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Prediction of successful memory encoding is important for learning. High-frequency
activity (HFA), such as gamma frequency activity (30–150 Hz) of cortical oscillations, is
induced during memory tasks and is thought to reflect underlying neuronal processes.
Previous studies have demonstrated that medio-temporal electrophysiological
characteristics are related to memory formation, but the effects of neocortical neural
activity remain underexplored. The main aim of the present study was to evaluate the
ability of gamma activity in human electrocorticography (ECoG) signals to differentiate
memory processes into remembered and forgotten memories. A support vector
machine (SVM) was employed, and ECoG recordings were collected from six subjects
during verbal memory recognition task performance. Two-class classification using an
SVM was performed to predict subsequently remembered vs. forgotten trials based on
individually selected frequencies (low gamma, 30–60 Hz; high gamma, 60–150 Hz) at
time points during pre- and during stimulus intervals. The SVM classifier distinguished
memory performance between remembered and forgotten trials with a mean maximum
accuracy of 87.5% using temporal cortical gamma activity during the 0- to 1-s interval.
Our results support the functional relevance of ECoG for memory formation and suggest
that lateral temporal cortical HFA may be utilized for memory prediction.

Keywords: memory prediction, successful memory encoding, electrocorticography, high-frequency activity,
memory formation, gamma frequency

INTRODUCTION

Memory formation is an important cognitive process that enables the identification of traces
of individual episodic memories and learning from experiences to guide behavior (Chadwick
et al., 2010). Understanding the neural correlates of memory formation is essential to identify
the brain mechanisms underpinning memory processes, which can be further applied to predict
subsequent memories or even improve memory (Ezzyat et al., 2017). The decoding of neural
activity during memory processing has garnered substantial interest in the cognitive neuroscience
community. Neural activity relevant to memory formation measured with electrocorticography
(ECoG) provides a valuable window into the neural correlates of underlying cognitive processes
(Fell et al., 2011). The field potential of ECoG activity interacts with neural membrane potentials
and, thus, modulates the degree of neuronal excitability and influences their discharge times
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(Anastassiou et al., 2010; Hohne et al., 2016). As such, these
studies have provided evidence for the role of the amplitude of
cortical oscillatory activities in neural processing.

There has been growing interest in human brain oscillations
and their possible role in memory processes. Low-frequency
activity (i.e., theta rhythm, 4–8 Hz) and high-frequency activity
(HFA) (i.e., gamma rhythm, >30 Hz) have received attention
in the context of understanding human memory function
(Sederberg et al., 2003, 2007; Kahana, 2006). In particular, HFA
is a brain response with ECoG signals for episodic memory
formation, which provides spatiotemporal properties of memory
encoding with millisecond temporal resolution. The neural
substrates that produce such fast activity is a topic of ongoing
research. HFA has been linked to asynchronous signals related
to increased multi-unit activity (Manning et al., 2009; Milstein
et al., 2009; Ray and Maunsell, 2011). An increasing number of
studies have leveraged HFA as a marker of underlying neural
activation (Miller et al., 2008; Shenoy et al., 2008; Lachaux et al.,
2012), and HFA is, thus, considered to reflect regional activation
during memory encoding (Burke et al., 2014). HFA has been
reported to be a potential biomarker for mapping, targeting, and
modulating neuronal assemblies at a high temporal resolution
during memory formation (Lachaux et al., 2012; Burke et al.,
2015; Johnson and Knight, 2015). In particular, these oscillations
spanning a 30- to 150-Hz range were proposed to set an ideal
frame for neuronal interactions underlying memory formation
(Jensen et al., 2007; Duzel et al., 2010). Thus, studies investigated
to detect discrete events induced during memory formation of
word encoding in different gamma band activities—low gamma
(30–60 Hz) and high-gamma (>60 Hz) (Colgin et al., 2009;
Buzsaki and Silva, 2012). Separating different types of gamma
activities (30–150 Hz) is a crucial electrophysiological biomarker
of memory formation and applications (Kucewicz et al., 2017).

Extant evidence suggests that prevalent HFA from structures
outside the medial temporal lobe (MTL) is critical for memory
formation (Buzsaki, 1996; Eichenbaum, 2000; Poldrack et al.,
2001; Ritchey et al., 2015; Moscovitch et al., 2016). Neuroimaging
studies have provided evidence for the neural correlates of
episodic encoding within the hippocampus and functional
networks spanning prefrontal, medial temporal, lateral temporal,
and parietal cortical regions (Kim et al., 2010). Similarly,
successful memory processing relies on coherent oscillations of
multiple temporal and neocortical regions at varying frequencies.
For instance, increased coherence between brain regions,
particularly the hippocampus and prefrontal cortex, is associated
with better memory (Fell et al., 2008; Benchenane et al., 2010;
Watrous et al., 2013). Especially, gamma oscillatory power
increases with memory task in the hippocampus, and this gamma
pattern (28–40 Hz and 90–100 Hz) was observed in other
memory-related regions such as frontal and temporal cortical
regions (van Vugt et al., 2010). The neural correlates of HFA
of successful memory processing in neocortical regions may,
therefore, provide insight into the roles of specific regions in
memory performance, and characterizing these features may
facilitate the evaluation of memory performance. However, the
effect of HFA in human ECoG signals to differentiate memory
prediction has been little explored.

The core aim in this study is to provide novel evidence on how
HFA in the temporal cortex is associated with success of memory
formation in human ECoG signals and to differentiate memory
process into remembered and forgotten memories with HFA.
We evaluated temporal cortical HFA, which was accompanied by
successful memory formation relative to unsuccessful encoding.
We hypothesized that the difference in HFA would enable
differentiation of successful encoding trials from unsuccessful
ones. In the first step, we identified time windows (i.e.,
pre-stimulus vs. during-stimulus) referenced by the human
single-unit activity and HFA with statistically significant power
clustering across subjects. We delegated the HFA to low gamma
(30–60 Hz) and high gamma (60–150 Hz) based on previous
literature, revealing a sequential memory effect (SME) during the
encoding phase (Sederberg et al., 2007; van Vugt et al., 2010).
We then determined the brain regions and frequencies for which
the amplitude differences differed between the remembered
and forgotten conditions in order to analyze encoding-related
activities for subsequently remembered and forgotten words.
Finally, a support vector machine (SVM) was trained using the
power in the selected time windows and frequencies.

MATERIALS AND METHODS

Subjects
The present study included six subjects (four women; mean
age: 34.2 ± 11.6 years) with drug-resistant epilepsy who had
been implanted with intracranial electrodes to determine the
area of the seizure onset zone. The local institutional review
board (IRB) approved the study protocol (H-1407-115-596). All
subjects provided written informed consent to participate in the
present study. Subject characteristics are presented in Table 1.
Most of the subjects underwent neuropsychological assessments
including IQ and MQ to confirm that the subjects were within a
normal cognitive category.

Electrode Localization
The locations of the electrodes were determined by clinical
diagnosis. The electrodes (AdTech Medical Instrument
Corporation, Racine, WI, United States) were positioned
for subdural electrocorticography (ECoG) on the cortical
surface (diameter of 4 mm, placed 10-mm apart) with stainless
steel contacts. Prior to electrode implantation, each subject
underwent a preoperative magnetic resonance imaging (MRI)
scan in a Magnetom Trio, Magnetim Verio 3-tesla (Siemens,
München, Germany) or Signa 1.5-Tesla scanner (GE, Boston,
MA, United States). Computed tomography (CT) scans were
performed following electrode implantation using a Somatom
sensation device (64 eco; Siemens München, Germany). For
visualization, CT and MRI images were co-registered as
previously described (Avants et al., 2008). The brain model
and implanted electrodes were reconstructed from individual
preoperative MRI and postoperative CT images using CURRY
software version 7.0 (Compumedics Neuroscan, Charlotte, NC,
United States) (Figure 1). A neuroradiologist and neurosurgeon
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TABLE 1 | Subject demographics, clinical characteristics, and electrode locations.

Subject Demographics Clinical characteristics

Age IQ/MQ Seizure onset Pathology Resection Seizure type Electrode Type

Sub1 50–55 77/94 ATG, TP PHG reactive gliosis PHG TLE Subdural

Sub2 30–35 N/A TP, STG Temporal lobe Focal cortical dysplasia L. ITG Bilateral TLE Subdural

Sub3 20–25 89/92 Amygdala FCD Heteropia PHG, Amygdala TLE Subdural

Sub4 40–45 85/85 STG HP neuronal loss ATL, AH TLE Subdural

Sub5 25–30 N/A PHG DG dispersion, HP neuronal loss HP TLE Subdural

Sub6 25–30 N/A ATG, TP PHG reactive gliosis PHG TLE Depth

IQ, intelligence quotient; MQ, memory quotient; R, right; L, left; HP, hippocampus; mHP, middle hippocampus; LWM, limbic white matter; PHG, parahippocampal gyrus;
DG, dentate gyrus; aTG, anterior temporal gyrus; STG, superior temporal gyrus; ITG, inferior temporal gyrus; TP, temporal pole; TLE, temporal lobe epilepsy; FCD, focal
cortical dysplasia; N/A, not applicable.
Subject demographic data are presented together with clinical observations from clinically identified seizure onset zones, pathology in subjects who underwent
corresponding surgery and showed neuropsychological results. A clinical psychologist employed the Wechsler Adult Intelligence Scale—Korean version (K-WAIS-IV)
and the MQ of the Rey–Kim Memory test to assess IQ. Most of the subjects underwent neuropsychological assessment including IQ and MQ, providing that the subjects
were within a normal cognitive category.

FIGURE 1 | Aggregate electrode rendering. Grid electrodes from all six subjects rendered on normalized cortical surfaces. Lateral sagittal (upper) and coronal (lower)
views from left (A) to right (B).

performed electrode localization based on thin-section post-
implantation CT scans and co-registered MR images. BrainNet
Viewer (Xia et al., 2013) was used to visualize the electrodes.

Verbal Memory Task
All stimuli were presented on a laptop computer with a
Stim 2 Gentask (Neuroscan, Charlotte, NC, United States).
We used a word memory task (Figure 2), which is known
to recruit the medial temporal lobe during memory encoding
(Axmacher et al., 2008; Hamani et al., 2008; Jun et al., 2020).
All words consisted of concrete Korean nouns according to
the Korean Category Norms: Survey on Exemplar Frequency
Norm, Typicality, and Features (Rhee, 1991) and the second
version of the Modern Korean Words database (Kim, 2005).

Prior to the main experiment, a brief practice set of trials was
conducted to ensure that the subjects understood the task. For
the task, subjects were instructed to memorize the presented
words. The subjects were instructed to study 60 words across
two sessions. Each session consisted of 30 words. In total, 60
concrete nouns were individually presented in a random manner.
The presentation of each word commenced with a fixation cross
appearing on the screen for 1 s during the pre-stimulus time
period, followed by the word that was displayed for 4 s. To ensure
deep encoding, subjects were instructed to report whether they
judged the word on the screen as “pleasant” or “unpleasant” by
pressing a keyboard button with their index finger (de Vanssay-
Maigne et al., 2011). Following presentation of the final word of
the encoding block, subjects were allowed a 10-min break and

Frontiers in Neuroscience | www.frontiersin.org 3 May 2021 | Volume 15 | Article 517316

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-517316 May 18, 2021 Time: 19:12 # 4

Jun et al. Prediction of Memory With Cortical Gamma Power

FIGURE 2 | Verbal memory task paradigm. Example of the timeline of the word memory paradigm. The entire task consisted of three study periods: encoding, rest
(distractor), and retrieval.

subsequently performed a 30 s distractor task consisting of a
series of arithmetic problems for “A− B= ?” where A and B were
randomly chosen integers ranging from 1 to 100. In the item task,
a total of 90 words were used, including 30 new words and 60
old words. Subjects were instructed to respond whether the word
had been presented before (“old”; button #1), new (“new”; button
#2), or no idea (“no idea”; button #3). For the main experimental
session, none of the words were presented twice, and subjects
were not exposed to the same experimental task more than once.

Data Acquisition and Analysis
ECoG and depth electrodes were recorded using a 64-channel
digital video monitoring system (Telefactor Beehive Horizon
with an AURA LTM 64- and 128-channel amplifier system;
Natus Neurology, West Warwick, RI, United States) digitized at a
sampling rate of 1,600 Hz and filtered from 0.1 to 150 Hz. These
ECoG data were analyzed using MATLAB software (version
2015b, Mathworks, Natick, MA, United States). The depth
electrode was implanted only in Subject 6, and it covered the
temporal white matter. The depth electrode did not cover the
region of interest in the present study, and we excluded the
depth electrode from further analysis. We first performed manual
artifact rejection of the signal for every electrode. Channels
affected by artifacts were excluded from subsequent analyses.
Individual stimulus response trials were marked and precluded if
motion artifacts were present. Signals exhibiting motion artifacts
and epileptic-form spikes were also marked and excluded from
further analyses. The recorded data were re-referenced to the
common average reference. To quantify specific changes in
frequency bands during stimulation for the encoding period of
the memory task, time-frequency analysis with Morlet wavelet
transformation (wave number: 2.48) was applied to obtain a
continuous-time complex value representation of the signal.
The effective window length (95% confidence interval of the
Gaussian kernel, seven cycles) was 80 ms at 50 Hz. Transformed
data were squared to calculate the power value and normalized
by the mean of the pre-stimulus baseline power (i.e., resting
periods prior to the task) for each frequency. The resting
periods prior to the memory task was 5-min duration, and
it was equal to every subject. During the resting periods, the
subjects were instructed to keep their eyes open, while fixating
a white cross in the notebook. A fixation cross, on which
subjects were instructed to focus their gaze, was presented to
minimize eye movement. The electrophysiological data were

divided into epochs that onset 1 s pre-stimulus and continued
to 1 and 1.5 s of during stimulus from the onset of the word
trials and sorted according to subsequent memory performance.
The averaged power of each condition was compared across
a frequency range of 30–150 Hz for correctly and incorrectly
encoded memory items. Normalized data were averaged across all
trials for correct and incorrect trials according to each condition.
To test the significance between subsequently remembered and
subsequently forgotten words at encoding, independent two-
sample t-tests were performed.

Feature Selection
Figure 3 presents the selected features for each phase and
frequency band. Table 2 presents the t-statistic values and regions
of the selected features. The most informative frequency values
with the top 20% of t-statistics were selected as the features in
each phase and frequency band.

Classification Problem
The classification problem was set up. Trials that were
presented in the encoding phase were labeled according to the
results of recognition phase. Remembered and forgotten were
labeled. There were two labels: remembered and forgotten. The
remembered class consisted of trials where the subjects pressed
the buttons “Old” (old words correctly recognized as old), and
the forgotten class consisted of trials where the subjected pressed
the buttons “New” (old words incorrectly recognized as new).
Since all subjects only responded as “old” and “new,” we could
not get “no idea” trials. Furthermore, new trials were not included
to maximize the difference in encoding process. Sets of labeled
trials were acquired from two different periods: pre- and during
stimulus. These spectral classifier learned the power differences
between the remembered and forgotten trials from the three
separate time windows (i.e., −500 to stimulus onset, stimulus
onset to 1 s, and stimulus onset to 1.5 s).

Classification
For classification between remembered and forgotten trials from
low- and high-gamma band signals, features from the single-trial
low- and high-gamma power (dashed line in Figures 3A,B) of
all electrodes located in Figures 3A,B were first extracted. The p-
values were then calculated by comparing the remembered and
forgotten items. To confirm whether the features based on the
HFA difference in the single-trial conditions represented their
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FIGURE 3 | (A) Electrodes in cortical regions exhibiting across-subject differences between successful memory encoding (SME) for the −0.5- to 1.5-s time bins. The
color intensity indicates the direction of the effect (yellow = low gamma, red = high gamma) with a significance threshold of p < 0.05. Blue denotes regions that did
not exhibit a significant effect among subjects. (B) Time course of significant oscillatory activity in SMEs for lateral temporal cortices from four individuals (Subject 1
to Subject 4, left to right, respectively). Each panel shows the t-transformed significance value of the difference in power between remembered and forgotten
memories. The left and right temporal cortices both exhibit heightened low-gamma power (30–60 Hz) and high-gamma oscillation (∼150 Hz) increases during pre-
and during-stimulus intervals in SME. The dashed white line indicates p < 0.05 significance threshold.

respective successful memory encoding (SME), simple linear
SVM analyses were performed. The selected feature sets were
entered into a supervised linear classification procedure using
an SVM algorithm to assess whether subsequently remembered
trials could differentiate subsequently forgotten trials. A data-
driven feature-filtering step was performed before SVM learning.
The most informative power with statistical significance was
within the high-frequency power (low gamma, 30–60 Hz; high
gamma, 60–150 Hz) as identified using the subsequent memory
effect (SME) procedure in the encoding phase (Sederberg et al.,
2007; van Vugt et al., 2010). The most informative power was
selected as a candidate feature for SVM learning to identify
the optimal classifier modified from a previous study (Jin and
Chung, 2017). SVM group classification analyses were performed
using the Statistics Toolbox in Matlab software (version R2018b;
MathWorks Inc., Natick, MA, United States). The nonlinear
radial basis function kernel (sigma= 2) and constant soft margin
(cost = 1) were applied for the SVM training, as recommended
previously, showing high gamma time features with an SVM
model that classified individual words from a pair of words
(Martin et al., 2016). In the SVM training procedure, the
decision boundary formulated using a candidate feature set was
optimized to maximize group classification accuracy using 80%
of trials randomly selected from the total trials (Dosenbach et al.,
2010). All SVM procedures, testing, and iterative group classifier
performance evaluation (with random permutation of subjects
into training and testing sets for cross-validation) were repeated
10,000 times per candidate feature set. The most accurate group
classifier with the highest overall mean accuracy across the 10,000

cross-validation procedures was selected as the optimal SVM
group classifier.

Statistical Analysis
Statistical tests were performed using the Statistical Package
for Social Sciences v12.0 K (SPSS) and MATLAB (Mathworks).
Our primary measurement of memory performance was the
percentage of correctly recognized trials in each block. Paired
non-parametric rank-sum tests were used to compare behavioral
performance between conditions. For activity in the lateral
temporal cortex, independent two-sample t-statistics (∗∗p < 0.01
or ∗p < 0.05) were used to compare the average power amplitudes
of ECoG waveforms between correctly and incorrectly recognized
trials. Prior to significance testing, normality was assessed using
the Lilliefors test (p > 0.01, for all datasets). For multiple
comparisons among gamma power levels, the Bonferroni
correction procedure was employed. The level of statistical
significance was set at p < 0.05.

RESULTS

On average, subjects successfully remembered 81.19 ±5.79%
(standard error of the mean; SEM) of the words, with a mean
response time of 1,277.45 ± 315.28 ms (1,076.26 ±181.82 ms
for remembered trials and 1,478.64 ± 475.34 ms for
forgotten trials, p > 0.05). Full-scale IQ (FSIQ) and memory
quotation (MQ) were measured in six subjects before electrode
implantation as part of the routine clinical preoperative
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TABLE 2 | Results of the t-test for the difference between the remembered and
forgotten conditions.

Time Band Feature set t-value

Pre-stimulus interval Low gamma (30–60 Hz) ITG (L) 2.828**

MTG (R) 1.618*

MTG (L) 1.315*

STG (R) 2.358*

High gamma (60–150 Hz) ITG (R) 2.158**

PFC (R) 1.785*

MTG (R) 2.215**

IPL (R) 1.582*

Time Band Feature set t-value

During-stimulus interval Low gamma (30–60 Hz) ITG (L) 3.515*

MTG (R) 2.357**

MTG (L) 1.298**

STG (R) 1.685*

High gamma (60–150 Hz) ITG (R) 2.553**

PFC (R) 1.699*

MTG (R) 2.288*

IPL (R) 1.453*

*p < 0.05, **p < 0.01.
ITC, inferior temporal cortex; PFC, prefrontal cortex; IFG, inferior frontal gyrus; IPL,
inferior parietal lobule; L, left; R, right.
The t-statistic values and regions of the selected features. The most informative
frequency values with the top four ranked of t-statistics were selected as the
features in each phase and frequency band. The pre-stimulus interval showed
positive spectral SME in the low-gamma bands (i.e., 38–50, 35–48, 32–40, and
38–54 Hz, respectively) and in the high-gamma band (65–70, 81–90, 78–95, and
81–93 Hz, respectively). The during-stimulus interval showed positive spectral SME
in the low-gamma (38–59, 35–54, 42–54, and 38–55 Hz) and high-gamma band
(82–90, 78–150, 80–150, and 82–109 Hz, respect.

evaluation. Subjects had an average preoperative FSIQ of 83 ± 8
(mean ± SEM) and MQ of 85.6 ± 8.45. No significant
correlations were observed between preoperative FSIQ and
accuracy during the task (r = −0.300, p = 0.624, N = 5)
(r=−0.200, p= 0.747, N= 5) across all sessions for each subject,
suggesting that task performance was associated with normal
psychometric measurements.

Temporal and Spectral Successful
Memory Effects
Previous memory studies have compared signals during learning
of visual items that are subsequently remembered to items that
will be forgotten to assess differences in brain activity, yielding
an outcome termed the SME. Positive and negative SMEs have
been reported in different frequency bands (Hanslmayr et al.,
2012). Interpretation of these effects suggests that the power
increase for remembered items typically occurs in positive high-
frequency SMEs (Sederberg et al., 2003; Burke et al., 2014, 2015).
In our study, SMEs in the pre- and during-stimulus intervals
were identified using the methods described in the Classification
section. Oscillatory power in the pre- and during-stimulus
intervals was examined separately for two nonoverlapping sub-
bands (low gamma, 30–60 Hz; high gamma, 60–150 Hz). For a
given sub-band, within-subject averages of the power difference

between the remembered and forgotten trials were calculated
for all electrode positions. An independent two-sample t-test
was performed to identify differences in gamma power between
the remembered and forgotten trials. Multiple comparisons
confirmed that the during-stimulus period exhibited consistent
positive spectral SME across subjects in the low- and high-gamma
bands in the left and right temporal cortical electrodes, as shown
in Figure 3B.

Predictive Performance of Pre- and
During-Stimulus Intervals
We next evaluated the type of ECoG signals that contributed
to memory performance prediction. ECoG signals from the
two different intervals were considered separately as input
from all electrodes for the classification of statistical differences
in gamma power from left to right hemispheres (Figure 3A;
yellow and red dots, respectively). Performance during the pre-
stimulus interval (−0.5 to 0 s) was compared with that for
the first and second during-stimulus epochs (0–1 and 0–1.5 s,
respectively) (Table 3), revealing the predictive accuracy and
final included number of trials for each participant. The optimal
SVM group classifier with the top 10 ranked features among
the 20 significantly different frequency bands according to the
averaged t-statistics distinguished correct versus incorrect trials.
The overall predictive performance with pre-stimulus signals was
78.5% (averaged over six subjects) (Figure 4A) and that of the
during-stimulus intervals was approximately 88.5% (Figure 4B)
and 85.5% for the first and second epochs, respectively (averaged
over six subjects). The accuracy of each subject was significantly
greater than chance levels (50%) for the entire period. Compared
with the average accuracy using the pre-stimulus interval of
ECoG data, the average accuracy using the first epoch of the
during-stimulus interval increased to 88.5%, which was similar
to that for the second epoch of the during-stimulus interval.

Comparison With Other Approaches
Four other approaches were implemented and tested on the
outperformed data set of the during-stimulus interval (0–1 s)
using the same experimental protocols for comparison. As shown

TABLE 3 | Prediction accuracy using two different periods of during stimulus.

Subject Pre-stimulus interval During-stimulus interval # trials
(REM/FOR)

−0.5 to 0 s 0 to 1 s 0 to 1.5 s

Sub1 80 91 80 45/10

Sub2 78 95 96 41/11

Sub3 97 81 97 40/16

Sub4 66 95 70 36/9

Sub5 84 97 84 49/9

Sub6 66 72 86 48/5

Average 78.5 (10.7) 88.5 (9.05) 85.5 (9.27) 43/10

The mean scores given by high-frequency power spectral classifiers trained from
the pre- and two during-stimulus intervals in each subject. Overall accuracy given
in the last row are the accuracies over all subjects considered for classification.
REM, remembered; FOR, forgotten.
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FIGURE 4 | The maximum accuracy of successful memory classification by simple SVM using the pre-stimulus interval [(A): −0.5–0 s] and during-stimulus interval
[(B): 0–1 s]. The x-axis indicates subjects, and y-axis indicates the classification accuracy (%). The chance level is 50% (dashed line). The dark gray bars in both (A)
and (B) indicate the average accuracy. Error bars indicate the standard error of the mean.

in Supplementary Table 1, two different classifiers performed
over chance level predictions. Among these approaches,
SVM achieved higher accuracy but was similar to linear
discriminant analysis (LDA) and Fisher linear discriminant
analysis (FLDA), which are effective methods that classify
features with linear separability.

DISCUSSION

This study demonstrated that neocortical HFA (i.e., gamma
power) predicted successful memory encoding, with average
prediction accuracies of 78.5 and 88.5% for the pre-stimulus
and during-stimulus intervals, respectively. The prediction rate
improved by 10% when using during-stimulus intervals from the
pre-stimulus interval. The majority of above-chance predictions
were associated with activity in lateral temporal cortical regions,
suggesting that cortical HFA values predict memory encoding.

To date, there have been no studies comparing data from
pre- and during-stimulus intervals to predict subsequent memory
formation using cortical ECoG activity. In accordance with our
findings, several scalp EEG studies have demonstrated that pre-
or during-stimulus electrophysiological brain activity predicted
memory formation or subsequent memory. For instance, both
neural signals before (Otten et al., 2010) and during an event (Sun
et al., 2016) enabled the distinction of remembered events from
forgotten ones. Indeed, by combining information from pre-
and during-stimulus periods with single-trial-based classification
methods, high-resolution surface EEG recordings predicted
subsequent memory (Noh et al., 2014).

This is the first study to demonstrate the efficacy of HFA
in cortical regions for memory prediction. Our data revealed
specific gamma activity from different sub-bands (low gamma,
30–60 Hz; high gamma, 60–150 Hz) depending on cortical region
during the 200–300 ms after stimulus presentation or later, which
typically indicates induced activity (Basar-Eroglu et al., 1996;

Tallon-Baudry et al., 1998). Studies have demonstrated that HFA
may play a role in encoding information. A previous study
reported an increase in gamma power (20–80 Hz) in subjects
performing a visual delayed-matching-to-sample task while
memorizing information, particularly in the occipitotemporal
and frontal regions (Tallon-Baudry et al., 1998). In fMRI studies,
the positive gamma SME in lateral temporal regions mirrors the
localization of the positive SME (Wagner et al., 1998; Davachi
et al., 2001; Reber et al., 2002). Similar to our findings, iEEG
recordings of subjects during the encoding of a verbal noun
memory task revealed that gamma oscillations (44–64 Hz) in the
left temporal and frontal cortices predicted successful encoding
of new verbal memory (Sederberg et al., 2007).

The majority of significant HFA during pre- and during-
stimulus periods was observed in the lateral temporal cortices.
The functional relevance of lateral temporal cortical activity
in memory formation is unclear. The lateral temporal cortical
regions play a functional role in memory formation, as this is
a critical region in episodic memory processing (Chao et al.,
1999). In humans, neuronal activity in the lateral temporal cortex
subserves the encoding of verbal material networks (Ojemann
and Schoenfield-McNeill, 1998; Ojemann et al., 2002, 2009).
Previous functional imaging studies support temporal changes
in cortical activity during the encoding stage of explicit verbal
memory (Casasanto et al., 2002; Fletcher and Tyler, 2002).
In line with this, a recent direct human brain stimulation
study demonstrated causality between the direct stimulation
of the lateral temporal cortices and verbal memory encoding
(Kucewicz et al., 2018). Our recent hippocampal stimulation
study also revealed that successful memory encoding involves the
temporal cortex, which may act in concert with the hippocampus
(Jun et al., 2019). Collectively, these findings suggest that the
lateral cortex supports the functional connectivity underpinning
memory formation.

The present study demonstrated that the pre- and during-
stimulus brain activity in the lateral cortex could be used
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to distinguish subsequently remembered trials from forgotten
trials. This indicates that the characterized high-frequency
neural correlates of the lateral temporal cortex can predict
subsequent memory. In this regard, investigating neural high-
frequency oscillatory changes in memory-related temporal
neocortical regions that modulate memory processes may
provide insight into our understanding of the neural basis of
episodic memory.
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