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Abstract

Background: Currently the combination of molecular tools, imaging techniques and
analysis software offer the possibility of studying gene activity through the use of
fluorescent reporters and infer its distribution within complex biological three-
dimensional structures. For example, the use of Confocal Scanning Laser Microscopy
(CSLM) is a regularly-used approach to visually inspect the spatial distribution of a
fluorescent signal. Although a plethora of generalist imaging software is available to
analyze experimental pictures, the development of tailor-made software for every
specific problem is still the most straightforward approach to perform the best
possible image analysis. In this manuscript, we focused on developing a simple
methodology to satisfy one particular need: automated processing and analysis of
CSLM image stacks to generate 3D fluorescence profiles showing the average
distribution detected in bacterial colonies grown in different experimental conditions
for comparison purposes.

Results: The presented method processes batches of CSLM stacks containing three-
dimensional images of an arbitrary number of colonies. Quasi-circular colonies are
identified, filtered and projected onto a normalized orthogonal coordinate system,
where a numerical interpolation is performed to obtain fluorescence values within a
spatially fixed grid. A statistically representative three-dimensional fluorescent pattern
is then generated from this data, allowing for standardized fluorescence analysis
regardless of variability in colony size. The proposed methodology was evaluated by
analyzing fluorescence from GFP expression subject to regulation by a stress-
inducible promoter.

Conclusions: This method provides a statistically reliable spatial distribution profile
of fluorescence detected in analyzed samples, helping the researcher to establish
general correlations between gene expression and spatial allocation under
differential experimental regimes. The described methodology was coded into a
MATLAB script and shared under an open source license to make it accessible to the
whole community.
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Background
The combination of new optical visualization techniques that use fluorophores to study

gene expression with efficient algorithms to analyze data has been pushing synthetic

biology to new levels [1]. Recent software and hardware developments are increasing

the analysis capabilities of researchers, providing them with enhanced accuracy and

specificity when studying gene expression within complex populations [2, 3], differenti-

ation of subpopulations in microbial colonies [4, 5] or spatially location and inspection

of areas of interest at individual cell level [6], among other uses. Despite the growing

tendency in biology to rely upon imaging analysis software, there are still various fields

in which use of such software is not wide spread [1]. Often, this resistance is due to re-

searchers not finding a software package that effectively responds to their needs: many

software tools were initially developed to deal with specific problems in a certain field

and thus are tightly fitted to that field of study [7]. These software programs are then

further expanded in a generalist fashion to adapt to a broader user community, not tak-

ing into account the specific needs of every potential user [8, 9]. This situation suggests

that, although very powerful software does currently exist, tailored software is still an

essential component for meeting more specific needs of many researchers.

An example of the need for more tailored software is found in the study of microbial

colonies by microbiologists and biophysicists, where the spatial allocation of fluorescent

regions (associated with extra- or intracellular probes) is essential for analyses of pro-

cesses such as morphogenesis [10, 11], cellular differentiation [4] or the physical-

chemical conditions affecting the development of multicellular communities [12, 13].

These studies are strongly limited by the intrinsic morphological variability associated

with the cellular growth process, which requires manual analysis of data. Case studies

where physical arrangement of bodies exhibits randomness or fractal patterning (i.e.

neuron development [14, 15] and fungal fruiting bodies [16]) involves an additional

level of difficulty due to the vast structural heterogeneity displayed (thus hindering the

systematic collection of measurements for statistical purposes, as well as the ability to

generalize results). Nevertheless, in cases where morphogenetic processes lead to a set

of geometrically similar structures which can be systematically transformed onto a

common reference frame, structural tendencies of pattern formation can be studied at

population level.

In this work a specific methodology is presented to systematize the gathering and

analysis of bacterial colonies exhibiting circular symmetry, despite variations in size and

depth of samples.

Results
Rationale

The proposed methodology is based on exploiting the geometric similarity that bacter-

ial colonies (3–6 days of growth) normally exhibit, uniformizing their shapes by apply-

ing similarity transformations, a subset of a broader group of operations termed affine

transformations [17]. Recall that a similarity transformation is any mapping function

that preserves not only collinearity, parallelism, convexity, and ratios of distances

among parallel lines (common characteristics to all affine transformations), but also an-

gles and proportionality (specific of that subgroup). As a result, transformed objects are
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similar to the original body (they resemble the same shape, angles and proportion, ac-

cording to a ratio of magnification [17]). Specifically, uniform scaling, rotation and

translation are the applied operations in this methodology.

The circular symmetry and narrowly bounded variability in axial direction allow for

the establishment of a computational workflow that applies a systematic set of filters

and transformations, which are depicted in Fig. 1. This allows a mapping from a phys-

ical coordinate system to a normalized dimensionless reference frame where spatial po-

sitioning among replicas is comparable for statistical purposes. The specifics of this

workflow are described next.

Fig. 1 Schematic workflow of the proposed methodology. Raw images are first loaded, spatially delimited,
labeled and filtered (a-e). Next for every labeled colony, the profiles are aligned and geometrically
normalized (f-h) prior to interpolation of the intensity values in a reference grid (i). Profiles are recurrently
stored to perform statistics in either raw or normalized units (j-l)
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Labeling and filtering

Images are first loaded into memory (Fig. 1a). The analysis pipeline then starts

with a selection and filtering stage of all colonies present in the images. To clearly

delimit the boundaries of individual colonies, two independent fluorescent reporters

(GFP and mCherry) were used to, respectively, monitor the activity of the pro-

moter and spatially locate colony boundary. The filtering process was based on dis-

criminating circular objects from top-view images containing an arbitrary number

of colonies. The first step to automate colony detection consisted on applying the

XY sum projection (Proy) in both fluorescent channels along axial direction (z-

stack) to obtain two single planar images (one for each channel), that further

served as a stencil for object detection (Fig. 1b). Thus:

Proy ¼
XZstack

z¼1

Sz

where Sz is a three-dimensional matrix of size Px x Py x Zstack containing the whole Z-

stack image, Zstack is the number of Z-planes in the stack, Px and Py are the pixel reso-

lution of the gathered image and Proy is the sum projection matrix (size Px x Py) in the

Z direction.

A binarization stage was applied to discard the background of the image (using as a

threshold value the average intensity of the image multiplied by a factor of 1.1), gener-

ating a boolean mask wherein pixel values were either 1 or 0 (Fig. 1c). We define this

threshold as Th in order to create a filtering operator F(X) that drops values of X

smaller than Th:

Th ¼ 1:10 � 1
Px � Py

XPx

i¼1

XPy

j¼1

Proyi j ð1Þ

FðXÞ ¼ f Xi j i f Xi j > Th

0 otherwise
i ∈ ½1; Px�; j ∈ ½1; Py�; i; j ∈ N ð2Þ

where Proyij are the elements of the Proy matrix, Th is the threshold value to filter and

F(X) is the filtering criteria applied to every element Xij of matrix X∈MPx�PyðℝÞ. The
binary operator Bin(F) is next applied to the filtered projection matrix ProyF to create

Boolean mask B:

ProyF ¼ F Proyð Þ

BinðXÞ ¼ f 1 i f Xi j > 0

0 otherwise
i ∈ ½1; Px�; j ∈ ½1;Py�; i; j ∈ N ð3Þ

B ¼ Bin ProyFð Þ

Binary connected components within B matrices were detected and labeled using the

algorithm described by Haralik and Shapiro [18] (Fig. 1d). Each object was treated as

an array of pixels bn∈M1�Nn
pixel

ðℕ Þ with value 1 whose respective row and column in-

dices are given in two vectors: bxn∈M1�Nn
pixel

ðℕ Þ and byn∈M1�Nn
pixel

ðℕ Þ respectively.

Espeso et al. BMC Bioinformatics          (2020) 21:224 Page 4 of 13



XY object area (A) and mass center for every detected object were calculated by com-

puting their zeroth and first moments as follows:

An ¼ Nn
pixel

CMn ¼ 1
Nn

pixel

XNpixel

i¼1

bxni ;
1

Nn
pixel

XNpixel

i¼1

byni

 !

where n represents each individual object detected in the image, Nn
pixel is the number of

pixels detected in object n and CMn is the point position in the XY plane (in pixel

units) of the mass center of object n.

Detected elements with a XY area smaller than an empirically chosen value (an

equivalent circular area of 20 pixels in the present case) were discarded. Major and

minor axis lengths in the XY plane for each object n were derived from maximum and

minimum detected X and Y values found within bx
n and by

n. At this point those ele-

ments having a major-minor axis length ratio larger than 15% were also excluded to

avoid non-circular geometries (e.g. merged colonies, Fig. 1e).

Performing a point-by-point transposition of the fluorescence distribution into a

three-dimensional body is quite complex because it is impossible to observe all points

simultaneously. Instead it is more advisable to use fixed planes to study the distribution

of the signal inside the whole body. Although this is tricky for bodies with arbitrary

geometry, for cases with circular symmetry a very convenient choice is to inspect an

axial projection (XY) and radial cross-section (XZ): the former shows the trend of the

studied signal for increasing radial distances, while the later depicts the behavior along

the Z axis in a diametric plane. Thus, XY and XZ planes were gathered from every col-

ony (Fig. 1f).

Aligning and mapping

Prior to mapping the data, every image was geometrically aligned. XY projections did

not need any adjustment because all colonies exhibit circular symmetry. However, XZ

images needed to be horizontally aligned due to the presence of imperfections on the

agar surface, variability among samples and the natural curvature of agar when it is

close to the edge of the culture plate. XZ profiles were realigned along the X axis by

obtaining the orientation of the major axis with respect to the X axis (given by the

angle θ between both axis, see [19] for more details) and then rotating the point coordi-

nates of all pixels using a rotation matrix (Fig. 1g). So where Pm
xz and Pm

xz’ are, re-

spectively, the unaligned and aligned point coordinates of the chosen radial cross-

section m (with length 2 x Nm
pixel), they relate by means of the following rotation

matrix around the Y axis:

Pm
XZ

′ ¼ RðθÞ � Pm
XZ ¼ cosðθÞ −sinðθÞ

sinðθÞ cosðθÞ

 !
� Pm

XZ

As mentioned previously, to respond to colony size variability, a mapping process

was applied to the XY and XZ planes of every colony. Data was transformed from a
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physical dimension-based reference frame to a normalized XYZ domain bounded

within X ∈ [−1, 1], Y ∈ [−1, 1], Z ∈ [0, 1], using as normalizing dimensions the radius (for

XY projection) and maximum height (for XZ plane) of each colony (Fig. 1h). This is

equivalent to rescaling the spatial dimensions of all colonies to a similar size. We first

compute the radius R, the height H and the minimum height h (defined as being where

the base of the colony lays) as follows:

R ¼ max
n1

max
x;y

; fPm
XY

′
n−CMm

XYg
� �

H ¼ max
n2

max
z

; fPm
XZ

′
ng;−; min

z
; fPm

XZ
′
ng

� �

h ¼ min
z

fPm
XZ

′
ng ð4Þ

where we make an abuse of notation to indicate that maximum and minimum op-

erator are applied only on x, y or z components of points Pm
XY

’
n and Pm

XZ
’
n. n1

and n2 are the number of points forming the XY and XZ planes, respectively.

CMm
XY and CMm

XZ are the mass centers of the XY and XZ planes (calculated as

previously described). These three variables are then used to normalize all points:

P̂
m
XY

′

n ¼
ðPm

XY ′ nÞx−ðCMm
XY Þx

R
;
ðPm

XY ′ nÞy−ðCMm
XY Þy

R

 !

P̂
m
XZ

′

n ¼
ðPm

XZ′ nÞx−ðCMm
XZÞx

R
;
ðPm

XZ′ nÞz−h
H

� �

here ()x and ()z denote the x and z components of the considered points, and the hat

operator is used to design normalized versions of rotated points.

To spatially correlate position and signal, cell locations need to be fixed in a ref-

erence grid. An experimental solution to this issue would be extremely complex

due to natural replica variability. Nevertheless, it is still possible to numerically

overcome this problem by using data interpolation to estimate the values of signal

intensity for every colony within a fixed grid of coordinates, using experimental

data from arbitrary positions throughout the colony (Fig. 1i). The interpolant grid

should have a density point smaller than the original image resolution to minimize

lack of data when estimating values. In this work two grids of smaller resolution

([256 × 256] points for XY projections and [256 × 10] points for XZ planes) were

used to cover the normalized domain. A barycentric-based coordinate cubic

interpolation algorithm supported by a Delaunay triangulation of the pixel coordi-

nates was chosen to estimate values [20]. Interpolated profiles were finally stored

in a sequential manner to create a stack of profiles (Fig. 1j) from which statistical

measurements were performed.

Intensity normalization

Stored XY and XZ profiles were used to estimate the central tendency of the intensity

distribution for every set of experimental conditions and in every fluorescent channel

Espeso et al. BMC Bioinformatics          (2020) 21:224 Page 6 of 13



(mean, median, see Fig. 1k). Depending on a researcher’s needs, intensity values either

can be handled as raw data or can be first normalized with respect to maximum and

minimum reference values (Fig. 1l). Raw values can be used to establish fold-change

comparison of measurements among samples using a semibounded scale ([0, ∞)), pro-

vided that all samples are gathered with the same microscope settings. Normalized data

can be used to locate heat areas of intensity signal in the colony and local variations

within colonies when microscope settings cannot be standardized among samples. The

most common option to normalize data is to work with positive / negative control sam-

ples to perform the transformation:

I� ¼ IM−IC−

ICþ−IC−

where I* and I are, respectively, normalized and non-normalized intensity matrices, and

M, C+ and C− subscripts denote the sources of the samples (regular sample, positive

control and negative control respectively).

Unfortunately, there are circumstances in which any one of these controls may not

be suitable to use due to modification microscopy settings to avoid image acquisition

quality problems (i.e. signal saturation due to the existence of large differences in inten-

sity values between samples and the positive control). An alternative choice for these

cases is to scale values by using the initial maximum and minimum intensity values

found in every profile, as follows:

I�XY ¼ IXY− min IXYð Þ
max IXYð Þ− min IXYð Þ

I�XZ ¼ IXZ− min IXZð Þ
max IXZð Þ− min IXZð Þ

where I*XY and I*XZ are the XY and XZ-normalized intensity profiles for each experi-

mental condition and fluorescent channel, IXY and IXZ are the absolute intensity pro-

files, and max (IXY), max(IXZ), min(IXY), min(IXZ) are the maximum and minimum

values of intensity detected in IXY and IXZ respectively for the chosen experimental

conditions.

Experimental validation

In order to validate the proposed methodology, we performed a growth experiment

on agar plates using a P. putida KT2440-mCherry strain carrying a plasmid that

produces GFP as regulated by a promoter whose expression varies with spatial pos-

ition within the colony. In this case we chose a promoter that has been reported

to respond to environmental humidity [in preparation], thus colonies exhibit a

spatial fluorescence pattern according to water access within the colony. The ex-

perimental procedure followed is detailed in the methods section and depicted in

Figs. 2a (experiment) and 2B (image analysis). To summarize this procedure in

brief: individual bacterial colonies were streaked onto 60-mm culture dishes and

incubated at 30 °C for 5 days, letting the agar dry. Colonies were imaged using

CSLM technique to generate Z-stack images that were sequentially analyzed to
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gather the fluorescence profile of every individual colony. These profiles were

transformed to produce statistically treatable data.

As a benchmark test, three sets of colonies were cultured: one carrying the

desiccation-inducible promoter (the sample to analyze, named M), a chemically-

inducible promoter (serving as a positive control, named C+) and a non-expressing

plasmid (serving as a negative control, named C-). The results of the analysis are

shown in Fig. 3 (XY projection) and Additional Files 1, 2 and 3 (XZ slices). Raw

fluorescence analysis (Fig. 3 upper row) showed a spatially dependent behavior of

sample M when compared with controls, as it exhibited a ring-shaped distribution.

Values of C+ and C- are, respectively, above and below the range of intensities ex-

hibited by sample M. The differences in magnitude of the observed intensity made

a direct comparison of the signal spatial distributions impossible, so intensity

normalization was applied to correct this effect. The resulting heatmaps (Fig. 3

lower row) exhibited differences in fluorescent pattern that suggest a proper func-

tioning of the desiccation-responsive promoter. Sample C- exhibited a noisy distri-

bution not associated to the measured biological reporter, but rather to unspecific

phenomena (i.e. self-fluorescence). Fluorescence in sample C+ displayed a classical

Fig. 2 Experimental methodology (a) and numerical analysis of gathered images (b) applied to obtain the
analyzed data. Monoclonal colonies were picked and streaked onto a 60mm culture dish, followed by an
incubation of 5 days prior to the acquisition and further analysis of every colony within the images. The
analysis provided statistically comparable data for all the colonies
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2D Gaussian distribution, resembling the overall biomass distribution of the colony

and implying an accumulation of constitutively expressed fluorescent protein in the

center of the colony. Since colonies are expected to gradually dry out during the

course of the experiment, sample M should show a spatially dependent fluores-

cence profile mirroring the water distribution within the colony. The presence of a

ring-shaped pattern confirms that the reporter distribution is not spatially corre-

lated with biomass distribution nor associated to an unspecific phenomenon, but

rather follows a well-defined arrangement. The coefficient of variations derived

from the statistical analysis (see Fig. 4) showed a moderate error bar size in all

samples except in positive control C+, where errors are large due to a low number

of analyzed colonies.

Although the generated evidence does not confirm a direct relationship between the

humidity distribution and the observed ring-shaped fluorescence pattern, the non-

arbitrary order of the fluorescence profile does confirm an interaction between the

tested reporter and a spatially-dependent variable. This conclusion is enough to validate

the proposed methodology as a reliable method to measure spatial distribution of fluor-

escent signal in colonies.

Fig. 3 Raw fluorescence (up) and normalized heatmaps (down) obtained for the analyzed sample (M), as
well as the positive (C+) and negative (C-) controls

Fig. 4 Variation coefficient (CV) obtained for different samples type (sample M, positive control C+ and
negative control C-). CV values increase when the number of analyzed samples is small (see C+ sample) or
when colonies are located at the boundaries where the interpolant algorithm tends to provide
worse estimations
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Discussion
The presented methodology was developed to automate analysis of CSLM image

stacks of circular bacterial colonies, the most frequently observed pattern when

cells grow on solid media (1.5% agar, w/v) in regular laboratory conditions. Never-

theless, its potential use can be extended to any microorganism that develop col-

onies of circular morphology. The method is based not on the type of

microorganism, but rather on taking advantage of the geometric similarity of ana-

lyzed colonies. This allows for routine application of a set of mathematical trans-

formations to gather normalized data regardless of colony size. The application of

this method to non-symmetric samples could also be possible, but with numeric

adaptations to deal with its asymmetric shape provided that those samples are all

geometrically similar. The required algorithmic adjustment to process highly irregu-

lar bodies would involve the processing of the data using more general analysis

techniques: modal matching [21–23], moment based methods [24, 25], geometric

hashing [26, 27] or pose clustering [28] could help to deal with complex geom-

etries. Random geometries on the contrary (i.e. diffusion driven spreading [29, 30])

are not treatable using this approach, because mapping function cannot be com-

puted to project data into the normalized grid.

There is additionally a major limitation in this approach when applying the nu-

merical procedure to generate the mapped intensity profile. Ideally, all images

should be taken at the largest possible resolution to provide the smallest possible

pixel area: this allows the generation of interpolated intensity profiles with larger

resolution and more accuracy, even in smaller interpolating grids [31]. An insuffi-

cient biological sampling or the use of low-resolution images may lead to poor ac-

curacy during interpolation when computing values. Furthermore, as the method is

based on performing interpolation to estimate values in fixed spatial positions, this

methodology will provide worse estimations close to the boundaries, where col-

onies exhibit a larger degree of variability (see Fig. 4). If the number of processed

samples is low (n < 10 in our methodology using a conservative criterion, as is the

case in Fig. 4 sample C+), the standard deviation values may drastically increase.

This effect can be partially diminished by improving the statistical sampling (i.e. in-

creasing the number of samples to process) or by enhancing the quality of data

(i.e. increasing the bit depth of the gathered image), as the most straightforward al-

ternatives to overcome the issue among others related with sampling process [32].

A computational approach based in replacing the interpolant algorithm (i.e. use of

Radial Basis Functions [33]) can increase the precision of predictions in the grid of

evaluation if required. Thus special attention must be paid when designing the ex-

periments and computing each case to minimize these issues.

Conclusion
The statistical study of fluorescent reporter distribution within bacterial colonies is

cumbersome because of colony size variability (in both area and thickness) among sam-

ples, and the need to acquire data from a sufficient number of replicas to ensure reli-

able statistics. In this work a specific methodology was implemented in a MATLAB

script in order to automate the selection and extraction of useful data from CSLM

stack images of circular bacterial colonies. The process is computationally performed
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to allow an image analysis of all colonies independent of size variability. The method-

ology was experimentally validated by comparing the distribution of fluorescence ex-

hibited by P. putida colonies carrying a plasmid regulated by a humidity-sensitive

promoter. As the proposed numerical procedure exploits the geometric similarity of

measured bodies and uses an interpolating approach to generate statistically compar-

able data, there are limitations when working with a low number of samples, poor qual-

ity images or non-symmetric bodies. Despite these limitations, the proposed approach

offers a powerful and simple framework to study signal distribution of CSLM images in

an automated and statistically reliable fashion.

Methods
Strains, plasmids media and growth conditions

The bacterial strain used here is a derivative of P. putida KT2440 with an mCherry

fluorescent cassette integrated in its genome that constitutively expresses the red

fluorescent protein. This fluorescent signal was used to locate the colony boundar-

ies to perform the image processing [34]. This strain was transformed with three

versions of the plasmid pGLR2, which contains a promoterless dual GFP-lux-

CDABE reporter system [35]. The three plasmids used here are: i) pGLR2 (a plas-

mid without promoter that does not fluoresce) used as a negative control; ii)

pGLR2-Ptrc (with an IPTG-inducible promoter controlling fluorescence expression)

used as a positive control; and iii) pGLR2-P4707 (with a humidity-sensitive pro-

moter controlling the fluorescence [in preparation]) as the experimental sample.

All the strains were grown overnight on regular M9 minimal medium Petri dishes

[36] solidified with 1.5% (w/v) agar and amended with 0.2% (w/v) glucose, 1 mM

IPTG. Samples were supplemented when required with 50 μg/ml Kanamycin and

15 μg/ml Gentamycin. Individual colonies were re-streaked to microscope-

compatible 35 × 14 mm culture dishes (Ibidi) containing 2 ml of M9-agar with glu-

cose as the carbon source (prepared as mentioned before) and incubated at 30 °C

during 5 days (120 h). The first 72 h, all dishes were covered with individual lids.

For the remaining 48 h, the dishes were incubated without their own lids but

within a 92 × 16 mm Petri dish to promote a higher drying of the growing media.

Relative humidity was not controlled during the experiment.

Imaging acquisition

Colony images were gathered using a Confocal Multispectral Leica SP5 system with a

HCX PL APO CS 10 × 0.40 DRY UV objective using 488 and 561 nm laser lines to de-

tect GFP and mCherry fluorescent signals, respectively. Images were captured at 8-bit

resolution (1024 × 1024) with no amplification factor and a frequency rate of 400 Hz.

Distance between XY pixels and gathered Z planes included in stack images were

1.5137 and 6 μm, respectively. The numerical method was implemented in a script

written in MATLAB (The Mathworks) containing the imaging toolbox and the

MATLAB compatible bioformats package (https://docs.openmicroscopy.org/bio-for-

mats/5.9.2/users/matlab/index.html#) on a regular PC. Confocal images shown in the

manuscript were treated to enhance brightness and contrast using ImageJ software.
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Statistics

Experimental data gathered from different conditions was retrieved from two biological

replicas, with at least 3 images for every condition. The number of processed colonies

varied depending on the filtering criteria and the quality of the gathered image. For the

parameters used in this manuscript, the final number of analyzed colonies was 21 for

the humidity-sensitive strain, 5 colonies for the positive control and 3 colonies for the

negative control.
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Additional file 2. Normalized fluorescence profiles for a XZ section (Y=0 plane) of monitored promoter
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