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Abstract
Background: Eosinophilic esophagitis (EoE) is a food allergen driven disease that is ac-
companied by interleukin (IL) 13 overexpression and esophageal barrier dysfunction 
allowing transepithelial food allergen permeation. Nutraceuticals, such as short- chain 
fatty acids (SCFAs) that restore barrier function and increase immune fitness may be 
a promising tool in the management of EoE. Here, we investigated the effects of the 
SCFAs acetate, propionate, and butyrate on an IL- 13- compromised human esophageal 
epithelial barrier, including the mechanisms involved.
Methods: An air- liquid interface culture model of differentiated human EPC2- hTERT 
(EPC2) was used to study whether SCFAs could restore barrier function after IL- 13- 
induced impairment. Esophageal epithelial barrier function was monitored by tran-
sepithelial electrical resistance (TEER) and FITC- dextran paracellular flux, and was 
further examined by qPCR and immunohistochemical analysis. G protein- coupled re-
ceptor (GPR) GPR41, GPR43, GPR109a, or histone deacetylase (HDAC) (ant)agonists 
were used to assess mechanisms of action of SCFAs.
Results: IL- 13 stimulation decreased TEER and increased FITC flux, which was coun-
teracted by butyrate and propionate, but not acetate treatment. Barrier proteins FLG 
and DSG1 mRNA expression was upregulated following butyrate and propionate 
treatment, whereas expression of eosinophil chemoattractant CCL26 and protease 
CAPN14 was downregulated. Similarly, butyrate and propionate restored FLG and 
DSG1 protein expression. Similar effects were observed with an HDAC antagonist 
but not with GPR agonists.
Conclusion: Nutraceuticals butyrate and propionate restore the barrier function of 
esophageal epithelial cells after an inflammatory insult and may be of therapeutic 
benefit in the management of EoE.
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1  |  INTRODUC TION

The epithelial barrier of the esophagus forms the first line of chem-
ical, physical, and immunologic defenses, and provides a protec-
tive wall against environmental factors including microbes and 
food allergens.1 In eosinophilic esophagitis (EoE), a chronic food 
allergen- mediated disease of the esophagus, the esophageal bar-
rier is frequently disrupted, leading to exposure to food allergens 
in the esophageal mucosa and the subsequent induction of a local 
type 2 immune response.2,3 Current treatment options for EoE con-
sist of topical steroids and dietary restrictions4,5 but are sometimes 
unpopular with patients. Thus, there is a demand for novel treat-
ment protocols that restore esophageal barrier function and mitigate 
esophageal inflammation to reestablish esophageal immune fitness.

Recent studies have demonstrated a link between the type 2 cy-
tokine interleukin (IL) 13 in esophageal epithelial proliferation and 
esophageal barrier dysfunction.3,6,7 In fact, esophageal epithelial cells 
express each subunit of the IL- 13 receptor including IL- 4Rα, IL- 13Rα1, 
and IL- 13Rα2.8 Transcriptomics studies have shown that IL- 13 is over-
expressed during active EoE, but its major cellular source or sources 
remain to be elucidated.8 Subsequently, IL- 13 disrupts the esophageal 
barrier, mediated in part by the loss of the epithelial barrier proteins 
desmoglein- 1 (DSG1) and filaggrin (FLG).3,9 In addition, IL- 13 induces 
marked overexpression of eosinophil chemoattractant chemokine 
(C- C motif) ligand 26 (CCL26, encoding eotaxin- 3) and protease cal-
pain- 14 (CAPN14).10,11 Notably, the EoE transcriptome can be par-
tially reproduced in IL- 13- treated immortalized esophageal epithelial 
cells cultured under air- liquid interface (ALI) conditions, indicating 

that IL- 13- induced gene expression in esophageal epithelial cells may 
make an important contribution to the EoE pathogenesis.6

Short- chain fatty acids (SCFAs) – in particular acetate, propionate, 
and butyrate–  are produced by bacterial fermentation of dietary 
fiber in the gut, where they serve as an energy source for colono-
cytes, maintain intestinal homeostasis, and promote gut barrier func-
tion.12- 14 SCFAs are agonists of G protein- coupled receptor (GPR) 
GPR41, GPR43, and GPR109a, inducing anti- inflammatory pathways 
upon binding.15- 18 In addition, butyrate and propionate influence the 
activity of histone deacetylase (HDAC), a class of histone modification 
enzymes that regulates gene transcription and has the potential to 
influence biological processes.19- 22 Although mainly produced in the 
gut, SCFAs have also been shown to have immunomodulatory effects 
in other barrier organs such as the lungs and skin.23- 29

In this study, we use a model that resembles differentiated (ie, 
stratified squamous) human esophageal epithelium to investigate 
the potential barrier- restorative effects of the SCFAs acetate, pro-
pionate, and butyrate on an IL- 13- compromised barrier. In addition, 
we aimed to determine the underlying mechanisms of the observed 
functional effects.

2  |  MATERIAL S AND METHODS

2.1  |  EPC2- hTERT culture

The immortalized human esophageal epithelial cell line EPC2- 
hTERT (EPC2) was given by Dr Anil Rustgi (University of 

G R A P H I C A L  A B S T R A C T
The SCFAs butyrate and propionate counteracted the compromising effects of IL- 13 on barrier function of human esophageal epithelium 
cultured under ALI conditions. The increase in barrier function induced by these SCFAs was associated with restored expression of 
proinflammatory mediators and esophageal epithelial barrier proteins. An HDAC antagonist induced similar effects as butyrate and 
propionate, whereas GPR agonists did not. 
Abbreviations: ALI, air- liquid interface; CAPN14, calpain- 14; CCL26, (C- C motif) ligand 26; DSG1, desmoglein- 1; FLG, filaggrin; GPR, G protein- 
coupled receptor; HDAC, histone deacetylase; IL- 13, interleukin 13; SCFA, short- chain fatty acid.
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Pennsylvania, Philadelphia, PA, USA).30- 32 EPC2 were cultured 
in low- calcium (0.09 mM) keratinocyte serum- free medium 
(KSFM; Thermo Fisher Scientific, Waltham, MA, USA) supple-
mented with bovine pituitary extract (20 mg/ml), epidermal 
growth factor (1 ng/ml), penicillin (10,000 U/ml), and streptomy-
cin (10,000 µg/ml).

2.2  |  Air- liquid interface (ALI) culture system and 
SCFA treatment

The 3D ALI culture protocol was adapted from Kc et al.6 A schematic 
representation of the experimental timeline is shown in Figure 1A. 
Briefly, EPC2 were grown to confluence on semipermeable 

F I G U R E  1  Butyrate and propionate restore IL- 13- induced barrier dysfunction in EPC2 ALI cultures A, Schematic diagram of the ALI 
culture model. Culture day 1 to 7 allows initial differentiation, and culture day 7 to 14 (ALI) induces terminal differentiation and stratification 
of the EPC2. EPC2 are stimulated with IL- 13 (100 ng/ml) from day 7 to 14. EPC2 are treated with SCFAs acetate (10 mM), propionate 
(10 mM), or butyrate (5 mM) from day 10 to 14. B, Hematoxylin and eosin staining of EPC2 differentiated at the ALI in the absence 
(untreated) or presence of IL- 13 (100 ng/ml). Scale bar =50 µm. C, TEER development of EPC2 in the absence (untreated) or presence 
of IL- 13 (100 ng/ml) during differentiation under ALI conditions. D, Kinetic FITC flux analysis of EPC2 differentiated at the ALI in the 
absence (untreated) or presence of IL- 13 (100 ng/ml). E and F, Day 14 TEER (E) and FITC flux (180 min.) (F) of IL- 13- stimulated EPC2 ALI 
cultures treated with acetate (10 mM), propionate (10 mM) or butyrate (5 mM). Images and data in panels B- D are representative of twelve 
independent experiments (n=6 wells/group). Data in panels E and F are representative of two to eight independent experiments (n=4 
wells/group). Data are presented as mean +SEM. Statistical significance was tested with one- way ANOVA followed by Dunnett's multiple 
comparisons test: *p < .05, ** p < .01, ****p < .0001
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membranes (0.4 µm; Corning Incorporated, Corning, NY, USA) in 
low- calcium KSFM for 3 days. Initial differentiation of confluent 
monolayers was induced by switching to high- calcium (1.8 mM) 
KSFM from culture day 3 to 7. Terminal epithelial differentiation and 
stratification were induced by removing the media from the apical 
chamber and exposing the cells to the ALI from culture day 7 to 14. 
Cells were exposed to IL- 13 (100 ng/ml; Prospec, Rehovot, Israel) in 
the basolateral chamber at the start of ALI culture.

Sodium acetate was purchased from BDH Laboratory Supplies 
(Poole, England, cat. no. 102364Q). Sodium propionate and sodium 
butyrate were purchased from Sigma- Aldrich (Saint- Louis, MO, USA, 
cat. no. P1880 (propionate) and 303410 (butyrate)). All SCFAs were 
used in preliminary work in a range of concentrations from 5 to 20 mM 
(acetate and propionate) and 2 to 10 mM (butyrate) (Figure S1). In 
final experiments, acetate (10 mM), propionate (10 mM), or butyrate 
(5 mM) was added to the basolateral chamber of IL- 13- stimulated 
EPC2 ALI cultures from day 10 to 14. EPC2 ALI cultures were also 
treated with SCFAs in the absence of IL- 13 (Figure S2). Media plus IL- 
13 and SCFAs were refreshed every other day. ALI cultures were then 
collected for total RNA isolation and immunohistochemistry.

2.3  |  Assessment of mechanisms of 
action of SCFAs

The following (ant)agonists were used to investigate the involvement 
of GPR41, GPR43, GPR109a, and HDAC in the barrier- restorative 
effects of SCFAs: GPR41 agonist AR420626 (1 µM), GPR43 agonist 
4- CMTB (10 µM), GPR109A agonist niacin (10 mM), and HDAC an-
tagonist trichostatin A (TSA, 2 µM). All (ant)agonists were dissolved in 
DMSO or 1 M NaOH according to the manufacturer's instructions and 
were purchased from Sigma- Aldrich (cat. no. SML1339 (AR420626), 
SML0302 (4- CMTB), N4126 (niacin), and T8552 (TSA)). All (ant)ago-
nists were used in preliminary ALI experiments in a range of concen-
trations from 1 to 100 µM (AR420626), 0.1 to 50 µM (4- CMTB), 1 to 
20 mM (niacin), and 0.1 to 10 µM (TSA) (Figures S4 and S5). In final ex-
periments, (ant)agonists were added to the basolateral chamber of the 
IL- 13- stimulated EPC2 ALI cultures from day 10 to 14. Media plus IL- 13 
and (ant)agonist were refreshed every other day. ALI cultures were 
then collected for total RNA isolation and immunohistochemistry.

2.4  |  Transepithelial electrical resistance (TEER), 
paracellular flux assays and LDH toxicity test

TEER was measured during ALI culture using a Millicell ERS- 2 Volt- 
ohm meter (Merck Millipore, Burlington, MA, USA). High- calcium 
KSFM was added to the apical chamber one hour before TEER meas-
urement. Paracellular flux assays were performed one hour after 
TEER measurement on day 14. 4- kDa fluorescein isothiocyanate 
(FITC)- dextran (0.1 mg/µL; Sigma- Aldrich) was added to the apical 
chamber, and fluorescein levels in the basolateral chamber were de-
tected after 15, 30, 60, 90, 120, and 180 minutes using a GloMax 

Discover Microplate Reader (Promega, Madison, WI, USA) at Ex/
Em =492/518. Cytotoxicity was measured in 50 µL supernatant col-
lected at day 14 using the Cytotoxicity Detection Kit (LDH) (Roche, 
Basel, Switzerland) (Figure S7) per manufacturer's instructions.

2.5  |  Quantitative real- time PCR

Total RNA was treated with DNase I (Qiagen, Hilden, Germany) and 
isolated from EPC2 ALI cultures using the RNeasy Mini Kit (QIAGEN) 
according to the manufacturer's instructions. cDNA was generated 
from 500 ng RNA using the iScript™ cDNA Synthesis Kit (BioRad, 
Hercules, CA, USA). qPCR was performed using SYBR Green (BioRad). 
All primers used for amplification were purchased from BioRad 
(Unique Assay ID: qHsaCID0017001 (CAPN14), qHsaCED0041923 
(CCL26), qHsaCED0044569 (DSG1), and qHsaCED0036604 (FLG)). 
Results were normalized to ribosomal protein S13 (RPS13; Unique 
Assay ID:qHsaCID0038672) expression for each sample. mRNA 
expression levels were calculated using the following formula: fold 
change =2−ΔΔCt and were normalized to the untreated control.

2.6  |  Histology and Immunofluorescence

Formalin- fixed, paraffin- embedded EPC2 ALI cultures were cut into 
5 µm sections and deparaffinized using xylene followed by graded 
ethanol washes. For histology, sections were stained in hematoxylin, 
rinsed in tap water and then stained in eosin, followed by dehydration 
in graded ethanol washes and xylene before mounting with Pertex 
(Histolab, Askim, Sweden) and xylene (1:1). For immunofluorescence, 
heat- induced antigen retrieval in sodium citrate buffer (10 mM citric 
acid, pH 6.0) was used on deparaffinized sections, and endogenous 
peroxidase activity was quenched using 3% H2O2 in methanol. After 
rinsing in 0.2% Tween in PBS, sections were blocked in 3% BSA in PBS 
containing 5% normal goat serum (Dako, Jena, Germany) for 90 min-
utes, followed by overnight incubation at 4℃ with rabbit anti- DSG1 
(1 µg/ml; Abcam, Cambridge, UK, cat. no. ab209490) or rabbit anti- 
FLG (1 µg/ml; Abcam, cat. no. ab234406). Sections were rinsed and in-
cubated for 1 hour with goat anti- rabbit AF594 (10 µg/ml; Invitrogen, 
Carlsbad, CA, USA, cat. no. A11072). Sections were mounted with 
ProLong™ Gold antifade reagent with DAPI (Invitrogen) for nuclei 
staining. Immunofluorescent images were acquired using the Keyence 
Fluorescence Microscope BZ- 9000, and immunofluorescence inten-
sity was quantified using ImageJ software.

2.7  |  Nuclear extract preparation and 
HDAC activity

EPC2 were grown in 12 well culture plates (Costar) in low- calcium 
KSFM until confluent, followed by stimulation with acetate (10 mM), 
propionate (10 mM), butyrate (5 mM), or TSA (2 µM) in high- calcium 
KSFM. Cytoplasmic and nuclear extracts were isolated 48 hours after 
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stimulation. Briefly, EPC2 were trypsinized, collected by centrifugation 
(1000 rpm, 4 min, 4℃) and washed twice in ice- chilled PBS. EPC2 were 
resuspended in 100 µL ice- chilled buffer 1 (Table S1) and incubated on a 
rotator for 10 minutes at 4℃. After vortexing, lysates were spun down 
(12,000 rpm; 1 min; 4℃) and the cytoplasmic protein fractions were 
collected and stored at −80℃. Nuclear pellets were washed twice with 
ice- chilled PBS, disrupted with 40 µL Buffer 2 (Table S1) and incubated 
on ice for 30 minutes with regular vortexing followed by sonication for 
3 x 10 seconds. The suspension was spun down (12,000 rpm; 15 min; 
4℃) and the nuclear fractions were collected and stored at −80℃. 
Total protein content was quantified using the Pierce™ BCA Protein 
Assay Kit (Thermo Fisher Scientific). HDAC activity was measured in 
2 ng nuclear extract using the colorimetric epigenase HDAC Activity/
Inhibition Direct Assay Kit (EpiGentek, Farmingdale, NY, USA) accord-
ing to the manufacturer's instructions.

3  |  RESULTS

3.1  |  Short- chain fatty acids butyrate and 
propionate restored esophageal barrier resistance and 
permeability in IL- 13- stimulated EPC2 ALI cultures

We used an ALI culture model that resembles human- differentiated 
esophageal epithelium to investigate the potential barrier- restorative 
effects of SCFAs as depicted schematically in Figure 1A. Following 
7 days of differentiation at the ALI, EPC2 formed a stratified squamous 
epithelial layer indicating the development of differentiated esophageal 
epithelium (Figure 1B). Prolonged IL- 13 exposure resulted in marked 
morphologic changes including decreased epithelial differentiation and 
expansion of the epithelial layer (Figure 1B). Furthermore, IL- 13 induced 
a significant decrease in TEER from day 10 and onwards (Figure 1C), and 
a significant increase in FITC- dextran paracellular flux (FITC flux) on day 
14 (Figure 1D). Together, these results indicate that IL- 13 induces barrier 
dysfunction in EPC2 ALI cultures as reported previously.3,6

To study the barrier- restorative effects of SCFAs on IL- 13- 
stimulated EPC2 ALI cultures, acetate, propionate, or butyrate 
were added to the basolateral chamber from day 10 to 14. At 
day 14, IL- 13 stimulation showed a 2.2- fold decrease in TEER 
compared with untreated cultures. Propionate and butyrate 
counteracted the effect of IL- 13 on TEER as shown by a 2.7- fold 
increase in propionate- treated ALI cultures and 3.8- fold increase 
in butyrate- treated cultures compared with IL- 13- stimulated EPC2 
ALI cultures (Figure 1E). FITC flux assays confirm these findings. 
IL- 13- stimulated EPC2 ALI cultures had a significantly increased 
FITC flux at day 14, which was counteracted by propionate and 
butyrate treatment (Figure 1F). In addition, SCFAs – in particular 
butyrate–  restored IL- 13- induced barrier dysfunction measured by 
TEER and FITC flux in a culture model of apical SCFA treatment, 
supporting our data on basolateral SCFA treatment (Figure S3). 
Together, these data show that butyrate and propionate, but not 
acetate, restore esophageal barrier resistance and permeability 
after IL- 13- induced impairment.

3.2  |  Butyrate and propionate restored mRNA 
expression of key EoE genes

qPCR analysis was used to assess whether SCFAs changed mRNA 
expression of proinflammatory factor CCL26, protease CAPN14, 
and barrier proteins DSG1 and FLG. IL- 13 treatment significantly 
increased CCL26 and CAPN14 mRNA expression and significantly 
decreased DSG1 and FLG mRNA expression by day 14. This was 
counteracted by propionate and butyrate as they decreased the ex-
pression of CCL26 and CAPN14, while increasing the expression of 
FLG and DSG1 compared with IL- 13- stimulated EPC2 ALI cultures 

F I G U R E  2  Butyrate and propionate restore mRNA expression of 
EPC2 ALI cultures. A, mRNA expression of proinflammatory factor 
CCL26 and protease CAPN14 in IL- 13- stimulated EPC2 ALI cultures 
treated with acetate (10 mM), propionate (10 mM), or butyrate 
(5 mM). B, mRNA expression of esophageal barrier proteins FLG 
and DSG1 in IL- 13- stimulated EPC2 ALI cultures treated with 
acetate (10 mM), propionate (10 mM), or butyrate (5 mM). Data 
are representative of two to six independent experiments (n=3 
wells/group). Outlier is shown as a separate data point. Data are 
presented as mean +SEM. Statistical significance was tested with 
one- way ANOVA followed by Dunnett's multiple comparisons test: 
*p<.05; **p<.01; ***p<.001; ****p<.0001; NS, not significant
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(Figure 2A, B). These results correspond with the observed im-
proved barrier function after butyrate and propionate treatment 
and further indicate that treatment with these SCFA have an anti- 
inflammatory action.

3.3  |  Butyrate and propionate restored DSG1 and 
FLG protein expression

To test the effects of SCFA treatment on esophageal barrier pro-
tein expression, we examined day 14 DSG1 and FLG expression by 

F I G U R E  3  Butyrate and propionate upregulate DSG1 and FLG protein expression in ALI cultures of EPC2 treated with IL- 13. A, 
Immunofluorescent staining for barrier proteins DSG1 (left) and FLG (right) in red with a blue DAPI nuclear counterstain in IL- 13- stimulated 
EPC2 ALI cultures treated with acetate (10 mM), propionate (10 mM), or butyrate (5 mM). Scale bar =50 µm. B, Quantification of DSG1 
and FLG expression in IL- 13- stimulated EPC2 ALI cultures treated with SCFA. Images in panel A are representative of three independent 
experiments performed in duplicate or triplicate and are taken at 40x magnification. Data in panel B are pooled from three independent 
experiments performed in duplicate or triplicate and are presented as mean +SEM. Statistical significance was tested with one- way ANOVA 
followed by Dunnett's multiple comparisons test: *p<.05, **p<.01; NS, not significant
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immunofluorescent staining. DSG1 and FLG expression was decreased 
in IL- 13- stimulated EPC2 ALI cultures compared with untreated ALI cul-
tures. Consistent with the mRNA expression data, butyrate, and to a 
lesser extent propionate, restored the expression of DSG1 and FLG in 
IL- 13- stimulated EPC2 ALI cultures (Figure 3A). Quantification of fluo-
rescence intensity confirms the upregulation of DSG1 and FLG in IL- 13- 
stimulated EPC2 ALI cultures after butyrate and propionate treatment 
(Figure 3B, C).

3.4  |  Barrier- restorative effects of butyrate and 
propionate are independent of the free fatty acid 
receptors GPR41, GPR43, and GPR109a

Next, we investigated whether the barrier- restorative effects of bu-
tyrate and propionate depend on signaling through the free fatty 
acid receptors GPR41, GPR43, and GPR109a. All three GPRs were 

found expressed in EPC2 on mRNA and protein level (data not 
shown). Direct stimulation of GPRs with specific agonists did not af-
fect neither TEER (Figure 4A) nor FITC flux (Figure 4B). In line with 
these observations, expression of genes associated with EoE and al-
tered by IL- 13 stimulation of EPC2 grown under ALI conditions was 
unaffected by GPR stimulation (Figure 4C).

To confirm the ability of these agonist to stimulate GPRs and re-
duce inflammation, human umbilical vein endothelial cells (HUVECs) 
were stimulated with lipopolysaccharide (LPS) following treatment 
with GPR agonists. Stimulation of GPRs with specific agonists 
decreased LPS- induced IL- 6 and IL- 8 release in a concentration- 
dependent manner (Figure S6), confirming the ability of the GPR 
agonists used in this study to stimulate GPR signaling. Together, 
these data indicate that the barrier- restorative effects of butyrate 
and propionate measured by TEER, FITC flux, and mRNA and protein 
expression are most likely not mediated via stimulation of GPR41, 
GPR43, or GPR109a in EPC2.

F I G U R E  4  The effects of SCFAs are 
independent of GPR41, GPR43, and 
GPR109a stimulation. Day 14 TEER (A) 
and FITC flux (180 min.) (B) of IL- 13- 
stimulated EPC2 ALI cultures treated 
with GPR agonists AR420626 (1 µM, 
GPR41), 4- CMTB (10 µM, GPR43), or 
niacin (10 mM, GPR109a). C, CAPN14 
and FLG mRNA expression in IL- 13- 
stimulated EPC2 ALI cultures treated with 
GPR agonists. Data are representative 
of two independent experiments (n=3 
wells/group) and are presented as mean 
+SEM. Statistical significance was 
tested with one- way ANOVA followed 
by Dunnett's multiple comparisons test: 
**p<.01; ***p<.001; ****p<.0001; NS, not 
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3.5  |  HDACs may be involved in barrier- restorative 
effects of butyrate and propionate

It has been demonstrated that SCFAs are also effective inhibitors 
of HDAC activity.19,21,22 Since the effects of butyrate and propion-
ate are independent of GPR signaling, we investigated whether the 
barrier- restorative effects of SCFAs may be related to inhibition of 
HDAC. To study the functional effects of HDAC inhibition, TSA, a 
potent and specific inhibitor of HDAC activity was added to EPC2 
ALI cultures. Despite the minimal effect on TEER (Figure 5A), TSA sig-
nificantly decreased FITC flux in IL- 13- stimulated EPC2 ALI cultures, 
although with a smaller impact than butyrate (Figure 5B). CAPN14 
and FLG mRNA expression was not affected by TSA (Figure 5C). 
Furthermore, butyrate and propionate treatment led to attenuated 
HDAC activity in EPC2 (Figure 6). These data suggest that inhibition 

of HDAC activity can partly mimic the restorative effects on epithe-
lial barrier function as observed by butyrate and propionate.

4  |  DISCUSSION

The data presented in this study demonstrate that the SCFAs bu-
tyrate and propionate, but not acetate, restore esophageal epithelial 
barrier function after IL- 13- induced impairment using an ALI culture 
model resembling differentiated human esophageal epithelium. 
First, we demonstrate that butyrate and propionate restore epi-
thelial barrier resistance and permeability, as assessed by TEER and 
FITC flux. Second, we show that butyrate and propionate restore 
mRNA expression of genes associated with inflammation in EoE, 
such as CCL26, and barrier function, such as CAPN14, DSG1, and FLG. 
Third, we show that butyrate and propionate increase DSG1 and 
FLG protein expression. Fourth, our studies suggest that the barrier- 
restorative effects of butyrate and propionate are independent of 
GPR signaling, but may, in part, be dependent on inhibition of nu-
clear HDAC activity.

Although acetate is the most abundant SCFA in the gut and pe-
riphery, butyrate is the most potent immunomodulatory SCFA.33 
Indeed, we observed that butyrate has the highest potency to 
enhance esophageal barrier function after IL- 13- induced impair-
ment. Also propionate, but not acetate, significantly augmented 
barrier function despite with a lower activity than butyrate. Our 
data add to the growing body of literature linking SCFAs to im-
munomodulation and epithelial barrier function. Nonetheless, 
Wen et al. have reported a potential proinflammatory effect 
of SCFAs in Th2 cell- associated responses,34 indicating that 

F I G U R E  5  The HDAC inhibitor TSA partially mimics effects 
in EPC2 ALI cultures. Day 14 TEER (A) and FITC flux (180 min.) 
(B) of IL- 13- stimulated EPC2 ALI cultures treated with TSA 
(2 µM). C, CAPN14 and FLG mRNA expression in IL- 13- stimulated 
EPC2 ALI cultures treated with TSA (2 µM). Data are pooled 
from four independent experiments performed in duplicate, 
triplicate, or quadruplicate and are presented as mean +SEM. 
Statistical significance was tested with one- way ANOVA followed 
by Dunnett's multiple comparisons test: **p<.01; ***p<.001; 
****p<.0001; NS, not significant
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F I G U R E  6  Butyrate and propionate decrease HDAC activity 
in EPC2. HDAC activity was measured in 2 ng nuclear proteins 
after treating confluent EPC2 for 48 hours with acetate (10 mM), 
propionate (10 mM), butyrate (5 mM), or TSA (2 µM) and was 
normalized to the untreated control. Data are pooled from 
three independent experiments performed in triplicate, and are 
presented as mean +SEM. Statistical significance was tested with 
one- way ANOVA followed by Dunnett's multiple comparisons test: 
*p<.05; ****p<.0001
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immunomodulatory effects of SCFAs are cell type- dependent. 
Our findings are consistent with effects of SCFAs on cytokine- 
compromised monolayers of Caco- 2 and T84 human colorec-
tal carcinoma cells and 16HBE human bronchial epithelial cells, 
where butyrate enhanced barrier function and tight junction pro-
tein expression at millimolar level.35- 38 We used relatively high 
SCFA concentrations compared with these studies, which could 
be attributed to characteristics of the stratified esophageal epi-
thelial layer that may contribute to SCFA sensitivity.

Here, we focused on the response of CAPN14 protease and 
esophageal barrier proteins DSG1 and FLG expression to SCFA 
treatment because of their suggested role in esophageal barrier 
function.3,9,11,39 Expression of the epithelium- derived proinflam-
matory factor CCL26 was studied because of its strong correla-
tion with disease severity.10 The increase in TEER and decrease in 
FITC flux induced by butyrate and propionate were associated with 
a decrease in mRNA expression of CCL26 and CAPN14, and an in-
crease in mRNA and protein expression of DSG1 and FLG. CAPN14 
activity is specific for esophageal tissue and its overexpression re-
sults in loss of epithelial barrier function.11,40- 42 Furthermore, previ-
ous studies have shown that DSG1 and FLG are downregulated in 
inflamed esophageal mucosa of EoE patients,3,6,9 but are restored 
after successful therapeutical treatment and are associated with im-
proved mucosal integrity.43,44 Whereas, DSG1 is specifically linked 
to EoE pathology,3 IL- 13- mediated downregulation of FLG has also 
been described in atopic dermatitis.45,46 The role of other epithelial 
barrier proteins including claudins, occludin, involucrin, E- cadherin, 
and keratins in maintaining esophageal epithelial integrity is less 
evident.6,47 Interestingly, rather than changes in tight junction pro-
teins, DSG1 and FLG dysregulation contributes to esophageal bar-
rier dysfunction.44 Current findings indicate that SCFAs can restore 
dysregulated expression of DSG1 and FLG leading to restoration of 
esophageal barrier function. In addition to IL- 13, transforming growth 
factor (TGF) β1 and IL- 9 have also been found to diminish esopha-
geal barrier function of esophageal epithelial cells grown under ALI 
conditions.39,48 Further studies characterizing the effects of SCFAs 
on TGF- β1 and IL- 9- induced barrier dysfunction will clarify the full 
impact of SCFA treatment on the compromised esophageal barrier.

We considered signaling via free fatty acid receptors GPR41, 
GPR43, and GPR109a as a potential mechanism for the barrier- 
restorative effects of butyrate and propionate. AR420626, 4- CMTB, 
and niacin, agonists for GPR41, GPR43, and GPR109a, were used to 
investigate whether the activation of these receptors could mimic the 
effects of SCFAs on EPC2. GPR agonists did not increase epithelial 
integrity as measured by TEER and FITC flux in IL- 13- stimulated EPC2 
ALI cultures contrasting the effects of butyrate and propionate. Also, 
CAPN14 and FLG mRNA expression was unaffected by GPR agonists, 
indicating that the barrier- restorative effects of SCFAs are indepen-
dent of GPR stimulation. Furthermore, as a positive control for GPR 
stimulation, we studied the effect of GPR agonists on LPS- induced 
IL- 6 and IL- 8 production by HUVECs, since it has been shown that 
this is partially mediated via GPRs.21 We observed a dose- dependent 
decrease in LPS- induced IL- 6 and IL- 8 production, indicating that the 

lack of a response in EPC2 ALI cultures is not caused by biologically 
inactive GPR agonists but by the inability of these GPR agonists to 
induce SCFA- like effects. Our findings are in line with other studies 
demonstrating that SCFAs can exert their effects independent of free 
fatty acid receptors GPR41, GPR43, and GPR109a.49- 51

Alternatively, SCFAs can directly act as nuclear HDAC inhib-
itors.19,21,22 Indeed, both butyrate and propionate attenuated 
HDAC activity in EPC2. To further investigate whether HDAC in-
hibition could potentially contribute to the barrier- restorative ef-
fects of butyrate and propionate the pan- HDAC inhibitor TSA was 
used.21,49,50 TSA is structurally unrelated to butyrate and propio-
nate but is 1000 times more potent in inhibiting HDAC than these 
SCFAs.52 HDAC inhibition results in histone hyperacetylation, lead-
ing to changes in chromatin structure that facilitate access for tran-
scription factors to the promotor region of certain genes which then 
induces gene transcription. However, despite the overall correlation 
between histone acetylation and transcriptional activity, active gene 
transcription rather relates to the transcriptional competence of the 
gene than the high levels of histone acetylation.53- 55 This could ex-
plain why the effects of TSA on barrier function in EPC2 ALI cul-
tures measured by TEER and FITC flux were modest compared with 
those of butyrate and propionate. Thus, the ability of these SCFAs 
to directly inhibit HDAC activity may only be in part involved in their 
barrier- restorative effects.

Nevertheless, our studies have some limitations. Exposure to air 
in the ALI culture is essential for terminal epithelial differentiation 
and stratification. EPC2 ALI cultures were therefore treated with 
SCFAs in the basolateral compartment, but similar high concentra-
tions of SCFAs may be difficult to reach systemically.56 However, 
our data on apical SCFA treatment suggest that SCFA exposure from 
the apical side of the epithelium also supports the restoration of the 
esophageal epithelial barrier. Interestingly, it has been shown that 
increased dietary fiber intake influences the esophageal microbi-
ome, which might lead to increased local SCFA concentrations in 
the esophagus.57 Furthermore, we used the immortalized human 
esophageal epithelial cell line EPC2- hTERT to study the effects of 
SCFA treatment on an IL- 13- compromised barrier. It may support 
our study to confirm our findings in primary human esophageal epi-
thelial cells derived from EoE patients despite the marked transcrip-
tional and morphologic overlap between IL- 13- stimulated EPC2 ALI 
cultures and inflamed esophageal tissue.3,6

The esophageal epithelial barrier during active EoE is impaired 
and selectively permeable to food allergens that can remain in the 
esophageal epithelium for up to 4 days.58 The presence and subse-
quent recognition of food allergens in the esophageal mucosa gen-
erates a local type 2 immune response,59- 61 forming a pathogenic 
cycle to further exacerbate allergic inflammation. Butyrate and pro-
pionate may break this cycle by restoring barrier function and thus 
preventing the penetration of food allergens into the esophageal 
mucosa and subsequent inflammation.

The interest in dietary therapies for EoE has recently emerged 
as a result of the limitations associated with other therapies, and its 
effectiveness in achieving and maintaining clinical remission while 
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avoiding the need for drugs.62 A recent meta- analysis has shown 
that empiric elimination diets have moderate response rates (71%), 
but require a large number of endoscopies, whereas the efficacy 
of skin allergy testing- directed food elimination is questionable 
(45%).63 Interestingly, complete dietary allergen avoidance using 
an elemental diet is highly effective in both children and adults 
(90.8%),63 and restores esophageal mucosal integrity.44,64 It would 
be interesting to investigate whether a dietary intervention with 
SCFA formulations could restore esophageal immune fitness and 
improve symptoms.

In conclusion, our findings demonstrate that butyrate and pro-
pionate restore esophageal barrier function after IL- 13- induced im-
pairment, and that this is at least in part mediated by their ability 
to directly inhibit HDAC activity. Deeper knowledge of the mecha-
nisms underlying the beneficial effects of butyrate and propionate 
could lead to novel approaches to restore esophageal barrier func-
tion. Our data highlight a potential role for butyrate and propionate 
in the management of EoE.
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