
Citation: Ana, R.d.; Fonseca, J.;

Karczewski, J.; Silva, A.M.; Zielińska,
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Abstract: The complexity of the eye structure and its physiology turned ocular drug administration
into one of the most challenging topics in the pharmaceutical field. Ocular inflammation is one of
the most common ophthalmic disorders. Topical administration of anti-inflammatory drugs is also
commonly used as a side treatment in tissue repair and regeneration. The difficulty in overcoming the
eye barriers, which are both physical and chemical, reduces drug bioavailability, and the frequency of
administration must be increased to reach the therapeutic effect. However, this can cause serious
side effects. Lipid nanoparticles seem to be a great alternative to ocular drug delivery as they are
composed from natural excipients and can encapsulate both hydrophilic and lipophilic drugs of
different sources, and their unique properties, as their excellent biocompatibility, safety and adhesion
allow to increase the bioavailability, compliance and achieve a sustained drug release. They are also
very stable, easy to produce and scale up, and can be lyophilized or sterilized with no significant
alterations to the release profile and stability. Because of this, lipid nanoparticles show a great potential
to be an essential part of the new therapeutic technologies in ophthalmology to deliver synthetic
and natural anti-inflammatory drugs. In fact, there is an increasing interest in natural bioactives
with anti-inflammatory activities, and the use of nanoparticles for their site-specific delivery. It is
therefore expected that, in the near future, many more studies will promote the development of new
nanomedicines resulting in clinical studies of new drugs formulations.

Keywords: ocular drug administration; lipid nanoparticles; anti-inflammatory drugs; immunosup-
pressive drugs; antioxidants

1. Introduction

Ocular drug delivery remains one of the most challenging routes of drug adminis-
tration in the pharmaceutical field mainly because of the complex nature and structure
of the eye. Barriers such as epithelial, aqueous–vitreous, blood-aqueous barrier (BAB),
and blood-retinal barriers (BRB) can limit drug delivery through different routes to the
eye. Most drugs are formulated as eye drops and ointments for ophthalmic use. They
are cost-effective, patient compatible, and simple in the formulation. However, once the
drug is applied topically, it is easily washed with tears or removed by other mechanisms,
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leading to the need for several applications in a day to achieve a therapeutic effect [1].
It can induce unwanted systemic effects [2]. Nanotechnology is a promising field that
allows the improvement of the therapeutic efficiency, compliance, and safety of ocular
drugs. Lipid-based nanocarriers are one of the most interesting colloidal drug delivery
systems once they are biodegradable and biocompatible. Therefore, they have secured
the title of nanoscale carriers [3]. Ocular inflammation is one of the most common ocular
diseases, resulting from various causes. Eye inflammation occurs in response to infection,
allergies, autoimmune disorders, or injury trauma. Treating ocular inflammation includes
pharmacotherapy with corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs)
for anterior scleritis, and immunosuppressive drugs. More recently, biological agents,
such as inhibitors of tumor necrosis factor alpha (TNF-α), have been tested [4]. solid lipid
nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are interesting carriers for
ophthalmic applications [2]. SLNs and NLCs can be designed to treat the most critical
ocular disorders, such as joint ocular drug inflammation or infection, glaucoma, or diseases
that affect posterior eye structures. These systems are an innovative approach that has
been considered a promising strategy for treating some disorders in the retina [4]. They are
interesting for ocular drug delivery because they improve corneal permeation and increase
bioavailability. Besides these, lipid nanoparticles (LNs) are also safe, non-invasive, enhance
therapeutic benefits because of the increased residence time at the administration site,
and have small or no local side effects [5]. Other attractive characteristics are the therapy
efficiency, compliance, safety of ocular drugs, and compatibility and versatility [2]. Further-
more, one of the essential properties of lipid nanoparticles to apply in ocular drug delivery
is the adhesive properties, mainly due to their small size. The adhesive properties depend
highly on the surface properties, especially mucosal surfaces. Surface modifications of the
particles are used as a strategy to prolong the contact time with the cornea. These surface
modifications can be achieved using phospholipids, chitosan, cysteine-polyethylene glycol
stearate conjugate, and stearylamine. Cationic lipids, polysaccharide emulsifiers, or other
moieties with cationic groups have been included in the lipid nanoparticle composition to
enhance mucoadhesion with anionic ocular tissues by electrostatic adhesion [4]. The elec-
trostatic attraction between the cationic nanoparticles and the anionic cellular components
of the ocular surface tissues enhances the bioavailability of the drugs delivered by means
of LNs. In this way, considering their intrinsic capacity to adhere to the ocular surface
and the interaction with the epithelium, LNs could be an essential part of new therapeutic
technologies in ophthalmology [2,6].

Moreover, considering the general requirement for ophthalmic formulations regard-
ing their aseptic conditions and sterilizations, LNs have the advantage that they can be
lyophilized and sterilized by heat with only minor effects on their stability and in vivo
performance. Additionally, they can be produced on a large scale and present long-term
stability [2].

Over the last few years, the use of LNs, e.g., SLN/NLC, liposomes, nanoemulsions, has
gained great interest for the ocular delivery of synthetic, biological or natural compounds
with anti-inflammatory activity. Natural compounds are considered as an alternative over
synthetic drugs, attributed to their range of physicochemical properties, making them
interesting options for the treatment of ocular disorders.

2. Overcoming Obstacles in Ocular Drug Delivery—Ocular Anatomy and Challenges
in Drug Delivery

The challenges of ocular drug delivery are mainly related to the complex structure
and nature of the eye, as shown in Figure 1 [1]. The specific physiological and anatomical
features make it a complicated and sophisticated organ, as several barriers must be overcome
to reach a particular ocular tissue [7]. The human eye, a globular organ, consists of two
major parts: the anterior and posterior segments. Considering their many biological barriers
for both parts, they can be generally divided into categories: anatomical barriers are divided
into static and dynamic barriers. Static barriers are related to the corneal epithelium and
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blood-aqueous barrier, and dynamic barriers include tear drainage and conjunctival blood
and lymph flow. On the other side, physiological barriers include metabolic and intraocular
environment barriers, where the blood-aqueous barrier (BAB) and blood-retina barrier
(BRB) are found [8,9]. BRB is a crucial structure that maintains homeostasis in the posterior
segment of the eye. It is composed of the retinal pigmented epithelium in the outer part,
and in the inner part the endothelium of capillaries in the retina is found [10]. BAB and BRB
pose significant limitations for drug delivery via different routes to the eye [1].
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Considering the target segment, several administration routes are available (Table 1).
Topical administration is the preferred route for treating diseases affecting the anterior part
of the eye. Indeed, conventional approaches in ocular delivery include solutions, suspen-
sions, and ointments, comprising almost 90% of the available ophthalmic formulations on
the market. They offer significant advantages, such as ease of formulation, drug delivery,
and low preparation costs. They are also easy to use, which leads to high patient compli-
ance and cost-effectiveness [11–13]. When the aim is the delivery of active compounds to
other tissues like the retina, different administration routes are needed, such as systemic,
intraocular, periocular, or intravitreal administration [6]. However, when considering
topical administration, the therapeutic efficacy of drugs formulated as conventional eye
drops is minimal because of the anatomical barriers and physiological conditions that
protect the eye against the penetration from foreign substances [14]. Firstly, a significant
fraction of the drug applied topically is washed away with tears or removed by other
mechanisms. It requires frequent administration of the ophthalmic preparation to achieve
therapeutic efficacy for treating diseases in the eye’s posterior segment. This leads to
limited drug residence time over the cornea, which reduces drug absorption and increases
cytotoxicity [1,10]. Some other limitations of eye drops are low drug bioavailability, the
impossibility of targeting specific ocular structures, and drug binding or inactivation by
tear proteins. Moreover, most active compounds show unfavorable physicochemical prop-
erties that prevent absorption and distribution throughout the ocular tissues, dramatically
decreasing the fraction of drug that reaches the target tissue [14].
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Table 1. Administration routes for posterior eye delivery.

Route of
Administration Main Routes Advantages Disadvantages

Topical Corneal and
conjunctival-scleral pathway

• Non-invasive drug delivery
and high patient compliance.

• Minimal systemic side effects.

• Low availability due to
clearance mechanisms;

• Short retention time
• Blurred vision
• High potential for irritation

Intravitreal Direct injection into the
vitreous humour

• Localized drug delivery and
maintained at a high
therapeutic concentration

• Minimal off-target effects

• Painful process because
the injections

• Frequent injections lead to
severe complications

Periocular Primarily via the
trans-scleral pathway

• Less painful
• Bypassing the corneal barrier

to achieving adequate
therapeutic drug levels

• The integrity of the eyeball is
not affected

• Tissue hemorrhage
• Systemic side effects
• Rapid clearance

Suprachoroidal Hollow microneedle injection
targeting the choroidal layer

Drug effects at sites maximized by
sclera bypassing

• High requirements
for operation

• Side effects because of
the injections

Systemic Reach of the choroid through
the systemic circulation Better patient compliance

• Low bioavailability
• Drug-related toxicity because

of administration of
high doses

Literature reports that the ideal formulation for topical ocular drug delivery may
be able to increase the drug residence time at the ocular surface, protect the drug from
degradation by tear enzymes, provide targeted drug delivery to the active site, increasing
the bioavailability and minimizing the non-productive absorption, and finally promote
drug penetration through the cornea to enable it to act as a controlled release system
and consequently reducing the dosing frequency. The materials used in the ocular drug
delivery system must be biocompatible, biodegradable, and non-irritating [14]. In this
way, it is possible to see that physicochemical properties such as particle size, surface net
charge, shape, solubility, degree of ionization, and lipophilicity influence the ocular drug
absorption and determine the administration route. These referred factors can be tailored
by using novel particulate drug delivery systems that enhance the bioavailability of ocular
drugs [1].

3. Application of Nanotechnology in Ocular Drug Delivery

Nanotechnology is changing the perception of drug administration using conventional
dosages. It can revolutionize the way new therapies are developed and optimize the
existing ones by combining science and technology and the ability to manipulate structures
and properties at the nanoscale range [1,9]. Nanocarriers have been shown effective in
overcoming the limitations of current therapies [12]. The term nanoparticles refers to a
particulate drug delivery system with particle size in the nanometre range (1–1000 nm) [12].
Nanoparticle technologies, in general, show several benefits as solubilization of hydrophilic
and poorly water-soluble drugs, improvement of bioavailability and pharmacokinetic
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properties, and protection of the drug from physical, chemical, and biological degradation.
The sub-micrometer size of these systems also allows efficient transportation and crossing
of natural eye barriers, which leads to appropriate drug delivery to the target site [2,9].
Some chronic inflammatory diseases, such as age-related macular denegation (AMD) and
uveitis, require drug maintenance at specific concentrations, which is an essential point
in the treatment [15]. Particle size, particle size distribution, and stability are some of
the most significant issues in formulating dispersed systems for ocular administration.
Other potential advantages of nanoscale drug delivery systems in ocular therapy are the
possibility of self-administration by patients as eye drops, no impairment of sight because of
small dimensions of the delivery systems, possible uptake into corneal cells, and targeting
toward affected tissues, reducing potential side effects and required doses [16]. All the
reported advantages and limitations of lipid-based nanoparticulate systems can be found
in Table 2.

Table 2. Advantages and disadvantages of lipid-based nanoparticulate systems in ocular delivery.

Advantages Disadvantages/Limitations

High encapsulation efficiency Initial burst release from SLNs
High ocular permeation Low drug loading capacity

Appropriated pharmacokinetic properties Lack of recent extended clinical trials since most of the studies
are just in vivo assessment

Sustained and controlled release The toxicity of lipid nanoparticles on retinal cells is not
entirely studied

Enhancing drug pre-corneal retention time and drug
corneal permeability

Increase ocular bioavailability and distribution
Prevent ocular toxicity

Good stability and biocompatibility

Colloidal drug delivery systems can be easily administered in liquid form. Colloidal
systems include suspensions of microparticles, liposomes, or nanoparticles [17]. Other nanos-
tructured systems such as SLNs, niosomes, nanocapsules, nanospheres, dendrimers, nanosus-
pensions, and nanoemulsions have also been used in ocular drug delivery (Figure 2) [1].
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Liposomes are small artificial vesicles produced by natural phospholipids and
cholesterol [6]. Some of the advantages of liposomes are their low toxicity and antigenicity,
the capacity to be biodegraded and metabolized in vivo, and their liposomal properties
which can be controlled to some extent, such as membrane permeability. Liposomes can
also entrap and protect drugs on the journey to the target site [18]. However, they have
some associated problems, starting with their liquid form, which limits their pharmaceutical
formulation feasibility. Most methods of sterilization are also unsuitable for liposomes.
Heating involved in autoclaving can irreversibly damage their vesicular structure, and filtra-
tion reduces the particles to an average of 200 nm, limiting their application [1]. LNs have a
higher loading capacity and show higher biological and storage stability than liposomes [6].
LNs are colloidal structures with submicrometer sizes, usually between 50 and 400 nm. They
are made of biocompatible and biodegradable lipids, such as glycerides, fatty acids, waxes,
and derivatives, that are stabilized by surfactants and co-surfactants when required [14].
Lipid components of lipid-based drug delivery systems show similar properties to those
of the tear film. They can interact with the outside lipid layer of the tear film, allowing
the increase of residence time of the carrier in the conjunctival sac, which acts as a drug
depot [19].

The most suitable drugs for lipid formulations are the ones with significant lipophilic-
ity, which means a logP of at least 2. Additionally, the optimal drug physicochemical
properties are neutral or base drugs, with low melting temperature (<150 ◦C), some polar
functional groups, and adequate solubility of the drug in lipids and water [10,20]. Consid-
ering the different types of LNs, the first generation is related to SLNs. They result from
the technological evolution of oil-in-water nanoemulsion, replacing the liquid lipid of the
emulsion droplets with solid lipids at room temperature. These nanocarriers have more
physical stability than nanoemulsions once the solid structure is formed by a rigid core
surrounded by a stabilizing surfactant layer. Surfactants are used at a lower concentration
than in nanoemulsion preparations. This results in less toxicity and a better biocompatibil-
ity profile. However, because of their rigid crystalline matrix, SLNs show some drawbacks.
The two main limitations are the low drug loading and drug leakage during storage. To
overcome these technological limitations, the second generation of lipid nanoparticles
has been developed [14]. NLCs are lipid nanoparticles characterized by a solid lipid core
consisting of a mixture of solid and liquid lipids. The resulting matrix of lipid particles
exhibit a lower melting point compared with SLNs, but the matrix remains solid at body
temperature [3]. The goal of the addition of a liquid lipid is to increase the molecular
disorganization of the lipid lattice and consequently increase the payload and prevent drug
expulsion during storage. Even though the resulting structure usually contains up to 30%
of liquid lipids, the solid state is maintained without crystalline formation in the lipid ma-
trix. When compared with other lipid-based nanocarriers, lipid nanoparticles offer several
pharmaceutical advantages. They exhibit excellent biocompatibility and biodegradability
because they use generally recognized as safe (GRAS) substances. They have high physical
stability during storage and biological stability in environments with intense enzymatic
activity. LNs are also easy to modulate their physicochemical characteristics. They can be
produced by solvent-free methods and undergo sterilization by autoclaving. Because of all
these characteristics, LNs are very attractive to industry [14].

4. Ocular Inflammation

One of the most common disorders in ophthalmic therapy is the ocular inflammatory
disease that affects any part of the eye or the surrounding tissues. Eye infection is a common
problem, observed in all ages, that can be caused by different microorganisms, such as
bacteria, fungi, or viruses. Inflammation involving the eye can range from the familiar
allergic conjunctivitis of hay fever to rare, potentially blinding conditions such as keratitis,
scleritis or episcleritis, uveitis, optic neuritis, and others [2]. Ocular inflammation can be
the result of a wide variety of causes, including infections and inflammatory disorders.
Ocular joint inflammation involves the sclera (episcleritis) and the uvea (uveitis) [4]. Most



Int. J. Mol. Sci. 2022, 23, 12102 7 of 15

ocular diseases and surgeries are related to an inflammatory response [15]. Depending on
the area of the uvea affected, namely the anterior (iritis, iridocyclitis), the intermediate (pars
planitis), the posterior (choroiditis, chorioretinitis), or the global structure (panuveitis),
ocular damage can be induced. Despite the eye-specific target site and the specialized ocular
medicine to direct eye treatment, most cases of local inflammation that reach the inner eye
structures are treated by intraocular injections [15]. Regarding the drug treatment approach,
ocular inflammation includes corticosteroids, NSAIDs, and immunosuppressive drugs.
Recently, biologic agents such as TNF-α have also been tested [4]. Although steroidal agents
have been the standard treatment for ocular inflammation, the use of NSAIDs has increased
over the past years. Some clinical evidence shows a synergistic effect of the combined
use of NSAIDs and steroids. The use of topical NSAIDs allows the undesirable impacts
of steroidal agents, namely, the decrease of immunological response to infection, cataract
formation, steroid-induced raised intraocular pressure, and inhibition of re-epithelization
followed by epithelial denudation [2]. Figure 3 describes the mechanisms of age retinal
pigment epithelium (RPE) cell with inflammation.
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4.1. Corticosteroids

Corticosteroids suppress the inflammatory response against various inciting agents
of mechanical, chemical, or immunological nature. They are usually considered more
substantial than other options and superior at dealing with inflammation, primarily associ-
ated with cataract surgery. Steroids can also interact with specific DNA sequences of the
cellular nucleus, which alter the production and inhibitory proteins and inhibits additional
inflammatory mediator production.

Topical corticosteroid solution eye drops are generally ineffective for treating posterior
segment inflammation. Topical drug exposure at the therapeutic levels happens only for
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a short time-frame; thus topical steroid therapy must be carried out for several weeks
after surgery until the blood-aqueous barrier is re-established. Other alternatives have
been found, such as subconjunctival injection that can achieve higher intraocular steroid
levels or systemic therapy. Intravitreous injection of corticosteroids is another approach for
intraocular inflammation.

Steroids have the most potent efficacy in inflammation treatment. However, they
can induce significant side effects. Short-term use helps minimize the risk while reaping
substantial benefits. However, some of the most problematic side effects caused by the
long-term use of topical steroids include ocular hypertension, glaucoma, and cataract
formation. Other side effects of steroids include mydriasis, ptosis, inhibition of corneal
epithelial or stromal healing, punctate staining, damage to the optic nerve, and defects in
visual acuity and visual fields [2].

Dexamethasone is one of the most commonly used drugs for the treatment of eye
diseases. It is a high-efficacy glucocorticosteroid and can be applied in inflammatory eye
diseases for both anterior and posterior segments. Despite it being one of the most potent
anti-inflammatory drugs, it can have severe side effects on non-target organs [21–23].

4.2. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

NSAIDs are drugs with analgesic properties used to treat acute or chronic conditions
involving pain and inflammation. These analgesic properties are linked to the inhibitory
activity of cyclooxygenases (COX) [24]. Due to the ability to avoid the undesirable side
effects of steroidal drugs, the use of NSAIDs has increased in the past years, even though
steroidal agents are considered the classical treatment of ocular inflammation. NSAIDs are
commonly used in topical administration in the management and prevention of ocular in-
flammation that involves structures of the anterior segment of the eye [4]. Specifically, they
are used in managing post-operative inflammation, inhibition of intraoperative meiosis,
treatment of seasonal allergic conjunctivitis, and pain control. NSAIDs have also helped
decrease bacterial colonization related to contact lenses and prevent bacterial adhesion
to human corneal epithelial cells. Recently, they have been used inflammatory surface
reactions, like dry eyes, based on the immune response. The topical use of NSAIDs in
ophthalmology is limited to relatively water-soluble acids, with most NSAIDs drugs being
weakly acidic drugs that ionize in lacrimal pH fluid and have limited permeability through
the anionic cornea. Reducing the pH of the formulation leads to the non-ionized fraction
of the drug, allowing for enhanced permeation. However, this can potentially increase
irritation. Thus, the design of NSAID formulations that are comfortable for topical eye
application is required [2]. Drugs, such as dexamethasone and ibuprofen, have already
been loaded in nanostructures, and drug efficiency was shown to been improved and
maintained at particular concentrations in ocular tissues [15].

4.3. Immunosuppressive Agents

Immunosuppressive drugs have been widely used to control severe ocular infec-
tions [25]. These drugs have been recommended for treating inflammatory disorders
resistant to local and oral corticosteroid therapy or to avoid the problematic side effects
induced by the long-term treatment with these drugs [4]. Immunosuppressive therapy for
the treatment of ocular infections is thus only recommended when corticosteroid therapy—
the first line treatment—fails to control inflammation, when topical corticosteroid-sparing
therapy is needed to minimize the side effects of systemic corticosteroids, and for spe-
cific diseases that show a better response to the early initial use of non-corticosteroid
immunosuppression [26]. It is possible to categorize four main immunosuppressive
agent classes: antimetabolites, T cell inhibitors, alkylating agents, and biological response
modifiers [26]. Antimetabolites include drugs such as methotrexate and mycophenolate
mofetil. Cyclosporine and Tacrolimus are examples of T cell inhibitors, while for alkylating
agents the main examples are cyclophosphamide and chlorambucil. The initial choice of
drug depends on the patient’s comorbidities and age [27]. Some ocular inflammatory dis-
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eases, such as severe scleritis and uveitis, require immunomodulatory therapies, otherwise
they could result in severe damage. For complicated ocular inflammation, immunosuppres-
sive agents, such as cyclosporine A, can be used as an alternative or combined therapy [4].
Azathioprine is another immunosuppressive drug used for treating corneal graft rejections
and non-infectious ocular conditions. It can be combined with other immunosuppressive
agents in specific cases [25]. These therapeutic agents with biological properties include
monoclonal antibodies and soluble cytokine receptors that are regarded as natural response
modifiers. The leading biologics currently used are TNF-α, infliximab, adalimumab and
etanercept, cytokine receptor antibodies (Daclizumab), and interferon-α (IFN-α) [27].

5. Lipid-Based Nanosystems Applied in Ocular Delivery

Lipid-based nanosystems comprise all the lipid nanostructures for drug delivery, from
liposomes to micelles, lipid nanoparticles and nanoemulsions, as mentioned above.

Although nanosuspensions/nanoemulsions and polymeric nanoparticles have been
successfully developed for several steroidal and NSAID delivery, there are a few drugs that
have been formulated in lipid-based nanosystemsto respond to inflammatory ocular disor-
ders. Nowadays, some anti-inflammatory drugs with different chemical structures are being
tested. Some examples related to the encapsulation of NSAIDs include the development of
SLNs loaded with diclofenac sodium, NLCs containing ibuprofen or flurbiprofen, and finally,
for severe ocular inflammatory diseases, cyclosporine A-loaded SLNs [2]. Other research
using different lipid-based nanosystems for the ocular administration of drugs to treat oph-
thalmic inflammation can be found in Table 3. The choice of simpler nanosystems for drug
delivery, such as liposomes, nanoemulsions, and micelles, is clear. Additionally, published
work has shown that using a polymer as the vehicle is a frequent option to improve the
formulation’s physicochemical characteristics and to enhance ocular drug delivery [28].
Due to the mucoadhesive properties and the positive charge, chitosan is one of the most
commonly used polymers [29,30]. Nanotechnology-based ocular drug delivery systems, in-
cluding nanocapsules, microemulsions, liposomes, nanomicelles, SLNs and NLCs, can thus
significantly improve the anti-inflammatory drug properties by minimizing the frequency
of drug administration, leading to improved compliance. Novel nanoformulations of drugs
may be a promising and effective approach for ocular drug delivery in eye infections [31].
Figure 4 exemplifies drug administration techniques commonly used in mice.

Table 3. Summary of lipid-based nanosystems for ocular delivery of anti-inflammatory drugs.

Lipid-Based
Nanosystems

Encapsulated
Drug Disease Administration

Route Main Insights Ref.

Chitosan-
coated
liposomes

Triamcinolone
Acetonide

Macular
Edema Topical

Improved permeability compared to control
suspensions. Prolonged drug residence time on

the ocular surface and conjunctival sac by
sustained release from the delivery system and

reduced pre-corneal drug loss.
Good biocompatibility.

[32]

NLC Triamcinolone
Acetonide Uveitis Topical

cTA-NLC exhibited slow and sustained in vitro
release, good transcorneal permeation ex vivo,

and good biocompatibility. The formulation also
showed enhanced ocular bioavailability and

anti-inflammatory response.

[33]

SLN Fluticasone - Topical

Optimized FP-loaded SLNs displayed an
efficient entrapment capacity, small particle size,
good stability, and Higuchi release pattern. They

also exhibited augmented anti-inflammatory
effects when compared with pure and

marketed drugs.

[34]
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Table 3. Cont.

Lipid-Based
Nanosystems

Encapsulated
Drug Disease Administration

Route Main Insights Ref.

PCL-PEG-PCL
micelles Dexametasone Uveitis Injection

DEX-loaded PCL-PEG-PCL micelles showed an
improved anti-inflammatory response when

compared to the marketed drug once they could
reduce the clinical symptoms of uveitis after a
lag time. They demonstrate some potential as
carriers for DEX in treating anterior uveitis.

[35]

Nanoemulsion Celecoxib - -

NEs increased drug flux through rabbit cornea.
They also significantly increased rabbit cornea
partitioning, flux, and permeability coefficient.

CXB NE formulations can act as permeation
enhancers to improve corneal drug delivery.

[36]

Nanoemulsion Tacrolimus - Topical

Optimized CNE formulation exhibited
prolonged retention at the corneal surface.

In vivo ocular pharmacokinetic studies revealed
an increased AUC of the formulation compared
to the marketed drug. In vitro cytotoxicity study

confirmed the safety of the CNE formulation.

[37]

Chitosan-
coated
nanoemulsions

Ibuprofen Dry eye -

The optimized formulation showed
appropriated physicochemical properties for

ophthalmic application, good stability, and can
be easily sterilized after preparation. The

formulation exhibited mucoadhesive properties
and excellent biocompatibility. It also provided a
prolonged residence time at the ocular surface.

[29]

Liposomes Flurbiprofen - Intravitreous
administration

LAP system increased the drug retention time in
ocular tissues and high ocular bioavailability.
The system showed the capability to decrease

inflammatory reactions. It offers good potential
for intravitreal drug-sustained delivery.

[38]

Liposomes Bevacizumab Choroidal Neo-
vascularization

Intravitreous
administration

Bev-MVLs exhibited high encapsulation
efficiency and sustained drug release effects

in vitro and in vivo. The structural stability of
bevacizumab was maintained. The formulation
also significantly inhibited the thickness of CNV

lesions in in vivo studies.

[39]

Abbreviations: AUC—area under curve; Bev—bevacizumab; CNE—cationic nanoemulsion; CNV—choroidal
neovascularization; CXB—celecoxib; DEX—dexametasone; FP—fluticasone propionate; LAP—liposome aggregate
platform; MVL—multivesicular liposomes; NE—nanoemulsion; PCL-PEG-PCL—polycaprolactone-polyethylene
glycol-polycaprolactone; TA—triamcinolone acetonide.



Int. J. Mol. Sci. 2022, 23, 12102 11 of 15

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 17 
 

 

prolonged residence time at the ocular 
surface. 

Liposomes Flurbiprofen - 
Intravitreous 

administration 

LAP system increased the drug retention 
time in ocular tissues and high ocular 

bioavailability. The system showed the 
capability to decrease inflammatory 
reactions. It offers good potential for 
intravitreal drug-sustained delivery. 

[38] 

Liposomes Bevacizumab 
Choroidal 

Neovascularizat
ion 

Intravitreous 
administration 

Bev-MVLs exhibited high encapsulation 
efficiency and sustained drug release 

effects in vitro and in vivo. The structural 
stability of bevacizumab was maintained. 

The formulation also significantly 
inhibited the thickness of CNV lesions in 

in vivo studies. 

[39] 

Abbreviations: AUC—area under curve; Bev—bevacizumab; CNE—cationic nanoemulsion; CNV—
choroidal neovascularization; CXB—celecoxib; DEX—dexametasone; FP—fluticasone propionate; 
LAP—liposome aggregate platform; MVL—multivesicular liposomes; NE—nanoemulsion; PCL-
PEG-PCL—polycaprolactone-polyethylene glycol-polycaprolactone; TA—triamcinolone acetonide. 

 
Figure 4. Drug administration techniques for in vivo performance in mice. 

6. Natural Compounds with Anti-Inflammatory Action 

Figure 4. Drug administration techniques for in vivo performance in mice.

6. Natural Compounds with Anti-Inflammatory Action

As mentioned above and demonstrated in diverse literature, several anti-inflammatory
drugs have been approved for ocular administration, showing tremendous anti-inflammatory
responses. However, natural compounds seem to be an excellent alternative for treating
several inflammatory ocular disorders. These natural compounds are highly effective
because of their many different properties, from anti-inflammatory to antioxidant effects,
acting in a complementary way.

Resveratrol is one of the natural agents mentioned in the literature as a natural com-
pound with anti-inflammatory action used for ocular delivery. It is one of the most well-
known phytophagous found in various plants, trees, legumes, and some berries, such as
grapes, blackberries, blackcurrants, blueberries, and cranberries. The highest concentration
of resveratrol is found in grape skin, making red wine a concentrated source of this natural
phenolic compound. The use of resveratrol in ophthalmology is due to its antioxidant,
anti-inflammatory, and anti-angiogenic effects. Resveratrol’s anti-inflammatory effects
are because of its capacity to limit the expression of pro-inflammatory factors such as
interleukins and prostaglandins and decrease the chemoattraction and recruitment of
immune cells to the inflammatory site. Moreover, resveratrol also seems to show anti-
VEGF (Vascular Endothelial Growth Factor) effects by inhibiting the proliferation and
migration of vascular endothelial cells [40]. Work relating to encapsulating resveratrol
into lipid-based nanosystems can be found in Table 4. Curcumin is another bioactive com-
pound, yellow-colored, located in the perennial plant Curcuma longa. It has a wide range of
physiological and pharmaceutical properties: antioxidant, anti-inflammatory, anti-cancer,
and neuroprotective.

Curcumin seems effective in different ocular diseases inhibiting the proliferation of
human lens epithelial cells and protecting retinal cells, retinal ganglion cells, and corneal
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epithelial cells. Due to this, it can be successfully used to treat corneal and choroid neo-
vascularization. However, because of its low solubility, instability, and poor availability
the clinical application of curcumin in ophthalmology is still limited. Encapsulating this
compound in nanostructures could be an alternative strategy to improve these draw-
backs. Li et al. [41] developed a new formulation for curcumin nanomicelles using different
polymers [41] (Table 4). Another natural compound is myricetin, a natural flavonol with var-
ious biological and pharmacological properties, including anti-inflammatory, antioxidant,
and antimicrobial activity. Considering the anti-inflammatory properties, it is particularly
beneficial in ocular degenerative and inflammatory diseases, such as dry eye and chronic
anterior uveitis. However, some characteristics, such as water insolubility, poor aqueous
stability, and poor bioavailability, limit its clinical application. To overcome these draw-
backs, Sun et al. [42] designed polymeric micelles to encapsulate myricetin and increase
its aqueous solubility, stability, and corneal permeability, promoting its efficacy in the
treatment of eye diseases [42] (Table 4). Astaxanthin, a naturally occurring carotenoid, is a
bioactive compound with structural and functional characteristics that make it interesting
for application in the prevention and treatment of several ocular diseases. This compound
can be typically found in marine environments, namely in microalgae and seafood, where
it exhibits a red pigment. The most critical biological properties of this compound are the
potent antioxidant, anti-inflammatory, and anti-apoptotic activities. Therefore, it has been
effectively applied to treat retinal diseases and ocular surface disorders, such as age-related
macular degeneration, uveitis, cataract, diabetic retinopathy, and glaucoma [43].

Table 4. Summary of lipid-based nanosystems for ocular delivery of natural compounds with
anti-inflammatory action.

Lipid Nanoparticles
Type

Natural
Compound Disease Administration

Route Main Insights Ref.

PVCL-PVA-PEG
nanomicelles Curcumin Corneal and choroid

neovascularization Topical

Curcumin PVCL-PVA-PEG nanomicelles
had narrow size distribution, high drug

encapsulation, and increased storage
stability. It enhanced cell uptake, in vivo

corneal permeation, and improved
anti-inflammatory activity.

[41]

PVCL-PVA-PEG
micelles Myricetin Dry eye and chronic

anterior uveitis Topical

PVCL-PVA-PEG micelle formulation
showed high encapsulation of myricetin,

no significant cytotoxicity, and good
in vivo ocular tolerance. They

significantly enhanced the aqueous
solubility and stability of the compound
and improved in vitro antioxidant and

in vivo anti-inflammatory activity.

[42]

Lecithin/chitosan
nanoparticles Resveratrol

Age-related macular
degeneration, diabetic
retinopathy, glaucoma,

cataracts.

Topical
RMLCN optimized formulation was

retained on the eye surface, ensuring a
sustained drug delivery.

[30]

Micelles Resveratrol - Topical

Res was highly loaded into micelles.
They provided more chemical stability in

an aqueous solution, good short-term
storage and exhibited good tolerance.

Cornea permeation was also
greatly improved.

[44]

Abbreviations: PVCL-PVA-PEG—polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol; RMLCN—
resveratrol-loaded mucoadhesive lecithin/chitosan nanoparticles; Res—resveratrol.
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7. Conclusions

The complexity and physiology of the eye structure, and the drawbacks found in
topical ocular administration leads to a need for the development for new technologies for
treating inflammatory diseases of the eye. Lipid nanoparticles such as SLNs and NLCs are
colloidal systems designed for the ocular administration of anti-inflammatory drugs. Be-
cause of their unique properties, they are gaining interest in the pharmaceutical field. Lipid
nanoparticles not only improve the therapeutic efficiency, compliance and bioavailability
due to their adhesive properties, but they also have high biocompatibility. Furthermore,
they are versatile and safe once composed of biocompatible GRAS lipids and produced
through solvent-free methods. Lipid nanoparticles can also be used as drug delivery sys-
tems to the posterior segment of the eye because of their excellent kinetic stability and
controlled drug release properties, thus reducing the frequency of drug administration and,
consequently, the possible side effects. Although these is already published research on
the use of lipid nanoparticles for the ocular delivery of anti-inflammatory drugs, namely
NSAIDs and corticosteroids, it is still quite limited. It is expected that a lot more studies
involving the encapsulation of anti-inflammatory drugs in SLNs or NLCs will be published,
considering that the marketed formulations is the ultimate goal for ocular drug delivery
and their performance in current studies has shown excellent results when drugs are encap-
sulated in lipid-based nanosystems. Moreover, natural compounds with anti-inflammatory
activity seem to be an alternative to standard drugs. They offer a range of biological and
chemical properties making them complete and effective in treating ocular diseases. In
this way, it is possible to see that in future new formulations for the encapsulation of bio-
composites for ocular use will be developed because of their interest and lack of published
research in this field.
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