Human/ 

Mice

HCASMC / 

MASMC

miR-22-3p /TET2 Dedifferentiation ↓ 
Proliferation ↓

Inhibits AS NGS + Functional (in vivo) [66]

CircLDLR Down-regulated Human HA-VSMC miR-26-5p /KDM6A Apoptosis ↑ 
Proliferation ↓

Inhibits AS Functional (in vitro) [67]

CircZCEBPZOS Down-regulated Human/ 
Mice

VSMC miR-1178-3p /PDPK1 Proliferation ↑ 
Migration ↑ 
Tube formation ↑

Inhibits MI Functional (in vitro/vivo) [68]

CircTEX14 Down-regulated Human HA-VSMC miR-6509-3p /THAP1 Migration ↓ 
Proliferation ↓

Inhibits AS Functional (in vitro) [69]

Circ_0000280 Down-regulated Human HASMC ELAVL1 Proliferation ↓ Inhibits AS NGS + Functional (in vitro) [70]

CircTOP1 Up-regulated Mice VSMC PTBP1 Transdifferentiation ↑ Promotes 

CAC

NGS + Functional (in vitro/ 

vivo)

[71]

Abbreviations: HCASMC, Human coronary artery smooth muscle cell; HA-VSMC, Human aortic vascular smooth muscle cell; HASMC, Human aortic smooth muscle cell; 
VSMC, Vascular smooth muscle cell; MASMC, Mouse aortic smooth muscle cell; AS, Atherosclerosis; RS, Restenosis; MI, Myocardial infarction; CAC, Coronary artery 
calcification; CAD, Coronary artery disease; ↑, Promotes; ↓, Inhibits.
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that have been assessed in VSMCs, current research has primarily identified two functionally opposing categories of 
circRNAs at the VSMC level. Hsa_circ_0031891, circRUSC2, circDHCR24, circROBO2, and circ_0006251 have been 
confirmed to be significantly upregulated in VSMCs, These circRNAs serve as sponges for miRNA, modulating the 
expression of downstream genes and promoting the proliferation and migration of VSMCs, thereby accelerating the 
progression of AS.61–65 On the other hand, the expression of circMAP3K5, circLDLR, circZCEBPZOS and circTEX14 
in VSMCs showed a downregulation trend. The overexpression of these circRNAs could significantly inhibit the 
proliferation, migration and dedifferentiation process of VSMCs, thus slowing down the progression of AS.66–69 It is 
worth noting that the currently revealed regulation mechanism of CircZBTB46 in the proliferation, migration and 
apoptosis of VSMCs is achieved through AK/mTOR signaling pathway mediating hnRNPA2B1 ubiquitination and 
degradation, while the impact of hsa_circ_0000280 on VSMC proliferation in CAD is reliant on the regulation of 
ELAVL1 expression, none of these processes are dependent on circRNA-miRNA-mRNA network.6,70

Cardiomyocytes
Myocardial infarction (MI) is a typical manifestation of CAD, and its resulting MI/RI is important for the progression 
and prognosis of CAD. Under CAD-related pathological conditions (such as I/R injury), circRNAs can regulate the 
proliferation, differentiation, apoptosis, and inflammation of cardiomyocytes (CMs), and playing a role in myocardial 
protection, remodeling, and angiogenesis in the progression of CAD. Current studies have identified numerous circRNAs 
that play pivotal roles in MI and MI/RI within CMs. As summarized in Table 3, a total of 95 relevant circRNAs have 

Table 3 Summary of circRNAs Associated with the Pathophysiological Processes of Cardiomyocytes in CAD

CircRNAs Expression Species Cell 
Lines

Mechanism Pathophysiological 
Processes

Effection Validation Method Ref

CircHIPK3 Up-regulated - HCM miR-124-3p Proliferation ↓ 
Apoptosis ↑

Promotes MI/RI Functional (in vitro) [72]

CircHIPK3 Up-regulated Mice CM miR-20b-5p /ATG7 Apoptosis ↑ 
Autophagy ↑

Promotes MI/RI Functional (in vitro) [73]

CircPAN3 Down-regulated Mice HCM miR-421 /Pink1 Apoptosis ↓ 
Autophagy ↓

Inhibits MI/RI Functional (in vitro/vivo) [74]

CircPAN3 Down-regulated Rats HCM miR-421 /Pink1 Pyroptosis ↓ 
Apoptosis ↓

Inhibits MI/RI Functional (in vitro/vivo) [75]

CircMAT2B Up-regulated - H9C2 miR-133 Apoptosis ↑ 
Inflammation ↑

Promotes MI Functional (in vitro) [76]

Circ_0010729 Up-regulated - HCM miR-370-3p /RUNX1 Apoptisis 

Proliferation ↓
Promotes MI/RI Functional (in vitro) [77]

CircFndc3b Down-regulated Human/ 

Mice

H9C2/ 

NRVM

FUS 

/VEGF-A

Apoptosis ↓ Inhibits MI Microarray + Functional 

(in vivo)

[52]

CircHIPK3 Up-regulated Mice CM Notch1 Proliferation ↑ 
Apoptosis ↓

Inhibits MI Functional (in vitro) [54]

CircSamd4 Up-regulated Mice CM - Proliferation ↑ 
Apoptosis ↓

Inhibits MI Functional (in vivo) [78]

CircRNA 

Pum1_0014

Up-regulated - H9C2 miR-146a-5p 

/NF2/VEGF/PAK1

Apoptosis ↓ Inhibits MI Functional (in vitro) [79]

CircIGF1R Up-regulated Mice hiPSC-CM DDX5 Proliferation ↑ 
Apoptosis ↓ 
Fibrosis ↓

Inhibits MI NGS + Functional (in vivo) [80]

Circ_0073932 Up-regulated Rat H9C2 miR-493-3p /FAF1 / 

JNK

Apoptosis ↑ 
Inflammation ↑

Promotes MI/RI Functional (in vitro/vivo) [81]

(Continued)
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Table 3 (Continued). 

CircRNAs Expression Species Cell 
Lines

Mechanism Pathophysiological 
Processes

Effection Validation Method Ref

Circ_0020887 Up-regulated Human AC16 miR-370-3p /CYP1B1 Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑

Promotes MI Functional (in vitro) [82]

CircStt3b Down-regulated Mice HL-1 miR-15a-5p /GPX4 Apoptosis ↓ 
Inflammation ↓ 
Ferroptosis ↓

Inhibits MI NGS + Functional (in vitro/ 

vivo)

[83]

CircHMGA2 Up-regulated Mice HCM NLRP3 Ferroptosis ↑ 
Apoptosis ↑ 
Pyroptosis ↑ 
Apoptosis ↑ 
Proliferation ↓

Promotes MI/RI Functional (in vitro/vivo) [84]

CircUSP39 Up-regulated - AC16 miR-362-3p /TRAF3 Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑

Promotes MI/RI Functional (in vitro) [85]

circHDAC9 Up-regulated Mice HCM miR-671-5p /SOX4 Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑

Promotes MI/RI Functional (in vitro/vivo) [86]

CircCHSY1 Up-regulated Mice NRCM 

/hESC- 

CM

miR-24-3p /HO1 Mitochondrial homeostasis ↑ Inhibits MI/RI Functional (in vitro/vivo) [87]

Circ_010567 Up-regulated - H9C2 miR-141 /DAPK1 Apoptosis ↑ Promotes MI Functional (in vitro) [88]

CircTtc3 Up-regulated Rats CM miR-15b-5p 

/Arl2

Apoptosis ↓ Inhibits MI Functional (in vitro/vivo) [89]

CircNFIX Up-regulated Mice CM miR-214 /Gsk3β Tube formation↓ 
Apoptosis ↑ 
Proliferation ↓

Promotes MI Functional (in vivo) [90]

CircACAP2 Up-regulated Human AC16 miR-532 Apoptosis ↑ Promotes MI Functional (in vitro) [91]

CircNFIX Up-regulated Rats H9C2 miR-125b-5p /TLR4 Apoptosis ↑ 
Proliferation ↓

Promotes MI Functional (in vitro/vivo) [92]

CircROBO2 Up-regulated Mice CM miR-1184 /TRADD Apoptosis ↓ Promotes MI Functional (in vitro/vivo) [93]

CircMFACR Up-regulated Human/ 

Mice

AC16 miR-125b Apoptosis ↑ Promotes MI Functional (in vitro/vivo) [94]

CircCNEACR Down-regulated Mice CM HDAC7 

/Foxa2 
/RIPK3

Necrosis ↓ Inhibits MI/RI Microarray + Functional 

(in vitro/vivo)

[95]

CircCDYL Down-regulated Mice CM miR-4793-5p /APP Proliferation ↑ Inhibits MI Functional (in vivo) [96]

Circ_0000064 Down-regulated Rats CM - Autophagy ↓ 
Apoptosis ↓

Inhibits MI/RI Functional (in vivo) [97]

Circ_0060745 Up-regulated Mice CM - Apoptosis ↑ Promotes MI Functional (in vivo) [98]

CircSAMD4A Up-regulated Mice H9C2 miR-138-5p Apoptosis ↑ 
Inflammation ↑

Promotes MI/RI Functional (in vitro/vivo) [99]

CircHelz Up-regulated Mice NMVC miR-133a-3p /NLRP3 Inflammation ↑ 
Pyroptosis ↑

Promotes MI Functional (in vitro/vivo) [100]

CircJARID2 Up-regulated - H9C2 miR-9-5p /BNIP3 Apoptosis ↑ 
Inflammation ↑ 
Proliferation ↓

Promotes MI Functional (in vitro) [101]

CircTLK1 Up-regulated Mice HCM miR-214 /RIPK1 Apoptosis ↑ Promotes MI/RI Functional (in vivo) [102]

(Continued)
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Table 3 (Continued). 

CircRNAs Expression Species Cell 
Lines

Mechanism Pathophysiological 
Processes

Effection Validation Method Ref

CircMARC2 Up-regulated - AC16 miR-335-5p /TRPM7 Apoptosis ↑ 
Inflammation ↑

Promotes MI/RI Functional (in vitro) [103]

CircHECTD1 Up-regulated Rats H9C2 miR-138-5p /ROCK2 Apoptosis ↑ 
Inflammation ↑

Promotes MI/RI Functional (in vitro/vivo) [104]

Circ_003593 Up-regulated Rats H9C2 NLRP3 Apoptosis ↑ 
Proliferation ↓

Promotes MI/RI Functional (in vitro/vivo) [105]

Circ_0010729 Up-regulated - AC16 miR-27a-3p /TRAF5 Apoptosis ↑ Promotes ICM Functional (in vitro) [106]

Circ_0010729 Up-regulated - HCM miR-1184 /RIPK1 Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑

Promotes MI/RI Functional (in vitro/vivo) [107]

CircSNRK Down-regulated Rats CM miR-33 /SNRK Apoptosis↓ Inhibits MI NGS + Functional (in vivo) [108]

Circ_0023461 Up-regulated Human AC16 miR-370-3p /PDE4D Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑ 
Migration ↓ 
Proliferation ↓

Promotes MI Functional (in vitro) [109]

CircRNA1615 Down-regulated Mice HL-1 miR-152-3p /LRP6 Ferroptosis ↓ Inhibits MI Functional (in vitro/vivo) [110]

Circ_0091761 Up-regulated - H9C2 miR-335-3p /ACSL4 Proliferation ↓ 
Ferroptosis ↑

Promotes MI Functional (in vitro) [111]

Circ_0007059 Up-regulated Mice CM miR-378 miR-383 Apoptosis ↑ 
Inflammation ↑

Promotes MI Microarray + 

Functional (in vitro/vivo)

[112]

Circ_0002612 Down-regulated Mice CM miR-30a-5p /Ppargc1a/ 

NLRP3

Apoptosis↓ 
Proliferation ↑

Inhibits MI/RI Functional (in vitro/vivo) [113]

CircACAP2 Up-regulated Mice H9C2 miR-29 Apoptosis↑ Promotes MI Functional (in vitro/vivo) [114]

CircDENND4C Up-regulated - H9C2 miR-320 Apoptosis↑ Promotes IHD Functional (in vitro) [115]

CircFoxo3 Down-regulated Rats H9C2 KAT7 
/HMGB1

Autophagy ↓ Inhibits MI/RI Functional (in vitro/vivo) [116]

CircHIPK3 Up-regulated Mice CM miR-29a /VEGFA Tube formation ↑ 
Proliferation ↑ 
Migration ↑

Inhibits MI Functional (in vitro/vivo) [117]

Circ_0001206 Down-regulated Mice H9C2 miR-665 Apoptosis↓ Inhibits MI Functional (in vitro) [118]

CircLRP62-2 Down-regulated - H9C2 HnRNPM 

/FGF9

Apoptosis↓ Inhibits MII Functional (in vitro/vivo) [119]

CircZNF512 Up-regulated Mice CM miR-181d-5p /EGR1 Autophagy↓ 
Apoptosis↑

Promotes MI/RI Functional (in vitro/vivo) [120]

CircFbxl5 Up-regulated Mice NMVM miR-146a /MED1 Apoptosis↑ Promotes MI/RI Functional (in vitro/vivo) [121]

CircZNF609 Up-regulated Mice NRCM - Apoptosis↑ Promotes MI/RI Functional (in vitro/vivo) [122]

CircARAP1 Up-regulated Mice CM miR-379-5p /KLF9 Apoptosis↑ Promotes MI/RI Functional (in vitro/vivo) [123]

CircSNRK Down-regulated Rats CM miR-103-3p /SNRK Apoptosis ↓ 
Tube formation ↑ 
Proliferation ↑

Inhibits MI Functional (in vitro/vivo) [124]

CircFEACR Down-regulated Mice CM NAMPT Ferroptosis ↓ Inhibits MI/RI NGS + Functional (in vitro/ 

vivo)

[125]

Circ_010567 Up-regulated Rats CM - Apoptosis↑ Promotes MF Functional (in vivo) [126]

CircMACF1 Down-regulated Mice CM miR-500b-5p /EMP1 Apoptosis ↓ Inhibits MI Functional (in vitro/vivo) [127]

(Continued)
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Table 3 (Continued). 

CircRNAs Expression Species Cell 
Lines

Mechanism Pathophysiological 
Processes

Effection Validation Method Ref

CircPostn Up-regulated Human/ 
Mice

AC16 miR-96-5p /BNIP3 Apoptosis↑ Promotes MI Functional (in vitro/vivo) [128]

Circ_0002113 Up-regulated Rats H9C2 miR-188-3p /RUNX1 Apoptosis↑ Promotes MI Functional (in vitro/vivo) [129]

CircHSPG2 Up-regulated - AC16 miR-25-3p /PAWR Proliferation ↓ 
Apoptosis ↓

Promotes MI Functional (in vitro) [130]

Circ_0068655 Up-regulated - HCM miR-498 /PAWR Apoptosis ↑ 
Migration ↓

Promotes MI Functional (in vitro) [131]

CircNNT Up-regulated Human/ 

Mice

CM miR-33a-5p /USP46 Pyroptosis ↑ Promotes MI/RI Functional (in vitro/vivo) [132]

CircSLC8A1 Up-regulated - HL-1 miR-214-5p /TEAD1 Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑

Promotes MI Functional (in vitro) [133]

CircNFIX Down-regulated Mice H9C2 - Apoptosis ↑ 
Oxidative stress ↑

Promotes MI Functional (in vitro/vivo) [134]

CircTRRAP Up-regulated - AC16 miR-214-3p /SOX6 Apoptosis ↑ 
Oxidative stress ↑ 
Proliferation ↓

Promotes MI/RI Functional (in vitro) [135]

CircDGKZ Up-regulated Rats AC16 miR-345-5p /TLR4/NF- 
κB

Pyroptosis ↑ 
Autophagy ↓

Promotes MI/RI Functional (in vitro/vivo) [136]

CircPVT1 Up-regulated Mice CM miR-125b 

miR-200a

Apoptosis ↑ Promotes MI Microarray + 

Functional (in vitro/vivo)

[137]

CircRbms1 Up-regulated Mice H9C2 miR-742-3p /FOXO1 Invasion ↓ 
Migration ↓ 
Apoptosis ↑

Promotes MI Functional (in vitro/vivo) [138]

Circ_0124644 Up-regulated Human AC16 miR-590-3p /SOX4 Apoptosis ↑ 
Oxidative stress ↑

Promotes MI Functional (in vitro) [139]

Circ_0030235 Up-regulated - H9C2 miR-526b Apoptosis ↑ Promotes MI Functional (in vitro) [140]

CircJA760602 Up-regulated - AC16 EGR1 

E2F1

Apoptosis ↑ Promotes MI Functional (in vitro) [141]

CircSMG6 Up-regulated Mice HL-1 miR-138-5p /EGR1/ 

TLR4/TRIF

Apoptosis ↑ 
Neutrophil recruitment ↑

Promotes MI/RI Functional (in vitro/vivo) [142]

CircUBXN7 Down-regulated Mice H9C2 miR-622 /MCL1 Inflammation ↓ 
Apoptosis ↓

Inhibits MI Functional (in vitro/vivo) [143]

Circ_0049271 Up-regulated Human H9C2 miR-17-3p /FZD4 Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑ 
Proliferation ↓

Promotes MI Functional (in vitro) [144]

CircACR Down-regulated Mice CM Pink1 

/FAM65B

Autophagy ↓ Inhibits MI/RI Microarray + 

Functional (in vitro/vivo)

[145]

CircHSPG2 Up-regulated Human AC16 miR-1184 /MAP3K2 Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑

Promotes MI Functional (in vitro) [146]

CircUSP39 Up-regulated - AC16 miR-499b-5p /ACSL1 Apoptosis ↑ Promotes MI Functional (in vitro) [147]

Circ_0000848 Down-regulated - H9C2 ELAVL1 

/SMAD7

Apoptosis ↓ 
Proliferation ↑

Inhibits MI Functional (in vitro) [148]

CircRbms1 Up-regulated Mice H9C2 miR-92a /BCL2L11 Apoptosis ↑ 
Oxidative stress ↑

Promotes MI/RI Functional (in vitro/vivo) [149]

(Continued)
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been characterized, with 70 showing upregulation and 60 demonstrating downregulation. These circRNAs can be 
functionally categorized into two major classes: cardioprotective and injury-promoting circRNAs. It is worth noting 
that some circRNAs regulate the expression of downstream genes by simultaneously targeting multiple miRNAs in CMs, 
which influences the extent of CM damage. For instance, researchers have validated the mechanism of circPAN3 through 
both in vivo and in vitro experiments using dual-luciferase reporter assays and reverse transcription-polymerase chain 
reaction (RT-PCR). The cardioprotective circPAN3 exerts synergistic protective effects through a dual-target regulatory 
mechanism: it mitigates mitochondrial damage via the miR-421/Pink1 axis while simultaneously suppressing endoplas-
mic reticulum stress through the miR-29b-3p/SDF4 axis.72,73 Conversely, the injury-accelerating circHIPK3 functions as 

Table 3 (Continued). 

CircRNAs Expression Species Cell 
Lines

Mechanism Pathophysiological 
Processes

Effection Validation Method Ref

Circ_0001747 Down-regulated - HL-1 miR-199b-3p /MCL1 Inflammation ↓ 
Apoptosis ↓ 
Proliferation ↑

Inhibits MI Functional (in vitro) [150]

CircTRRAP Up-regulated Human AC16 miR-761 /MAP3K2 Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑

Promotes MI Functional (in vitro) [151]

Circ_0031672 Up-regulated Rats H9C2 miR-21-5p /PDCD4 Apoptosis ↑ Promotes MI/RI Functional (in vitro/vivo) [152]

CircRbms1 Up-regulated Mice HCM miR-2355-3p /MST1 Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑

Promotes MI/RI Functional (in vitro/vivo) [153]

Circ-RHOJ.1 Down-regulated Rats CM miR-124-3p /NRG1 Inflammation ↓ 
Apoptosis ↓ 
Proliferation ↑

Inhibits MI/RI Functional (in vitro/vivo) [154]

CircMIRIAF Up-regulated Mice AC16 miR-544 /WDR12 Oxidative stress ↑ 
Inflammation ↑

Promotes MI/RI Microarray + 

Functional (in vitro/vivo)

[155]

Circ_0068566 Down-regulated Mice H9C2 miR-6322 /PARP2 Proliferation ↑ 
Apoptosis ↓ 
Oxidative stress ↓

Inhibits MI/RI Functional (in vitro/vivo) [156]

CircTRRAP Up-regulated - AC16 miR-370-3p /PAWR Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑

Promotes MI Functional (in vitro) [157]

CircDiaph3 Up-regulated Mice H9C2 miR-338-3p /SRSF1 Apoptosis ↑ 
Inflammation ↑

Promotes MI Functional (in vitro/vivo) [158]

Circ_0050908 Up-regulated - HCM miR-324-5p /TRAF3 Apoptosis ↑ 
Oxidative stress ↑ 
Inflammation ↑

Promotes MI/RI Functional (in vitro) [159]

CircBCL2L13 Up-regulated Mice CM miR-1246 /PEG3 Apoptosis ↓ 
Oxidative stress ↓

Inhibits MI/RI Functional (in vitro/vivo) [160]

CircANKIB1 Down-regulated - H9C2 miR452-5p /SLC7A11 Apoptosis ↓ 
Ferroptosis ↓

Inhibits MI Functional (in vitro) [161]

Circ_0001379 Up-regulated Mice HL-1 miR-98-5p /SOX6 Apoptosis ↑ 
Inflammation ↑

Promotes MI Functional (in vitro/vivo) [162]

CircSWT1 Down-regulated - AC16 miR-192-5p /SOD2 Oxidative stress ↓ 
Apoptosis ↓

Inhibits MI Functional (in vitro) [163]

CircCBFB Up-regulated - H9C2 miR-495-3p /VDAC1 Oxidative stress↑ 
Apoptosis ↑

Promotes MI/RI Functional (in vitro) [164]

Abbreviations: HCM, Human cardiomyocyte; CM, Cardiomyocyte; NRVM, Neonatal rat ventricular myocyte; hiPSC-CM, Human induced pluripotent stem cell-derived 
cardiomyocyte; NRCM, Neonatal rat cardiomyocyte; hESC-CM, Human embryonic stem cell-derived cardiomyocyte; NMVC, Neonatal mouse ventricular cardiomyocyte; 
NMVM, Neonatal mice ventricular myocyte; NRCM, Neonatal rat cardiomyocyte; MI/RI, Myocardial ischemia/reperfusion injury; MI, Myocardial infarction; ICM, Ischemic 
cardiomyopathy; IHD, Ischemic heart disease; MF: Myocardial fibrosis; ROS, Reaction oxygen; CAD, Coronary artery disease; ↑, Promotes; ↓, Inhibits.
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a classical multitarget regulator that aggravates MI/RI damage by concurrently sponging miR-124-3 and miR-20b-5p, 
among other miRNAs.74,75 These findings not only elucidate the complex regulatory networks of circRNAs in myo-
cardial injury but also provide potential therapeutic targets for developing novel diagnostic and treatment strategies.

Cardiac Fibroblasts
Preventing and improving myocardial fibrosis after MI has always been a major challenge in the diagnosis and treatment of 
CAD. The occurrence of this process is not only related to changes in the biological function of CMs but also depends on the 
regulation of the pathological and physiological mechanisms of cardiac fibroblasts (CFs). Table 4 summarizes the currently 
identified 8 functionally characterized circRNAs in CFs, including 5 fibrosis-promoting circRNAs and 3 anti-fibrotic 
circRNAs. For instance, Ji et al found that circNSD1 was associated with the proliferation and collagen deposition of CFs, 
and its downregulation could ameliorate myocardial fibrosis by regulating the miR-429-3p/SULF1/Wnt/β-catenin signaling 
pathway.165 Furthermore, Y. Wang et al also revealed that circMACF1 may suppress TGF-β1-induced fibroblast activation, 
migration and proliferation by controlling the miR-16-5p/SMAD7 pathway.166 However, research on the role of circRNAs 
in CFs remains limited to date. As summarized in Table 4, only a small number of circRNAs have been functionally 
characterized in CFs, among which three circRNAs (CircPAN3, CircMACF1, and CircLAS1L) have only been studied at 
the cellular level through in vitro experiments, lacking further validation in vivo. These findings nevertheless establish 
a molecular foundation for developing anti-fibrotic therapies targeting CFs-specific circRNAs.

Potential Clinical Applications of circRNAs in CAD
Diagnostic Biomarkers
The natural resistance of circRNAs to exonuclease is a significant feature that distinguishes it from linear RNA.172 This 
resistance can bring stability to circRNAs, enabling their long-term regulation of gene expression in CAD and 
contributing to their specific expression in specific tissues. Certain circRNAs express differently in CAD patients than 
in healthy controls, and this expression difference may have already appeared in the early stages of CAD. The 
exonuclease resistance of circRNAs makes it relatively stable in the blood of CAD patients. providing an opportunity 
for circRNAs as a biomarker for early diagnosis of CAD. Non-invasive or minimally invasive detection of CAD can be 

Table 4 Summary of circRNAs Related to the Pathophysiological Processes of Cardiac Fibroblasts in CAD

CircRNAs Expression Species Cell 
lines

Mechanism Pathophysiological 
processes

Effection Validation 
method

Ref

Circ_0060745 Up-regulated Mice CF - Inflammation ↑ Promotes 
MI

Functional 
(in vitro/vivo)

[98]

CircPAN3 Up-regulated Rats CF miR-221 /FoxO3 /ATG7 Migration ↑ 
Autophagy ↑ 
Proliferation ↑

Promotes 
MF

Functional (in vivo) [167]

CircUbe3a Up-regulated Mice CF miR-138-5p /RhoC Migration ↑ 
Proliferation ↑

Promotes 
MF

Functional 
(in vitro/vivo)

[168]

CircHelz Up-regulated Mice CF - Proliferation ↑ 
Differentiation ↑.

Promotes 
MF

Functional 
(in vitro/vivo)

[169]

CircMACF1 Down-regulated Human CF miR-16-5p /SMAD7 Migration ↓ 
Proliferation ↓

Inhibits 
MF

Functional 
(in vitro)

[166]

CircCELF1 Down-regulated Mice CF miR-636 
FTO/DKK2

Migration ↑ 
Apoptosis ↓

Inhibits 
MF

Functional 
(in vitro/vivo)

[170]

CircLAS1L Down-regulated Human CF miR-125b /SFRP5 Apoptosis ↑ 
Migration ↓ 
Proliferation ↓

Inhibits 
MF

Functional 
(in vitro)

[171]

CircNSD1 Up-regulated Mice CF miR-429-3p /SULF1/ Wnt/β- 
catenin

Proliferation ↑ 
Collagen deposition ↑

Promotes 
MF

Functional 
(in vitro/vivo)

[165]

Abbreviations: CF, Cardiac fibroblast; MI, Myocardial infarction; MF, Myocardial fibrosis; CAD, Coronary artery disease; ↑, Promotes; ↓, Inhibits.
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achieved by analyzing the expression levels of circRNAs in the blood, serum, plasma or other body fluids of CAD 
patients.173,174 Compared to traditional biomarkers, this detection method may be able to reflect the presence of CAD 
earlier. The association between these circRNAs’ sensitivity and specificity is shown by the receiver operating char-
acteristic (ROC) curve, with values of the area under the curve (AUC) between 0.1 and 1, which can be used directly to 
assess the diagnostic value of circRNAs. The greater the value, the higher the possibility for diagnosis.175

We established the following inclusion criteria for the circRNAs analyzed: 1) Publications between 2019–2024; 2) 
Significant differential expression between CAD patients and healthy controls; 3) AUC greater than 0.70. Table 5 

Table 5 Diagnostic Significance of circRNAs in CAD

CircRNAs Expression Samples Function ROC Curve Analysis Ref

Specificity Sensitivity AUC

CircZNF609 Down-regulated Samples of peripheral blood derived from 330 CAD patients and 
209 healthy individuals.

Biomarker for 
diagnosis

0.804 0.615 0.761 [182]

Hsa_circ_0001879 Up-regulated Samples of blood derived from 297 healthy individuals and 436 patients 

with CAD.

Biomarker for 

diagnosis

0.543 0.831 0.703 [176]

Hsa_circ_0004104 Up-regulated Samples of blood derived from 297 people healthy individuals and 436 

patients with CAD.

Biomarker for 

diagnosis

0.614 0.707 0.700 [176]

CircYOD1 Up-regulated Samples of blood were derived from 316 healthy individuals and 1842 

patients with CAD

Biomarker for 

diagnosis

0.824 - 0.824 [183]

Hsa_circ_0001445 Down-regulated Samples of peripheral blood derived from 96 CHD patients and 

126 healthy controls.

Biomarker for 

diagnosis

0.766 0.675 0.816 [184]

Hsa_circ_0005540 Up-regulated Samples of plasma derived from 105 CAD patients and 86 healthy 

individuals.

Biomarker for 

diagnosis

0.765 0.810 0.853 [185]

CircLDB1 Up-regulated Samples of peripheral blood were derived from 50 controls (included 

24 females and 26 males) and 50 individuals with CAD (included 22 
females and 28 males).

Biomarker for 

diagnosis

0.767 0.835 0.900 [177]

CircPPARA Up-regulated Samples of peripheral blood were derived from 50 patients with AMI 
and 50 controls.

Biomarker for 
diagnosis

- - 0.876 [179]

CircPRDM5 Down-regulated Samples of serum were derived from 118 AMI patients, 63 AP patients 
and 60 healthy controls.

Biomarker for 
diagnosis

0.878 0.763 0.862 [186]

Circ-0020887 Up-regulated Samples of plasma were derived from 64 patients with STEMI and 64 

controls.

Biomarker for 

diagnosis

- - 0.85 [187]

Circ_cSMARCA5 Down-regulated Samples of peripheral blood derived from 100 patients without CAD 

and 100 AMI patients.

Biomarker for 

diagnosis

0.890 0.677 0.83 [188]

Circ_cZNF292 Up-regulated Samples of blood were derived from 42 patients with AMI and 33 non- 

AMI patients.

Biomarker for 

diagnosis

- - 0.747 [189]

Circ_0051386 Up-regulated Samples of blood were derived from 254 patients with STEMI and 151 

controls.

Biomarker for 

diagnosis

- - 0.766 [190]

Circ_0013958 Up-regulated Samples of blood were derived from 120 patients with AMI and 102 

controls.

Biomarker for 

diagnosis

0.842 0.862 0.908 [178]

Circ-0009590 Up-regulated Samples of plasma were derived from 64 patients with STEMI and 64 

controls.

Biomarker for 

diagnosis

- - 0.80 [187]

Hsa_circ_0001360 Up-regulated Samples of blood were derived from 10 patients with CHD and 

10 healthy controls.

Biomarker for 

diagnosis

- - 0.860 [180]

Hsa_circ_0000038 Down-regulated Samples of blood were derived from 10 patients with CHD and 
10 healthy controls.

Biomarker for 
diagnosis

- - 0.870 [180]

Hsa_circ_0001946 Up-regulated Samples of peripheral blood were derived from 120 patients with CHD 
and 120 healthy controls.

Biomarker for 
diagnosis

0.867 0.833 0.897 [181]

Abbreviations: CAD, coronary artery disease; AMI, acute myocardial infarction; STEMI, ST-segment elevation myocardial infarction; AP, angina pectoris; ROC, receiver 
operating characteristic; AUC, area under the curve.

https://doi.org/10.2147/IJGM.S524189                                                                                                                                                                                                                                                                                                                                                                                                                                        International Journal of General Medicine 2025:18 3140

Cheng et al                                                                                                                                                                          

Powered by TCPDF (www.tcpdf.org)



includes a total of 18 circRNAs that demonstrate potential as diagnostic biomarkers for CAD. However, through analysis 
of existing studies, we identified significant heterogeneity in the diagnostic performance of these circRNAs. For instance, 
while hsa_circ_0001879 (AUC=0.703) and hsa_circ_0004104 (AUC=0.700) from the same study demonstrated moder-
ate diagnostic accuracy,176 circLDB1 (AUC=0.900) and circ_0013958 (AUC=0.908) exhibited superior diagnostic 
value,177,178 these discrepancies may originate from variations in study population characteristics (eg, disease severity, 
comorbidities) or methodological differences in detection approaches. Moreover, certain circRNAs (eg, circPPARA, 
hsa_circ_0000038, and hsa_circ_0001946) demonstrated considerable diagnostic potential (AUC > 0.800), yet their 
clinical applicability may be constrained by the current lack of reported sensitivity and specificity data,179–181 this 
limitation underscores the necessity for standardized reporting of ROC curve parameters in future investigations.

Assessment of the Severity and Prognosis of CAD
The expression levels of specific circRNAs in the blood of patients with CAD may be correlated with the severity and 
prognosis of CAD. Analyzing circRNA expression profiles at different stages of progression can provide a potential basis 
for the clinical evaluation of CAD severity in patients.191 In a CAD study related to the Chinese population, 
circNIPSNAP3A was found to have higher expression levels in the serum of the atherosclerosis group and CAD 
group with higher disease severity than the general CAD group, suggesting that circNIPSNAP3A is related to the 
severity of CAD.192 Besides, another study found that the expression of circRNAs in the peripheral blood of CAD 
patients was approximately three times higher than in healthy individuals, having an AUC value of 0.931, diagnostic 
sensitivity of 75.71%, specificity of 100%, ROC curve results exhibited that circRNAs in peripheral blood can function 
as a biomarker for predicting major adverse cardiovascular events (MACE) in patients with acute coronary syndrome.193

Therapeutic Targets and Drug Development
A study has shown that targeted regulation of circMAT2B in the MI model can improve myocardial function by 
upregulating miR-133 to inhibit inflammatory responses harmful to CMs,76 targeted inhibition of circ_0004104 expres-
sion in ECs can promote cell proliferation and inhibit apoptosis, so as to slow down the progression of coronary 
atherosclerosis.46 This prompts us that circRNA or the miRNAs and mRNAs regulated by it may become new targets for 
the treatment of CAD,194 new drugs can be developed targeting these targets to regulate circRNA synthesis and 
degradation, achieving the goal of treating CAD. However, although sevoflurane and Gypenoside A have been verified 
in vitro and in vivo experiments to effectively protect CMs from ischemia-reperfusion injury by regulating the specific 
circRNA-miRNA-mRNA axis, these preliminary results still require in-depth clinical studies to verify its 
effectiveness.75,77 In the future, there is still great potential for the research and development of drugs targeting 
circRNA in the field of CAD therapy.

Conclusions and Perspectives
CAD is widespread in the world, and its high incidence rate and mortality have been widely concerned by the world. The 
role of circRNAs in CAD is a rapidly developing research field, which has shown great potential in disease mechanisms, 
diagnosis, prognosis assessment, and treatment interventions. Although many studies have demonstrated the diversity of 
biological functions of circRNAs, in recent years, researchers more focused on how circRNAs through miRNA sponge 
effect, protein interaction or directly regulate downstream gene expression to affect the pathophysiology of cardiovas-
cular cells, thus potentially impacting on the initiation, progression and prognosis of CAD.

As shown in Table 6, compared with existing published studies, this paper employed specific screening criteria to 
analyze 148 studies published between 2019 and 2024, thereby covering a broader time span. We comprehensively 
summarized 107 CAD-associated circRNAs whose functional mechanisms have been experimentally validated through 
in vivo or in vitro studies, along with 18 circRNAs exhibiting diagnostic biomarker potential. The quantity of circRNAs 
identified in our review significantly surpasses that reported in previous similar reviews. More importantly, based on the 
biological characteristics and functions of circRNAs, we innovatively conducted a multi-cellular dimensional integrated 
analysis and established a comprehensive regulatory network encompassing endothelial cells (ECs), vascular smooth 
muscle cells (VSMCs), cardiomyocytes (CMs), and cardiac fibroblasts (CFs). Our findings reveal that several circRNAs - 
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including CircHIPK3, CircPAN3, and CircROBO2 - can coordinately regulate the pathological progression of CAD 
across different cell types. For instance, circROBO2 was found to be highly expressed in CAD-associated ECs, VSMCs, 
and CMs simultaneously, where it regulates apoptosis and proliferation in these cell types through specific ceRNA 
networks.42,64,93 Such coordinated multi-cellular regulation substantially advances beyond conventional research para-
digms that were confined to single-cell-type investigations. Furthermore, the same target gene can also be influenced by 
different circRNAs to mediate the progression of CAD. For instance, circ_0068655, circHSPG2, and circTRRAP can 
jointly modulate the expression of PAWR in CMs through sponge miR-498, miR-25-3p, and miR-370-3p, respectively, 
thereby affecting apoptosis, proliferation, migration, inflammation, and oxidative stress in CMs. Therefore, certain 
circRNAs may play more pivotal roles in CAD progression, as they not only regulate multiple pathological processes 
across different cell types but also participate in intricate regulatory networks within individual cell types. These 
circRNAs exemplify a distinctive “multi-mechanism and multi-cellular” synergistic mode of action in CAD, warranting 
prioritized investigation to fully explore their clinical translation potential. Figure 1 summarizes the regulatory network 
of these circRNA in CAD-associated cardiovascular cells. Notably, beyond the classical ceRNA mechanism, circRNAs 
may also participate in CAD pathophysiology through non-coding-dependent pathways such as direct regulation of 
downstream target genes, translation into functional peptides, and protein-protein interactions - all of which merit in- 
depth exploration in future research.

With the continuous development of the molecular mechanism research of circRNAs, its potential clinical application 
value in CAD has gradually emerged. Capitalizing on the superior stability of circRNAs compared to conventional CAD 
diagnostic biomarkers, our review identified 18 circRNAs with significant diagnostic value, all rigorously validated in 
independent clinical cohorts (AUC > 0.70). Notably, CircLDB1 and Circ_0013958 demonstrated exceptional diagnostic 
performance (AUC > 0.900), further highlighting the potential of circRNAs as clinical surrogate biomarkers for CAD. 
However, it should be emphasized that current findings primarily rely on expression profiling and diagnostic efficacy 
analyses in clinical samples, while their functional mechanisms require further experimental validation through func-
tional studies. These results nevertheless provide crucial clinical evidence supporting the continued exploration of 
circRNA biomarkers for CAD.

Certainly, the unique exonuclease resistance of circRNAs and their complex and variable regulatory mechanism in 
CAD not only endow it with the potential as a biomarker for early diagnosis and disease progression prediction of CAD 

Table 6 Some Novelties of This Study Compared to Previously Published Studies

Ref Years Included 
literature  
(Year Range)

Number of circRNAs Cell Lines Mechanism Depth Diseases Clinical Application Potential

Our study 2025 2019–2024 107 (Mechanism) 18 

(Diagnosis)

EC 

VSMC 
CM 

CF

ceRNA 

multi-cellular 
/multi-mechanism synergistic 

effect

AS 

MI 
MI/RI 

IHD

Diagnostic biomarkers; Therapeutic 

targets

[60] 2020 2016–2019 15 (Mechanism) 4 

(Diagnosis)

- ceRNA AS 

MI 

MI/RI 

IHF

Diagnostic biomarkers

[195] 2021 2017–2020 14 (Mechanism) 7 
(Diagnosis)

THP-1 VSMC 
RAW264.7

ceRNA - Diagnostic biomarkers

[196] 2023 2019–2023 31 (Mechanism) EC 
VSMC 

THP-1

ceRNA AS Diagnostic biomarkers; Therapeutic 
targets

[197] 2022 2015–2021 17 (Mechanism) 

12 (Diagnosis)

EC 

pericyte cells 

exosomes

ceRNA - Diagnostic biomarkers

Abbreviations: EC, Endothelial cell; VSMC, Vascular smooth muscle cell; CM, Cardiomyocyte; CF, Cardiac fibroblast; AS, Atherosclerosis; MI, Myocardial infarction; MI/RI, 
Myocardial ischemia/reperfusion injury; IHD, Ischemic heart disease; IHF, Ischemic heart failure; ceRNA, Competing endogenous RNA.
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but also provide new targets and drug development directions for the treatment strategies of CAD. Unfortunately, most of 
the current studies still have some limitations, for example, the specific biological functions and mechanisms of action of 
circRNAs need to be further elucidated, and the exact details of its multiple regulatory mechanisms in the pathophysiol-
ogy of CAD are still not clear enough. The detection method and standardized process of circRNAs have not been fully 
established.

Based on the above, circRNAs possess the ability to regulate the pathophysiological processes of CAD, which 
involves a “multi-cellular/multi-mechanism” synergistic mechanism. Although current studies have identified a large 
number of functionally well-defined circRNAs, clinical translation still requires overcoming numerous challenges. Future 
research should focus more on the following directions: Firstly, at the mechanistic level, it is essential to move beyond 
the singular perspective of the existing ceRNA mechanism and systematically explore how circRNAs participate in the 
pathological progression of CAD through non-coding-dependent pathways such as direct translation, protein interactions, 
or epigenetic regulation. Particular attention should be paid to key circRNAs like circHIPK3 and circROBO2, which 
exhibit “multi-cellular/multi-mechanism” synergistic effects, to uncover their central role in cross-cell-type regulatory 
networks. Secondly, in terms of clinical translation, efforts should be made to promote multicenter clinical validation of 
circRNAs with high diagnostic value, establish standardized detection protocols, and develop targeted intervention 
strategies for circRNAs that regulate critical genes. Finally, dynamic monitoring of circRNA changes throughout the 
entire course of CAD should be implemented to determine their potential as staging biomarkers and therapeutic nodes, 
ultimately achieving the comprehensive application of circRNAs in the precision diagnosis and treatment of CAD.

All in all, circRNAs are expected to become an important component of CAD precision medicine in the future and 
bringing new directions for the diagnosis and treatment of CAD, despite some remaining scientific and technological 
obstacles.

Figure 1 Functional networks of circRNAs in coronary artery disease from a multi-cellular and multi-mechanism perspective. CircRNAs regulate gene expression by 
enhancing the transcription of parental genes. CircRNAs serve as translation templates to promote protein synthesis. CircRNAs act as protein scaffolds to promote the 
interaction of enzymes with substrates, thereby regulating protein modifications. CircRNAs interact with RNA-binding proteins to regulate protein function and signal 
transduction. CircRNAs act as sponges for miRNAs, competitively binding to miRNAs and affecting their regulation of target mRNAs.
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