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The human gut microbiome harbors a diverse array of metabolic pathways contributing
to its development and homeostasis via a complex web of diet-dependent metabolic
interactions within the microbial community and host. Genomics-based reconstruction
and predictive modeling of these interactions would provide a framework for diagnostics
and treatment of dysbiosis-related syndromes via rational selection of therapeutic
prebiotics and dietary nutrients. Of particular interest are micronutrients, such as
B-group vitamins, precursors of indispensable metabolic cofactors, that are produced
de novo by some gut bacteria (prototrophs) but must be provided exogenously in the
diet for many other bacterial species (auxotrophs) as well as for the mammalian host.
Cross-feeding of B vitamins between prototrophic and auxotrophic species is expected
to strongly contribute to the homeostasis of microbial communities in the distal gut
given the efficient absorption of dietary vitamins in the upper gastrointestinal tract. To
confidently estimate the balance of microbiome micronutrient biosynthetic capabilities
and requirements using available genomic data, we have performed a subsystems-
based reconstruction of biogenesis, salvage and uptake for eight B vitamins (B1, B2,
B3, B5, B6, B7, B9, and B12) and queuosine (essential factor in tRNA modification)
over a reference set of 2,228 bacterial genomes representing 690 cultured species of
the human gastrointestinal microbiota. This allowed us to classify the studied organisms
with respect to their pathway variants and infer their prototrophic vs. auxotrophic
phenotypes. In addition to canonical vitamin pathways, several conserved partial
pathways were identified pointing to alternative routes of syntrophic metabolism and
expanding a microbial vitamin “menu” by several pathway intermediates (vitamers)
such as thiazole, quinolinate, dethiobiotin, pantoate. A cross-species comparison was
applied to assess the extent of conservation of vitamin phenotypes at distinct taxonomic
levels (from strains to families). The obtained reference collection combined with 16S
rRNA gene-based phylogenetic profiles was used to deduce phenotype profiles of
the human gut microbiota across in two large cohorts. This analysis provided the
first estimate of B-vitamin requirements, production and sharing capabilities in the
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human gut microbiome establishing predictive phenotype profiling as a new approach
to classification of microbiome samples. Future expansion of our reference genomic
collection of metabolic phenotypes will allow further improvement in coverage and
accuracy of predictive phenotype profiling of the human microbiome.

Keywords: gut microbiome, vitamin metabolism, metagenomics, 16S, comparative genomics

INTRODUCTION

The human intestinal microbiota is host to trillions of microbes
representing thousands of different species and strains and
harboring over ten million genes that are organized into complex
metabolic and transcriptional networks (Human Microbiome
Project Consortium, 2012; Li et al., 2014). These networks are
driving numerous metabolic interactions within the microbial
community and with the human host in the context of highly
variable dietary supply of nutrients (Yatsunenko et al., 2012;
David et al., 2014; Zhang et al., 2014; Wu et al., 2015; Blanton
et al., 2016; Hibberd et al., 2017; Sheflin et al., 2017). Mapping
and predictive modeling of these networks would significantly
impact our understanding of associations between the microbiota
composition, human health and a large spectrum of human
disease states (Subramanian et al., 2014; Zeller et al., 2014; Kostic
et al., 2015; Ejtahed et al., 2016; Imhann et al., 2018). Elucidation
of metabolic capabilities and nutrient requirements of gut
microbial communities is expected to open new opportunities
for diagnostics, prevention and treatment of dysbiosis-related
syndromes via rational and personalized selection of probiotics,
prebiotics and dietary nutrients. Metabolism of micronutrients
that can be produced de novo by some but not all gut bacteria,
such as B-group vitamins, represents a particularly interesting
case as it has the potential to combine metabolic interactions, that
may be competitive and cooperative.

Six out of eight B-vitamins analyzed in this study, B1
(thiamin), B2 (riboflavin), B3 (niacin), B5 (pantothenate),
B9 (folate) and B6 (pyridoxine), are common biosynthetic
precursors of major metabolic cofactors, TPP, FMN/FAD,
NAD(P), CoA, THF, and PLP, respectively, essential
in all microbes as well as in the mammalian host
(McCormick, 2003). Vitamin B7 (biotin) serves as an
essential carboxylation/decarboxylation cofactor upon covalent
attachment to biotin carboxyl carrier protein (BCCP) playing
an important role in lipogenesis, carbohydrate and amino
acid metabolism (Marquet, 2010). Vitamin B12 (cobalamin), a
precursor of the B12 coenzyme family including cyanocobalamin,
methylcobalamin, and adenosylcobalamin (AdoCbl), is essential
for all animals and many, but not all bacterial species (Degnan
et al., 2014; Danchin and Braham, 2017). B12 is synthesized
by bacteria in two phases via: (i) either anaerobic or aerobic
upstream coring ring synthesis pathway including pre- or

Abbreviations: BPM, Binary Phenotype Matrix; CPI, Community Phenotype
Index; CPM, Community Phenotype Matrix; ECF, Energy-Coupling Factor; HGM,
Human Gut microbiota/Microbiome; MFS, Major Facilitator Superfamily; NVP,
Number of Variable Phenotypes; OPV, Overall Phenotype Variability score;
OTU, Operational Taxonomic Unit; TF, Transcription factor; VPR, Vitamin
Prototrophy Rank.

post-synthesis incorporation of a cobalt ion; and (ii) a universal
downstream pathway that involves adenylation and attachment
of aminopropanol and nucleotide components (Supplementary
Figure S1). Another dietary micronutrient included in our
analysis, queuine (Q), is a precursor of a sugar nucleotide
queuosine, an essential factor of tRNA modification in both
prokaryotes and eukaryotes (Fergus et al., 2015). Availability
of these micronutrients in the growth media can influence the
structure of various microbial communities (Sanudo-Wilhelmy
et al., 2014). On the other hand, recent studies of self-sustaining
microbial communities in abiotic environments confirmed the
importance of syntrophic metabolism and revealed potential
mechanisms for community-wide B-vitamins exchange (Romine
et al., 2017). Cross-feeding of these micronutrients between
producers and non-producers may also play an important role in
the human gut microbiome (HGM) given the efficient absorption
of dietary vitamins in the upper gastrointestinal tract.

Previously, we combined genomic and functional context
analysis in SEED genome integration and analysis platform
to identify novel gene families (enzymes, transporters,
transcriptional regulators) and pathway variants involved
in microbial B-vitamin metabolism (Rodionov et al., 2002a,b,
2003, 2009, 2017; Vitreschak et al., 2002; Osterman et al., 2010;
Rodionova et al., 2017). The earlier SEED subsystems-based
analysis revealed a comparable representation and mosaic
distribution of B vitamin producers and non-producers within
a smaller set of 256 HGM genomes (Magnusdottir et al., 2015),
supporting the micronutrient sharing hypothesis.

In the current study, we have focused on a detailed
reconstruction of all aspects of biogenesis of nine micronutrients
(eight B-vitamins and queuosine) including inference of salvage
pathways for non-canonical vitamers and specificity for transport
systems on a greatly expanded set of reference genomes.
This allowed us to establish genomic signatures for numerous
functional pathway variants and to classify all studied species by
their simplified binary phenotypes, as either having the capability
to de novo synthesize a given cofactor (prototrophy) or being
strictly dependent on salvage of its precursor(s) from exogenous
sources (auxotrophy). Binarization of metabolic phenotypes
allows us to develop a computational approach to estimate and
compare fractional representation of auxotrophs/prototrophs in
publicly available HGM samples. The proposed novel metric,
Community Phenotype Index (CPI), provides a probabilistic
estimate of fractional representation of organisms (on a scale
0 – 100%) with a particular vitamin production capability in a
metagenomic sample.

A predictive phylotype-to-phenotype profiling approach
established in this study can be extended to a broader
range of metabolic phenotypes and applied for comparative
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analysis of general metabolic capabilities vs. nutrient
requirements of gut microbial communities as a function
of various factors defining their healthy vs. pathological
development (Gehrig et al., 2019). The observed correlations
and dependencies are expected to provide guidelines
for rational development of therapeutic foods and
nutrient supplementation.

MATERIALS AND METHODS

Reference Set of HGM Genomes
To build a comprehensive reference collection of genomes
representing diverse bacterial HGM species we utilized the
following approach. First, we obtained a list of 194 public
HGM genomes collected by the MetaHIT consortium in 2010
(Qin et al., 2010). This list included 151 bacterial genomes
sequenced by the Human Microbiome Project (HMP), 17
genomes sequenced by MetaHIT and 26 genomes collected
from Genbank. The list was combined with 450 HGM genomes
from the Human Microbiome Reference Genome Database in
20121 (Human Microbiome Project Consortium, 2012). Finally,
we analyzed the collection of ∼1,000 cultured HGM species
published in Rajilic-Stojanovic and de Vos (2014). By mapping
the HGM species onto the PATRIC genomic database2 (Wattam
et al., 2017) we selected 2,228 bacterial strains represented by
either complete or high-quality draft genomes (Supplementary
Table S1). Phylogenetic trees of analyzed species were generated
using concatenated alignments of 11 ribosomal proteins (L5,
L6, L9, L10, L15, L20, S2, S4, S5, S6, S8). Ribosomal protein
sequences were aligned using MUSCLE (Edgar, 2004). The
maximum likelihood phylogenetic tree was constructed using
RAxML version 8 (Stamatakis, 2015) and visualized via iTOL
(Letunic and Bork, 2016).

In silico Metabolic Reconstruction and
Phenotype Prediction
For genomic reconstruction and prediction of metabolic
phenotypes for eight B-vitamins and queuosine across the entire
set of 2,228 reference genomes, we extended a subsystems-based
approach implemented in the SEED platform3 (Overbeek et al.,
2005, 2014) (see Supplementary Figure S2A for workflow
overview). For each of the nine studied vitamins/cofactors, all
known and inferred components (enzymes, transporters and
transcriptional regulators) of biosynthetic and salvage pathways
(Supplementary Figure S1) were captured in a respective
mcSEED (microbial community SEED) subsystem propagated
to all selected HGM genomes (Supplementary Table S2).
In silico metabolic reconstructions in mcSEED subsystems were
based on functional gene annotation using homology-based
methods and three genome context techniques: (i) clustering
of genes on the chromosome (operons), (ii) co-regulation
of genes by a common regulator or a riboswitch, and (iii)
co-occurrence of genes in a set of related genomes.

1https://hmpdacc.org/hmp/HMRGD/
2https://www.patricbrc.org
3http://www.theseed.org

Transcriptional regulons for transcription factors (TFs)
(BirA, BioQ, NrtR, NiaR, PdxR) and riboswicthes (TPP, FMN,
THF, B12) as captured in the RegPrecise database (Novichkov
et al., 2013) were used to disambiguate paralogs with related but
distinct functions (most importantly, transporters).

Many vitamin biosynthesis pathways contain alternative
biochemical modules (routes) implemented by different subsets
of enzymes, as well as diverse vitamin transporters. For all
identified pathway variants, we established genomic signatures
represented by a subset of functional roles (signature genes) that
are required for de novo vitamin/cofactor biosynthesis and/or
vitamin salvage (Table 1). These were further translated to
phenotype rules underlying the assignment of a prototrophic
or auxotrophic phenotype for each respective vitamin/cofactor.
For the purposes of further quantitative analysis, all identified
pathway variants (Supplementary Table S2) are translated to
simplified numeric binary phenotypes values corresponding to
prototrophy (“1”) or auxotrophy (“0”). These values, combined
together for all 2,228 reference genomes, comprise a binary
phenotype matrix (BPM), which was used to assess microbiome-
wide biosynthetic capabilities and requirements for nine analyzed
micronutrients (Supplementary Table S1).

Microbiome-Wide Phenotype Profiling
From 16S rRNA Gene Data
The overall workflow for predictive phenotype profiling is
provided in Supplementary Figure S2B. The 16S rRNA gene
sequences of the V3–V5 region for 313 stool samples were
obtained from HMP website4 (Human Microbiome Project
Consortium, 2012). We also analyzed a large dataset of
stool samples obtained by the American Gut Project (AGP)
(McDonald et al., 2018). The V4 region sequencing results for
12,828 AGP samples were obtained from European Nucleotide
Archive at EBI (project PRJEB11419). First, we filtered both
datasets by read number and length distribution. For HMP, we
included samples containing more than 5,000 reads with minimal
length 250 nt. For AGP dataset we filtered out samples containing
short reads (<150 nt) and less than 10,000 reads per sample.
For AGP samples containing a significant fraction of microbial
blooms, which are common due to room-temperature storage
of samples additional filtering was applied (Amir et al., 2017).
As a result, we retained 2,863 AGP and 245 HMP samples for
further analysis.

The amplicon sequencing data from HMP and AGP
projects were analyzed using the QIIME version 2 (Caporaso
et al., 2010). Raw demultiplexed reads were quality filtered,
denoised and clustered into Operational Taxonomic Units
(OTUs) with representative sequences and calculated read counts
(abundances) using the DADA2 plugin with default parameters
(p-trunc-len = 250; max-ee = 2.0). As a result, 4,335 and 42,595
OTUs were generated for HMP and AGP datasets, respectively.
After filtering OTUs with low abundance, the resulting sets
contained 1,298 OTUs for HMP and 3,360 OTUs for the
AGP dataset, at that average percentage of removed reads per
sample was ∼1.5%. Taxonomic classification of the obtained
representative sequences was performed using the NCBI BLAST

4www.hmpdacc.org
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TABLE 1 | In silico reconstruction and phenotype prediction for vitamin/cofactor metabolism in a collection of 2,228 HGM reference genomes.

Vitamin
[Vitamers]1

Cofac-tor2 Pathways signature 3 Bas. Path.
Var.4

BP5 No. Gen.6 Growth
requirements 7

Transporters for
vitamins or vitamers

B1: Thiamine
[HET, HMP]

TPP (ThiF), (ThiS), ThiH/ThiO, ThiG, ThiC,
ThiD, ThiE, ThiL/ThiN

P1 1 975 – B1: ThiT/ThiBPQ/
PnuT/ThiV/ThiXYZ2/
YkoEDC2
HMP: CytX/ThiXYZ/
YkoEDC
HET: ThiW/ThiU

(ThiF), (ThiS), ThiG, ThiC, ThiD,
ThiE,ThiL/ThiN

P1∗ 1 89 (Ig source?)

Thi4, ThiC, ThiD, ThiE, ThiL/ThiN P2 1 45 –

(ThiF), (ThiS), ThiH/ThiO, ThiG, ThiD,
ThiE, ThiL/ThiN

Ah 0 199 B1; HMP

ThiC, ThiD, ThiE, ThiM, ThiL/ThiN Az 0 114 B1; HET

ThiD, ThiE, ThiM, ThiL/ThiN Ahz 0 452 B1; (HMP+HET)

ThiL/ThiN A 0 354 B1

B2: Riboflavin FMN, FAD (RibA), RibB, RibD, RibH, RibE, RibF P 1 1644 – B2: RibU/PnuX/ImpX/
RibN/RfnT/RibZ/
RibXY/RfnT

RibF A 0 584 B2

B3: Niacin
(Nicotinate or
Nicotinamide)
[Qn, Nr]

NAD, NADP NadA, NadB/NadB2, NadC,
NadD/NadM, NadE

P1 1 1170 – B3: NiaP/NiaX/NiaY
Nr: PnuC

NadA, NadC, NadD/NadM, NadE P1∗ 1 34 (missing NadB?)

Tdo, (Kfa), Kmo, Kyn, (Had), NadC,
NadD/NadM, NadE

P2 1 12 –

PncB/NadV, (PncA), NadD/NadM,
NadE

A 0 895 B3

PncB, (PncA), NadC, NadD/NadM,
NadE

Aq 0 86 B3; Qn

NadR Ar 0 31 Nr

B5: Pantothenate
[Pne, Pnt]

CoA PanD/PanP, PanB, (PanE/PanG), PanC,
CoaA/CoaX/CoaW, CoaB, CoaC,
CoaD, CoaE

P 1 1168 – B5: PanT/PanF
Pnt: PanS

PanB, (PanE/PanG), PanC,
CoaA/CoaX/CoaW, CoaB, CoaC,
CoaD, CoaE

P∗ 1 95 (β-ala source?)

PanD/PanP, PanC, CoaA/CoaX/CoaW,
CoaB, CoaC, CoaD, CoaE

Apt 0 39 B5; Pnt

PanC, CoaA/CoaX/CoaW, CoaB,
CoaC, CoaD, CoaE

Apt∗ 0 17 B5; Pnt (b-ala
source?)

CoaA/CoaX/CoaW, CoaB, CoaC,
CoaD, CoaE

A 0 793 B5

CoaA/CoaX/CoaW, CoaD, CoaE Apn 0 91 Pantetheine

– A∗ 0 25 CoA uptake

B6: Pyridoxine PLP, PMP PdxS, (PdxT) P1 1 862 – B6: PdxU/PdxU2

PdxJ, (PdxA), (PdxH/PdxO) P2 1 711 –

PdxK/PdxK2 A 0 541 B6

– A∗ 0 114 B6 (missing PdxK?)

B7: Biotin [Dtb,
KAPA, DAPA]

Biotin-(BCCP) BioF, BioA, BioB, BioD, BioC,
(BioG/BioH/BioZ/BioV), BirA

P1 1 797 – B7: BioY/YigM

BioF, BioA, BioB, BioD, BioW, BirA P2 1 246 –

BioF, BioA, BioB, BioD, BirA P∗ 1 74 (pimeloyl source?)

BioA, BioB, BioD, BirA A3 0 68 B7; Dtb; DAPA; KAPA

BioD, BioB, BirA A2 0 38 B7; Dtb; DAPA

BioB, BirA A1 0 169 B7; Dtb

BirA A 0 836 B7

B9: Folate THF-(Glu)n FolE1/FolE2, (FolQ/FolQ1/FolQ2),
(FolB/FolB2), FolK, FolP, FolC, PabC,
(PabAB), FolA/FolA2/FolM

P 1 1471 – B9: FolT

FolE1/FolE2, (FolQ/FolQ1/FolQ2),
(FolB/FolB2), FolK, FolP, FolC,
FolA/FolA2/FolM

P∗ 1 415 (pABA source?)

FolA/FolA2/FolM A 0 342 B9

(Continued)
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TABLE 1 | Continued

Vitamin
[Vitamers]1

Cofac-tor2 Pathways signature 3 Bas. Path.
Var.4

BP5 No. Gen.6 Growth
requirements 7

Transporters for
vitamins or vitamers

B12: Cobalamin
[Cbi, Cbr, Ba]

Ado-B12 CbiK/CbiX/CbiX2, CbiL, CbiH, CbiF,
CbiG, CbiD, CbiJ, CbiT, CbiE, CbiC,
CbiA, Co transporter, CbiP, CbiB,
CobU, CobS, CobC/CblZ, CobT,
CobD, BtuR/PduO

P1 1 628 – B12: CbrUVT/BtuBCDF

ChlID, CobN, CbiL, CobG, CbiH, CbiF,
CobF, CbiJ, CbiT, CbiE, CbiC, CbiA, Co
transporter, CbiP, CbiB, CobU, CobS,
CobC/CblZ, CobT, CobD, BtuR/PduO

P2 1 97 –

CbiA, CbiP, CbiB, CobU, CobS,
CobC/CblZ, CobT, CobD, BtuR/PduO

Aba 0 32 B12; Cbi; Cbr; Ba

CbiP, CbiB, CobU, CobS, CobC/CblZ,
CobT, CobD, BtuR/PduO

Acbr 0 43 B12; Cbi; Cbr

CobU, CobS, CobC/CblZ, CobT,
CobD, BtuR/PduO

Acbi 0 193 B12; Cbi

BtuR/PduO A 0 1235 B12

Q: Queuosine
[preQ1, preQ0,
CDG]

Q-(tRNA) QueA, QueG/QueH, QueC, QueF,
GCYHI1/GCYHI2, (QueD), QueE, qTGT

P 1 1109 – Q: QueT/QrtTUVW/YhhQ

QueA, QueG/QueH, QueC, QueF, qTGT Ac 0 62 Q; preQ1; preQ0;
CDG

QueA, QueG/QueH, QueF, qTGT Ao 0 42 Q; preQ1; preQ0

QueA, QueG/QueH, qTGT Ap 0 601 Q; preQ1

qTGT Aq 0 297 Q

– A 0 117 Not used

1Abbreviations for vitamers and precursors: HMP, 4-Amino-5-phydroxymethyl-2-methylpyrimidine; HET, 5-(2-Hydroxyethyl)-4-methyltiazole; Ig, iminoglycine; Qn,
quinolinate; Nr, N-ribosyl-nicotinamide; Pne, pantetheine; Pnt, pantoate; β-ala, β-alanine; Dtb, dethiobiotin; KAPA, 7-Keto-8-aminopelargonic acid; DAPA, 7,8-
Diaminopelargonic acid; pABA, p-aminobenzoate; Cbi, cobinamide; Cbr, cobyrinate diamide; Ba, cobyrinate; Q, queuine; preQ1, 7-aminomethyl-7-deazaguanine; preQ0,
7-cyano-7-deazaguanine; CDG, 7-carboxy-7-deazaguanine. 2Abbreviations for cofactors: TPP, thiamine pyrophosphate; FMN, flavin mononucleotide; FAD, flavin adenylyl
dinucleotide; NAD, nicotinamide adenylyl dinucleotide; NADP, nicotinamide adenylyl dinucleotide phosphate; CoA, Coenzyme A; (BCCP), biotin carboxyl carrier protein;
THF-(Glu)n, (polyglutamyl) tetrahydrofolate; Ado-B12, adenosyl cobalamine; Q-(tRNA), modified tRNA. 3Special characters used in pathway signatures: Parentheses
denote functional roles that are NOT required to be present corresponding to enzymes that were not detected in all prototrophs. ’/’ denotes alternative enzymes with
the same functional role (at least one of them is required to be present). Enzymes in red denote universal enzymes that are present in both auxotrophs and prototrophs.
4Basic Pathway Variants. Asterisk denotes incomplete pathways with one or two essential enzymes missing. 5Binary Phenotypes. 6Number of genomes possessing a
basic pathway variant. 7’–’ denotes no growth requirement in predicted prototrophs; comments in parentheses describe missing biosynthetic reactions/enzymes.

ToolKit with two reference 16S rRNA gene databases: (i) RDP
(Cole et al., 2014, database release 11.5 with taxonomies updated
to be consistent with the NCBI Taxonomy database), and (ii)
NCBI (version of December 2018 containing 20,792 sequences).
A heuristic approach was used to select a species-level consensus
taxonomy from a subset of the top blast hits (ordered by
identity percent) derived from both reference databases. If
species-level consensus assignment was not obtained, then we
used the QIIME2-provided feature-classifier plugin with three
alternative classifiers (consensus-blast, consensus-vsearch and
naive Bayes). Outputs of all three methods were compared
and taxonomic assignments with the highest confidence level
(equal or exceeding 0.8) were selected. In the case of low
confidence levels obtained at the species level or other
ambiguities, we repeated the whole procedure to assign
consensus taxonomy at the genus level and further at higher
taxonomic ranks.

Read counts for each OTU taxonomically assigned by
the QIIME2 pipeline were weighted (renormalized) by
16S rRNA gene copy number to account for its variability
between different species and to minimize the strongest biases

in estimated values of their relative abundances. For this
purpose we used the pan-taxa statistics for the rRNA gene
copy number provided by the rrnDB database (Stoddard
et al., 2015). For each OTU, this number was estimated
as a simple mean of respective values provided by rrnDB
for the best matching taxonomic group, at species, genus
or family level of taxonomic assignment. The obtained
renormalized OTU table, along with calculated BPM
values, was used as input for predictive phenotype profiling
as outlined below.

To assess vitamin production capabilities and requirements
for selected HMP and AGP samples, we utilized a beta-
version of Phenobiome Profiler tool (PhenoBiome Inc., Walnut
Creek, CA, United States5). This tool uses BPM and OTU
tables to approximate microbiome-wide metabolic phenotypes
while minimizing limitations arising from: (i) imprecise and
incomplete correspondence of OTUs to reference genomes; (ii)
intrinsic heterogeneity of phenotypes within mapped taxonomic
groups. To reach a reasonable compromise between coverage

5www.phenobiome.com
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and precision, we use a hierarchical averaging approach. Briefly,
in the first step, OTU taxonomic assignments are mapped
onto the reference genome collection at three taxonomic levels
(species, genus, and family). For the purpose of further averaging
and probabilistic phenotype assignment, every mapped OTU
is assigned a mapping weight (w) reflecting representation of
corresponding genomes in the collection. Thus, for an OTU
precisely mapped at the species level, equal weights are assigned
to genomes of all strains/isolates of this species that are present
in the collection. For OTUs that could not be mapped at
the species level, phenotype averaging is performed at the
genus level assigning equal weights to all available species
within a genus. A similar approach to averaging/weighting
is applied to OTUs mapped only at the family level. OTUs
that do not map at the family level (typically ≤ 5–7% by
abundance) were excluded from phenotype prediction. As a
result, a Community Phenotype Matrix (CPM) is computed
where an approximate (averaged) phenotype value for every
mapped OTU is calculated from respective binary phenotype
values (p) multiplied by respective weights (w) of each genome
(m). Each value in CPM reflects a probabilistic relative
contribution of each OTU (i) to the community-wide phenotype:

Pi =
∑

m
wi,mpm

At the next step, a Community Phenotype Index (CPI, %)
for each phenotype in a given sample is then calculated
as the total of all respective CPM values (P) multiplied
by the relative abundances (A) of all individual OTUs:

CPI =
∑

i
AiPi

CPI provides a probabilistic estimate of fractional representation
(from 0 to 100%) of the analyzed phenotype, in this case a
particular micronutrient production capability or prototrophy.
Computing CPI for auxotrophy, which is more convenient for
assessing micronutrient requirements, is performed the same
way but replacing all binary phenotype values (P) in BPM by
(1-P). A prediction error for CPI values (reflecting imprecise
mapping and phenotype microheterogeneity) was calculated as:

σ =

√∑
i
A2

i (1− Pi)Pi

The above described phylogeny-based mapping of the obtained
taxonomic profiles to the reference collection of genomes
with reconstructed BPM yielded on average ∼77% coverage of
mapped OTUs by relative abundance at the level of species
for either HMP or AGP datasets. At the genus level, the
average coverage increased to 96% for HMP and 91% for
AGP datasets. Finally, the addition of OTUs mapped only
at the family level further increased the overall coverage
of mapping to our current reference HGM collection up
to 99 and 97% across all samples from HMP and AGP
datasets, respectively.

To analyze the distribution of various combinations of
vitamin phenotypes in individual taxa we considered possible
combinations of individual binary phenotypes as ordered

nine-digit strings, termed phenotypic barcodes. For instance,
the ‘111111101’ barcode corresponds to a prototroph for all
vitamins except B12 (multi-prototroph), while ‘010000000’ is
an auxotroph for all vitamins except B2 (mono-prototroph).
For each sample, we calculated relative contribution of each of
512 possible vitamin barcodes (Pobs), using binary phenotypes
for individual reference genomes from BPM and previously
described OTU mapping weights. The same hierarchical
averaging/weighting approach was used for calculation of the
relative contribution of vitamin barcodes, where each barcode
is treated as an individual feature (composite phenotype). To
facilitate further manipulations we switched from barcodes to
their cumulative representation, termed vitamin prototrophy
rank (VPR). For instance, the ‘111111101’ and ‘000000010’
barcodes correspond to ranks 8 and 1, respectively. We further
predicted a theoretical distribution for VPRs in each sample
assuming that vitamin binary phenotypes in all organisms
are independent of each other (the null hypothesis). Stated
this way, the null hypothesis follows the Poisson binomial
distribution for the expected frequencies (Pexp) of VPRs in a
sample, with CPIs acting as independent trials probabilities.
To compare the observed vs. expected VPR distributions
we computed the ratio of their corresponding probabilities
in each sample (Pobs/Pexp) and presented these ratios in
logarithmic scale.

Comparison of Phenotype Predictions
With PICRUSt2
The Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) pipeline
allows one to predict the following functional information for
16S metagenomic samples: (i) functional gene content based on
KEGG database annotations for reference genomes (Kanehisa
et al., 2014); and (ii) metabolic pathway abundances using the
pathway rules from MetCyc database (Caspi et al., 2012) and
MinPath (Minimal set of Pathways) tool (Ye and Doak, 2009).
The latest version of the software (PICRUSt2) was installed in
a conda environment under Linux CentOS 7 as specified in
the GitHub Wiki manual6. To predict MetCyc/MinPath-based
abundances of vitamin biosynthetic pathways in the HMP
and AGP samples (provided as OTU abundance tables and
files with representative sequences), the PICRUSt2 pipeline
was used with default parameters. We further used PICRUSt2
to predict phenotype abundances in the same samples using
the BPM for vitamin biosynthesis pathways in 2,228 reference
genomes. First, we prepared the custom traits table for 2,581
leaves of the PICRUSt2 reference tree that overlapped by
NCBI TaxID with the reference HGM genomes analyzed in
this work. We then used the PICRUSt2 pipeline with BPM-
based custom trait table provided as an input. As the input
BPM describes capabilities of reference species to produce
vitamins, we did not need to run the MinPath pathway
abundance prediction. All pathway and phenotype abundances
obtained by PICRUSt2 were normalized by a number of reads

6https://github.com/picrust/picrust2/wiki
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in each sample Scattered plots were produced in R using
ggplot2 package.

RESULTS AND DISCUSSION

Genomic Signatures of Vitamin/Cofactor
Metabolism
We began this study by selection of the reference collection
of bacterial genomes representing the human gastrointestinal
microbiota (see Materials and Methods). The selected set
included 2,228 genomes representing eleven phyla, 42
orders, 93 families, 226 genera, and 690 species, as well as
173 genomes that have no taxonomically defined species
names (Supplementary Table S1). The largest number of
reference genomes in this set belong to the Firmicutes (1046
genomes), Proteobacteria (588 genomes), Actinobacteria
(311 genomes) and Bacteroidetes (205 genomes) phyla.
The Fusobacteria and Tenericutes phyla are represented
by 41 and 25 genomes, respectively. The remaining
five phyla (Verrucomicrobia, Synergistetes, Spirochaetes,
Lentisphaerae, and Planctomycetes) contain from one to five
reference genomes.

We used a subsystems-based comparative genomics approach
(Overbeek et al., 2005; Osterman et al., 2010) to reconstruct
biosynthetic pathways for nine universally essential cofactors
along with biogenesis, salvage and transport systems for their
respective metabolic precursors (eight B-group vitamins and
queuosine). The overall workflow for metabolic pathway
reconstruction and phenotype assignments is provided
in Supplementary Figure S2A. The analyzed functional
roles include 127 distinct enzymes involved in 9 vitamin
biosynthesis/salvage pathways, and 83 transporters (or their
components) involved in salvage of exogenous vitamins or their
metabolic precursors (Figure 1). Detailed pathway diagrams
capturing variations in vitamin and cofactor biosynthetic
and salvage pathways at the level of individual enzymes
(non-orthologous replacements) and topologies (alternative
biochemical routes) are presented in Supplementary Figure S1.
From the obtained genomic distribution of vitamin/cofactor
biosynthetic enzymes and transporters we deduced phenotype
rules (generalized genomic signatures, as captured in Table 1)
and then assigned individual pathway variants (Ye et al.,
2005) to each analyzed genome (Supplementary Table S2).
Phenotype rules describe sets of genes whose presence or
absence in the analyzed genomes permit confident distinction
between metabolic pathway variants and prediction of vitamin
transport capabilities. For each vitamin/cofactor, all metabolic
pathway variants were subdivided into two major categories:
(i) prototrophic (variant code “P”) that are capable of de novo
cofactor synthesis, and (ii) auxotrophic (variant code “A”) that
are dependent on the uptake and salvage of a respective vitamin
or an alternative metabolic precursor from an exogenous source.
Distinct P-variants were assigned to prototrophs with alternative
de novo biosynthetic routes. Thus, variations in B1/TPP
biogenesis include two alternative routes for the synthesis of a
hydroxyethylthiazole (HET) moiety: a common bacterial variant

P1 (ThiFGHS signature) and a eukaryotic-like variant P2 (Thi4
signature). Likewise, two alternative routes to synthesize the
quinolinate precursor of NAD comprise the most common
bacterial variant P1 (NadAB) and a relatively rare eukaryotic-like
variant P2 (Tdo-Kmo-Kyn). Similar variations occur in PLP
synthesis (PdxAJ vs. PdxST routes) and in the synthesis of
pimeloyl-CoA precursor of biotin (via BioC vs. BioW). B12 is
synthesized via either anaerobic or aerobic pathway for corin
ring biosynthesis that are characterized by either early or late
insertion of cobalt via specific chelatases (CbiK/X vs. CobN) and
pathway-specific enzymes (CbiDG vs. CobFG).

Many bacterial genomes that completely lack the de novo
biosynthetic machinery but typically have vitamin uptake,
salvage and downstream biotransformation pathways yielding
physiologically active cofactors are generally classified as
auxotrophic A-variants. Despite substantial variations in
salvage of cofactor precursors (see below), this classification
is strengthened by indisputable universal essentiality of these
cofactors (with the exception of B12 as discussed below).
Downstream pathways common for both P- and A-variants
that include from one to five conserved enzymatic steps are
characteristic of all analyzed cofactors, except PLP (marked
red in Table 1). For the latter, de novo and salvage routes
are topologically non-overlapping (Figure 1). The only other
exception is A∗-variant of Coenzyme A biosynthesis (Table 1) in
parasitic species of Mollicutes (such as Mycoplasma/Ureaplasma)
due to their unique capability to uptake a mature cofactor.

Signature salvage enzymes (those that are not involved
in de novo or downstream pathways) are characteristic of
vitamins B1 (ThiK, ThiM, and ThiN), B3 (PncA, PncB and,
more rarely, NadV) and B6 (PdxK/K2). Other vitamins and
metabolic precursors can feed directly into respective cofactor
biosynthetic pathways upon uptake from the media via specific
transporter systems. In this study, we have performed a
comprehensive mapping of all known and predicted components
of salvage enzymes and transporters (see below), which in many
cases provided important details on metabolic requirements
and capabilities of respective species. However, the presence
of particular salvage genes is not required for the general
inference of auxotrophy (A-variants). Thus, PdxK/K2 kinase
was missing in 116 B6 auxotrophs, suggesting existence of yet
unknown alternative forms of this essential salvage enzyme. Such
requirement would be particularly unsustainable with respect to
uptake transporters that represent a substantial bioinformatic
challenge due to their evolutionary plasticity (poorly resolved
paralogs) and incomplete knowledge (missing genes).

It is important to note that salvage machinery is often, but
not always, present in species with complete P-variants, which
allows them to implement an opportunistic lifestyle switching
from energetically expensive de novo synthesis to a more
economic salvage depending on the availability of vitamins.
Therefore, we have included such capabilities in our overall
reconstruction (Supplementary Table S2), despite a caveat
of presently incomplete and imprecise knowledge of uptake
transporters. It is also recognized that salvage enzymes are often
involved in cofactor recycling within the cell, as best studied
for the case of NAD(P) cofactors (Figure 1) (Sorci et al., 2010).
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FIGURE 1 | Reconstructed vitamin/cofactor biosynthesis and salvage pathways in HGM genomes. Eight B-vitamins, and queuine (Q) are shown in red boxes.
Alternative and universal biosynthetic pathways are marked in blue text and highlighted in colored blocks. Biosynthetic reactions and vitamin/vitamer uptake are
depicted by solid black and red dashed lines, respectively. Enzymes are shown by white boxes. The detailed information of enzyme commission (EC) numbers,
functional annotations, metabolite abbreviations, and transporter names are provided in Supplementary Figure S1.

Moreover, it is tempting to speculate that at least some of the
vitamin transporters may contribute to a hypothesized B-vitamin
sharing in microbial communities (Romine et al., 2017) (as
further discussed below).

Finally, taking into account that the auxotrophy is inferred
based mostly on “negative” evidence, the absence of biosynthetic
capabilities, we recognize that, at least in principle, the
existence of yet unknown and radically different de novo

Frontiers in Microbiology | www.frontiersin.org 8 June 2019 | Volume 10 | Article 1316

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01316 June 11, 2019 Time: 15:37 # 9

Rodionov et al. Vitamin Metabolism in Human Gut Microbiome

cofactor biosynthetic routes in rare bacterial species cannot be
excluded. However, our current analysis of vitamin subsystems
in thousands of sequenced bacterial genomes strongly argues
against this theoretical possibility. Instead, some species harbor
“incomplete” variants of known pathways with one or two
“missing genes” (see the next section). It is important to
emphasize that the variety of incomplete pathway variants
and their representation in the entire reference collection are
relatively small confirming that our current understanding
and genomic reconstruction of bacterial of vitamin/cofactor
biosynthetic machinery are nearly complete.

Incomplete Pathway Variants and
Salvage of Alternative Vitamers
Distinguishing between incomplete P-variants with “missing
genes” (Osterman and Overbeek, 2003) (variant code P∗), which
reflect yet unknown non-orthologous gene displacements or
alternative biochemical routes, and non-canonical A-variants
presents a particular bioinformatic challenge, requiring a detailed
case-by-case analysis (Table 1) (note that genome sequencing
or gene calling gaps do not affect this analysis as pathway
variants are only considered when detected in multiple genomes).
Thus, 89 genomes including 62 Bifidobacterium strains possess
an incomplete B1 pathway with missing iminoglycine synthase
(ThiO or ThiH), however, all other B1 biosynthetic enzymes are
present (Figure 1). Based on these considerations, these species
were tentatively assigned as prototrophs with yet unknown
enzyme/route supplying the iminoglycine precursor (P∗-variant).
In the B3 pathway, NadB (or an alternative enzyme NadB2)
catalyzing the synthesis of iminoaspartate from aspartate is
missing in 34 predicted B3 prototrophs (P∗ including 17 strains of
Helicobacter pylori and 8 strains of Micrococcus luteus, suggesting
the presence of a yet unknown alternative iminoaspartate
synthesis enzyme in these species. In the B5 pathway, we
identified 95 strains with missing aspartate decarboxylase (PanD
or PanP) that possess all other de novo B5 synthesis enzymes,
suggesting the existence of yet uncharacterized alternative
enzyme(s) or biochemical route(s) for β-alanine synthesis in
these bacteria. Indeed, alternative routes generating β-alanine
unrelated to cofactor metabolism (e.g., via alanine racemase or
catabolism of pyrimidines) are known. Moreover, β-alanine can
be theoretically salvaged, if available, from the growth media.
Based on these considerations, we classify the respective pathway
variants as P∗-type prototrophs rather than auxotrophs salvaging
non-canonical vitamers (discussed below).

In the B7 pathway, 74 species from diverse phyla lack
the upstream enzymes involved in the synthesis of pimeloyl
precursor but possess all downstream biosynthetic enzymes
required for assembly of the fused heterocyclic rings of biotin
(BioF, BioA, BioD, and BioB). Given the known variability
of pathways and isozymes involved in the upstream biotin
biosynthesis, we propose the existence of yet uncharacterized
enzymes for pimeloyl precursor synthesis in these species. Finally,
in the B9 pathway, 454 strains lack the complete pathway for
the synthesis of para-aminobenzoate (pABA) precursor, while all
other folate biosynthetic enzymes are present in their genomes.

There are two potential explanations for these incomplete
B9 pathways: (i) presence of yet unknown pABA synthesis
routes/enzymes, and/or (ii) salvage of pABA from the diet
or other community members. In agreement with the latter
hypothesis, it is known that Lactobacillus strains having this
pathway variant can produce folate only when pABA is added
to the medium (Santos et al., 2008; Wegkamp et al., 2010). We
chose to classify this variant as P∗ despite its similarity with
salvage of alternative vitamers in A-variants discussed below,
mainly because pABA, a known intermediate in the synthesis of
other essential metabolites (e.g., aromatic amino acids), may not
be considered a true B9 vitamer. At the same time, a number
of other identified incomplete pathway variants in metabolism
of B1/TPP, B3/NAD, B5/CoA, B7, B12, and queuosine were
classified as bona fide auxotrophic A-variants with a potential to
salvage alternative vitamers, non-canonical metabolic precursors
of respective cofactors (Table 1).

The largest variety of such variants is observed in
the biogenesis of thiamine pyrophosphate (TPP) cofactor,
which is synthesized via coupling of the phosphorylated
hydroxymethylpyrimidine (HMP-PP) and thiazole (HET-P)
moieties (Figure 1). Nearly half of the analyzed genomes contain
complete signatures for the de novo biosynthesis of both HMP-PP
and HET-P biosynthesis (B1 prototrophs). Auxotrophic variants
comprising another half were subdivided into four major
sub-variants with distinct biosynthetic/salvage capabilities. The
first group of auxotrophs (452 genomes) is unable to synthesize
either B1 precursor but possess the ThiM and ThiD kinases,
which can convert salvaged HET and HMP precursors into TPP
(Ahz-variant in Table 1). Two other groups encode partial TPP
biosynthetic pathways: (i) HMP auxotrophs (199 genomes) are
capable of synthesizing only HET-P de novo and use ThiD kinase
to generate HMP-PP from salvaged HMP precursor (Ah-variant
in Table 1); (ii) conversely, HET auxotrophs (114 genomes) have
only HMP-PP biosynthetic capabilities and generate HET-P via
uptake of exogenous HET and its phosphorylation by ThiM
kinase (Az-variant in Table 1). Importantly, in all these variants
the ability to utilize alternative B1 vitamers or combination
thereof is in addition and not instead of a common B1 salvage
capability. The remaining group of B1 auxotrophs (354 genomes)
can only salvage vitamin B1 but lack the machinery to salvage
HET or HMP and combine them into TMP intermediate
(A-variant in Table 1).

Biogenesis of NAD(P) redox cofactors is also associated with
a variety of salvage/recycling pathways from one or both forms
of vitamin B3: (i) nicotinic acid (or niacin), the most common
form, via PncB salvage enzyme; and (ii) nicotinamide, via one
of the three alternative routes, via PncA-PncB or, more rarely
in bacteria, via NadV-PncC or NadV-NadM route bypassing
otherwise nearly universal downstream enzymes NadD-NadE
(Figure 1). Among B3 auxotrophs (1012 strains), we found
86 strains representing diverse taxa such as Campylobacter,
Corynebacterium, Lactobacillus, and Streptococcus that contain
a truncated de novo NAD biosynthetic pathway variant (Aq-
variant in Table 1) comprised of a single enzyme NadC
but none of the upstream enzymes involved in quinolinate
production. This genomic signature suggests that, in addition to
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canonical B3 salvage, these species can also salvage quinolinate
as previously demonstrated for Streptococcus pyogenes, (Sorci
et al., 2013). Notably, quinolinate is a common intermediate of
NAD biosynthesis not only in bacteria but in some host tissues
that synthesize NAD via aerobic degradation of tryptophan
(kynurenine pathway). Yet another rare salvage pathway is a
two-step conversion of nicotinamide riboside (Nr) to NAD via
bifunctional NadR enzyme. This pathway is the only route of
NAD biogenesis in Haemophilus influenza and related species
from the Pasteurellales order that should be considered Nr
auxotrophs rather than B3 auxotrophs (Ar-variant in Table 1).
However, in a limited number of NadR-containing HGM
genomes, it is present in addition to (not instead of) B3
salvage pathways.

A five-step universal downstream pathway (Figure 1) of
Coenzyme A (CoA) synthesis from pantothenate (vitamin B5)
is present (with some non-orthologous variations in the first
step) in both, prototrophs (1,263 genomes, 57%) and most, but
not all predicted B5 auxotrophs (874 strains, 39%). In addition,
91 strains (mostly Bifidobacterium and diverse Clostridiales)
lacking de novo synthesis have an incomplete universal pathway
variant with missing CoaBC bifunctional enzyme catalyzing
the conversion of phosphopantothenate to phosphopantetheine.
We propose that these bacteria are dependent on an earlier
hypothesized “pantetheine shunt,” a salvage of an alternative
vitamer pantetheine (CoA degradation product) via a secondary
activity of pantothenate kinase converting it directly to
phosphopantetheine, thus by-passing both steps requiring a
missing CoaBC enzyme (Ye et al., 2005; Osterman, 2009). Indeed,
an additional pantetheine kinase activity was experimentally
demonstrated for selected pantothenate kinases (Strauss et al.,
2010). Notably, this genomic pattern (Apn-variant in Table 1)
also cannot be classified as genuine B5 auxotrophy as respective
species would not be able to synthesize CoA from pantothenate.
Among B5 auxotrophs with incomplete de novo pathways are
two variants lacking pantoate biosynthesis: (i) Apt-variant in 40
genomes that contain two de novo enzymes, PanD and PanC;
(ii) Apt∗-variant in 16 genomes that retain only one de novo
enzyme, PanC. Similar to an Aq-variant in NAD biogenesis, this
genomic signature suggests the possibility of salvaging pantoate
(with known or unknown source of β-alanine, respectively) in
addition to vitamin B5.

More than 80% of identified B7 auxotrophs (836 genomes)
lack all four enzymes responsible for the conversion of pimeloyl-
CoA precursor to biotin (Figure 1). The remaining auxotrophs
possessing incomplete biosynthetic pathways were classified
into three variants (Table 1) characterized by the presence
of: (i) only the last enzyme, BioB (A1-variant); (ii) the last
two enzymes, BioB and BioD (A2-variant); and (iii) the last
three enzymes, BioA, BioD, and BioB (A3-variant). Several
considerations suggest that the sustainability of these variants
is due to salvage of all three pathway intermediates, namely
dethiobiotin, 7-keto-8-aminopelargonic acid (KAPA) and 7,8-
diaminopelargonic acid (DAPA) as alternative vitamers, rather
than due to the existence of yet unknown alternative enzymes
or biosynthetic routes. First, the fact that only upstream (but
not midstream or downstream) truncations are observed makes

this interpretation more consistent with pathway topology.
Second, a sporadic phylogenetic distribution of these variants
among diverse Actinobacteria, Proteobacteria and Firmicutes
genomes is more consistent with gene loss rather than non-
orthologous replacement.

In contrast to other B-vitamin related cofactors, various
derivatives of B12 are not universally essential in bacteria. While
most bacteria have B12-dependent methionine synthase and
ribonucleotide reductase, these enzymes are often dispensable
due to the presence of alternative B12-independent enzymes
and metabolic routes (Rodionov et al., 2003). This points to a
distinction between beneficial but not mandatory salvage of B12
by respective A-variants (Table 1) and life-or-death requirements
of the exogenous supply of metabolic precursors of all other
analyzed cofactors. Nevertheless, the effect of B12 availability
on fitness of some gut-colonizing Bacteroides spp. was reported
(Degnan et al., 2014) providing the first experimental evidence of
vitamin exchange in gut microbial consortia.

As in the case of biotin, more than 80% of B12 auxotrophs
(1235 strains) lack all enzymes of anaerobic or aerobic upstream
corin ring synthesis, as well as most downstream enzymes, except
BtuR/PduO family adenosyltransferase converting vitamin B12
(cobalamin) to an active coenzyme B12 (adenosylcobalamin).
Likewise and following the same reasoning, the three observed
incomplete pathway variants (Aba, Acbr, and Acbi, Table 1)
appear to point to salvage of alternative B12 vitamers, cobinamide
(Cbi), cobyrinate diamide (Cbr) and cobyrinic acid (Ba),
respectively (Figure 1).

Our current knowledge of salvage pathways related to
Queuosine, an essential micronutrient, which, despite many
similar metabolic features, is not considered a B-vitamin.
A fully prototrophic P-variant, for the de novo synthesis of
queuosine-tRNA from GTP is present in nearly half of the
analyzed genomes (Table 1). A minimal salvage route (Aq-
variant) containing only one conserved downstream enzyme,
qTGT tranglycosylase, which can generate the same final product
directly from the salvaged queuine (Q) precursor, occurs in
nearly 300 genomes. However, the most frequent incomplete
variant (Aq in 601 genomes, see Table 1) likely entails salvage
of preQ1 precursor (see Figure 1). Two other variants of
incomplete pathways (Ac and Ao) identified in 62 and 42
genomes, respectively, point to two other pathway intermediates,
7-carboxy-7-deazaguanine (CDG) and 7-cyano-7-deazaguanine
(preQ0), as alternative salvageable vitamers. Finally, 117 strains
including Mycoplasma/Ureaplasma and many Lactobacillus spp.
lack all queuosine biosynthetic enzymes including qTGT.
However, unlike in the case of A∗-variant in CoA-related
auxotrophs, this entirely “void” genomic signature likely reflects
a complete loss of Q-modified tRNAs, at least in parasitic
Mollicutes (De Crecy-Lagard et al., 2007).

Overall, the current analysis of incomplete pathways allowed
us to reconcile most of the gaps and inconsistencies in the
in silico reconstruction of vitamin/cofactor biogenesis and
salvage. It confirmed a rather comprehensive understanding
of these aspects of metabolism across the entire set of
reference HGM genomes setting the stage for the further
microbiome-wide predictive phenotype profiling (as described
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in further sections). Of no less importance, it revealed a set
of well-defined open problems, such as missing genes and
yet unknown biochemical routes, a subject of bioinformatics-
driven gene and pathway discovery. Additionally, this analysis
tentatively implicated several vitamers as additional or alternative
metabolic precursors of respective cofactors as a subject
of non-canonical salvage, at least in the species carrying
particular partial pathways. These metabolic precursors along
with canonical B-vitamins are a likely subject of cross-
feeding between donors (at least some prototrophs) and
acceptor (auxotrophs) mediated by a variety of specialized
transport systems.

Genomic Distribution of Vitamin
Transport Systems
A paramount importance of transporters for vitamin uptake
and salvage notwithstanding, especially in auxotrophs, we
typically did not include them in gene signatures defining major
phenotype rules (for the reasons discussed above). On the other
hand, specificity assignment of candidate transporters can be
achieved with higher accuracy in the genomic and functional
context of auxotrophs (as constrained by their well-defined
metabolic requirements) and then conservatively projected to
prototrophs. Vitamin/vitamer transport systems that are present
in many prototrophs can contribute to their opportunistic
(energy-saving) lifestyle and, potentially, to cross-feeding as
discussed below. All identified and tentatively assigned transport
systems are captured in respective subsystems (Supplementary
Table S2) and corresponding pathway diagrams (Supplementary
Figure S1). In this brief overview we highlight only some of
them focusing on tentatively identified transport systems for
alternative vitamers implicated by the analysis of incomplete
salvage pathways in the previous section.

Thus, the analyzed distribution of potential uptake
transporters for B1 vitamers allowed us to establish the presence
of candidate HMP transporters in most HMP auxotrophs (97%),
while the HET transporter ThiW was identified in only 64% of
HET auxotrophs. In the group of dual HMP/HET auxotrophs,
both HET and HMP transporters are present in 259 genomes
(57%), and additional ∼100 genomes from this group contain
one of the two transporter types. Incomplete knowledge of
transporters for thiamine precursors notwithstanding, this
analysis suggests that salvage of B1 and its vitamers plays a
prominent role in metabolic interaction within gut microbial
communities. These transporters are also present in many
genomes with P-variants providing the respective species with
additional salvaging and, potentially, cross-feeding capabilities.

Incomplete knowledge of transport systems and mechanisms
is particularly obvious in otherwise well-studied B3/NAD
metabolism. Thus, despite many attempts, no committed
B3 transporter has been yet identified even in Escherichia
coli K12, which is well-known to have a robust nicotinate
and nicotinamide salvage capability via PncA-PncB pathway
seamlessly compensating for gene deletions in its de novo NadB-
NadA-NadC pathway (Rowe et al., 1985). Indeed, the presence
of B3 transporters from three known families (NiaP, NiaX,

and NiaY) were confidently detected only in 25% of all B3
auxotrophs in our reference HGM genome collection (mostly
in various Firmicutes but also in some Actinobacteria and
Enterobacterales). No specific transporter has been yet identified
in the genomes with quinolinate salvage pathway. On the other
hand, a committed Nr transporter, PnuC, is consistently present
in 31 analyzed genomes from the Pasteurellales order that is solely
dependent on the Nr salvage pathway.

Uptake of vitamin B5 in bacteria is mediated by either PanF
or PanT transporters, whereas PanS was characterized as a
pantoate transporter in Salmonella (Ernst and Downs, 2015).
Orthologs of known B5 transporters were identified in 75%
of all B5 auxotrophs but only in 12% of ∼90 pantetheine
auxotrophs pointing to the incomplete knowledge of respective
transport systems. Orthologs of PanS transporter were identified
in 153 genomes including 35 auxotrophs from the Clostridiales,
Tissierellales and Veillonellales orders of Firmicutes. Each
of these auxotrophs as well as five prototrophs contain the
conserved panD-panC-panS operon encoding the complete
pantoate salvage pathway pointing to the relevance of this B5
vitamer salvage (and, potentially, cross-feeding) in HGM.

The majority of B7 auxotrophs (78%) contain the Energy-
Coupling Factor (ECF) family BioY transporters. An even higher
fraction of auxotrophs with incomplete biotin salvage pathways
(240 out of 275, 87%) also harbor one or two copies of
BioY-family transporters. In addition, a secondary transporter
YigM enabling an optional B7 salvage in prototrophic E. coli
and many other enterobacteria was found in 13 genomes of
ε-proteobacteria from the Campylobacterales order that are
characterized by either A1 or A3 incomplete pathway variants.
These observations suggest that both types of biotin transporters
may have a wider specificity for at least some B7 vitamers.
So, for the closest B7 precursor, dethiobiotin, this conjecture
is supported by their uptake competition observed in E. coli
(Prakash and Eisenberg, 1974). The reported excretion of B7
vitamers by prototrophic strains of enterobacteria (Ohsugi et al.,
1990) supports the hypothesis about their potential role in cross-
feeding in microbial communities.

Orthologs and paralogs of known B12 uptake transporters,
namely BtuFCD(B) of ATP-binding Cassette (ABC) family
and CbrT of the ECF family, were found in one or several
copies in nearly half of A-variants including 268 genomes with
incomplete pathways suggesting their involvement in the uptake
of alternative B12 vitamers. Indeed, representatives of both B12
transporter families were experimentally shown to import both
B12 and Cbi (Kenley et al., 1978; Butzin et al., 2013; Santos et al.,
2018; Wexler et al., 2018). Therefore, identification of transport
systems for B12 and its metabolic precursors in numerous HGM
genomes remains an open problem.

The ECF-family preQ1 transporters QueT and QrtT have
previously been predicted in diverse bacterial species (Rodionov
et al., 2009) and recently validated experimentally in C. difficile
(de Crecy-Lagard, personal communication). Besides, a
previously uncharacterized transporter family YhhQ (COG1738)
was implicated in the import of queuosine precursors (Zallot
et al., 2017; de Crecy-Lagard, personal communication).
Representatives of these three families of transporters are
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widely distributed among the analyzed genomes including 72%
of Q auxotrophs and 95% of preQ1/preQ0/CDG auxotrophs
(Supplementary Table S2) supporting a potential physiological
relevance of HGM-wide salvage and sharing of Q vitamers.

Metabolite cross-feeding in microbial communities, which,
according to some reports, extends beyond micronutrients and

FIGURE 2 | Distribution of vitamin/vitamer transporters in HGM species.
Transporters are grouped by a cofactor (first column) and vitamin/vitamer
(second column). Primary active transporters from the ABC or ECF family
are shown in dark red, while secondary active transporters/facilitators (e.g.,
permeases from MFS family) are in blue. The total number of species
possessing a specific transporter is shown in bold with relative contribution of
corresponding vitamin auxotrophs/prototrophs shown as a pink/green bar.

includes some amino acids (Mee et al., 2014), may be mediated by
at least two distinct supply mechanisms: (i) “passive” mechanism,
via partial cell lysis; and (ii) “active” mechanism, via specific
or/and general efflux transport systems. Although, at first glance,
the passive mechanism, (which, for HGM communities, may
also include lysis of the host epithelial cells) appears more
straightforward, it is tempting to hypothesize the co-existence
of a more symbiotic active mechanism of vitamin sharing.
Moreover, while all genomes contain numerous relatively
non-specific efflux transport systems, which theoretically may
contribute to vitamin/vitamers excretion (e.g., in case of their
excessive accumulation), the existence and exact nature of such
systems is a subject of experimental rather than bioinformatic
analysis. Therefore, in our current analysis, we set out to
explore another theoretical possibility that active and specific
vitamin excretion can be mediated by at least some families
of vitamin uptake transporters working “in reverse.” Such
hypothesis emphasizing secondary active transporters or active
facilitators (e.g., permeases from Major Facilitator Superfamily
or MFS family) and channel-type facilitators (Shi, 2013; Saier
et al., 2014) as more natural candidates for bi-directional
transport as compared to primary active vitamin transporters
(such as ABC or ECF family transporters), was previously
examined in the context of environmental microbial consortia
(Romine et al., 2017).

It is important to emphasize that while our knowledge
of vitamin uptake transporters is incomplete, the knowledge
of vitamin efflux is nearly non-existent. Some anecdotal
evidence implicating vitamin transporters is available
for industrial vitamin producers such as for riboflavin-
producing microbial strains (Hemberger et al., 2011; McAnulty
and Wood, 2014). For a more systematic bioinformatic
analysis, we surveyed distribution and co-occurrence of
various families of vitamin transporters and predicted
metabolic phenotypes across bacterial species from our
collection (Figure 2).

Despite a predominantly mosaic distribution, some potentially
interesting trends were also observed. Thus, facilitator-class
riboflavin transporters (PnuX, RibZ, ImpX, RibN, RfnT)
were observed only in B2 prototrophs, whereas the primary
active transporters, RibU (ECF family) and RibXY (ABC
superfamily) are present in both, prototrophs and auxotrophs.
Among similar, albeit less contrasting trends are: (i) the
presence of the biotin permease, YigM in the majority of B7
prototrophs contrasting with BioY (ECF family) preferential
occurrence in auxotrophs; (ii) more frequent occurrence of
pantothenate facilitator transporter PanF in B5 prototrophs vs.
the opposing trend of PanT (ECF family) to occur mostly in
B5 auxotrophs; (iii) similar co-occurrence trends for thiamine
permease PnuT vs. ThiT (ECF family). The observed trends,
with the caveats pertaining to incomplete data, statistical
significance and possible alternative interpretations, are
consistent with a possible role of at least some secondary
transporters in the excretion and community-wide sharing of
respective vitamins/vitamers. If experimentally confirmed,
these trends may provide presently unknown genomic
signatures distinguishing potential vitamin donors from
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other prototrophs with opportunistic salvaging rather than
sharing capabilities.

Comparison of Predicted B-Vitamin
Phenotypes With Published Experimental
Data
To assess robustness of the predicted vitamin auxotrophic and
prototrophic phenotypes, we searched published experimental
data on nutritional requirements and B-vitamin production
capabilities of human gut bacteria. Analysis of minimal media
growth requirements for seven B-vitamins (except B12, see
below) in 30 bacterial strains revealed that 75 out of 89
experimentally determined phenotypes (85%) matched the
predicted vitamin auxotrophies (Supplementary Table S3A).
Approximately half of inconsistencies between predicted and
experimental phenotypes can be reconciled considering the
salvage of alternative metabolic precursors. Thus, five species
including Lactobacillus plantarum, Clostridium sporogenes,
Clostridium tyrobutyricum, Clostridium botulinum A str. Hall,
and Veillonella parvula required folate for growth. According
to our reconstruction, all these species were assigned a special
B9 phenotype variant (P∗), which corresponds to a conditional
prototrophy in the presence (but not in the absence) of
the pABA precursor (Supplementary Table S2G). Likewise,
Clostridium difficile and Megasphaera elsdenii experimentally
established as B5 auxotrophs were also assigned a conditional B
prototrophy (P∗) phenotype (Supplementary Table S2F) due
to the unknown source of β-alanine, that in the case of these
two species, apparently has to be salvaged exogenous sources.
The remaining inconsistencies (∼8%) may originate from a
variety of factors including strain-specific phenotype variations
(see the next section).

In contrast to other B-vitamins, B12 is not essential for
growth of some bacterial strains that either lack B12-dependent
enzymes or possess alternative B12-independent enzymes that
can substitute their B12-dependent functional analogs (Rodionov
et al., 2003). Indeed, the analysis of published experimental
data confirms that B12 is not essential for growth of 17
auxotrophic species (Supplementary Table S3B). These include
9 Staphylococcus spp. that lack any B12-dependent enzyme and
Bacillus cereus that has a single B12-dependent enzyme, the
methionine synthase MetH, and its B12-independent analog
MetE (Zhang et al., 2009). In contrast, vitamin B12 is
required for growth of 20 other species, most of which lack
de novo B12 biosynthetic genes (Supplementary Table S3B).
However, six B12-requiring strains including four species from
the Bacteroidales order, Collinsella aerofaciens and Clostridium
scindens possess a complete set of B12 synthesis genes. One
plausible explanation of these inconsistent B12 phenotypes might
be the absence of upstream genes required for the biosynthesis of
preccorin-2, a common precursor of B12 and heme (Roper et al.,
2000), that were not included in our B12 phenotype analysis.
Such species might be classified as preccorin-2 (rather than
B12) auxotrophs.

We further analyzed experimentally characterized B-vitamin
production capabilities of 24 members of the gut microbiota

(Supplementary Table S3C). All 50 experimentally established
phenotypes are fully consistent with the predicted vitamin
prototrophy phenotypes. Interestingly, all members of the
Lactobacillus genus as well as two bifidobacteria are able to
synthesize B9 only in the presence of pABA precursor, which is in
agreement with the absence of pABA biosynthesis genes in these
genomes. Overall, the examined experimental data on B-vitamin
requirements and production are in good agreement with our
in silico reconstruction and prediction of B-vitamin phenotypes.

Binary Vitamin Phenotypes: Phylogenetic
Distribution and Variability
To enable a computational microbiome-wide phenotype
assessment and comparison between different HGM samples, we
have introduced a concept of digital binary phenotypes where a
numeric value of a particular vitamin phenotype in a reference
genome can be either “1” (prototrophy) or “0” (auxotrophy). For
the purpose of this analysis, we have converted all the detailed
variant codes (Supplementary Table S2) to a simplified binary
form assigning the value of “1” to all P-variants and “0” to all
A-variants. The obtained values for each of the nine phenotypes
across 2,228 reference HGM genomes were combined into a
Binary Phenotype Matrix (BPM) (Supplementary Table S1).
This simplified representation allows us to address several
important questions.

First, it provides a simple way to assess a phylogenetic
distribution of micronutrient requirements and production
capabilities across a broad range of HGM genomes. For this
purpose, we used BPM to calculate averaged vitamin prototrophy
phenotype values at various taxonomic ranks: species, genus,
family, order, class, and phylum (Supplementary Table S4).
These averaged values vary on the scale from 0 to 1 (0–
100%) providing an estimate of probability (frequency) of
an organism in a group to be a prototroph. The obtained
distribution of predicted vitamin prototrophy across 690 species
was visualized on the phylogenetic tree of HGM species for 230
genera (Figure 3), also the percentages of vitamin producers
were calculated for each analyzed phylum (Supplementary
Figure S3). The Proteobacteria and Bacteroidetes phyla contain
mostly prototrophs that are capable of synthesizing all vitamins,
excluding cobalamin (B12), which is synthesized only by
30 and 42% representatives of these phyla in the reference
collection, respectively. The majority of representatives of the
Fusobacteria phylum (except Cetobacterium and Leptotrichia)
are capable of synthesizing all vitamins except pantothenate
(B5) and queuosine. The Verrucomicrobia phylum represented
by five Akkermansia strains, as well as a single HGM
strain from the Planctomycetes phylum, have biosynthetic
capabilities for all vitamins except B12. The Lentisphaerae
phylum represented by a single HGM species, Victivalis vadensis,
produces all vitamins except B5. Both HGM species from
the Spirochaetes phylum are auxotrophic for all vitamins
except riboflavin (B2). The Ureaplasma and Mycoplasma strains
from the Tenericutes phylum are auxotrophic for all nine
micronutrients. The Firmicutes, Actinobacteria and Synergistetes
phyla contain the largest number of auxotrophs for the
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majority of vitamins. Among Actinobacteria, vitamin B12 is
synthesized by species from three orders (Propionibacterales,
Corynebacterales, Coriobacteriales), whereas among Firmicutes
the majority of B12 producers belong to the Clostridiales,
Selenomonadales and Veillonellales orders. Finally, queuosine is
not synthesized by most Actinobacteria except two Coriobacteria
species, whereas among Firmicutes it is mostly synthesized
by Bacillales and Negativicutes. Overall, this analysis reveals
general correlational trends between phylogeny (even at higher
taxonomic ranks) and vitamin phenotypes, but also points
to substantial phenotype variations as visualized by fractional
averaged phenotype values (between 0 and 1).

Estimating intraspecies as well as interspecies variations of
binary vitamin phenotypes is essential to assess boundaries of
confident phylogeny-based phenotype projection for the purpose
of microbiome-wide predictive phenotype profiling of HGM
samples (see next section). To assess these variations within
species or at higher taxonomic levels we used two metrics:
(i) number of variable phenotypes (NVP, ranges from 0 to
9 for nine phenotypes); and (ii) overall phenotype variability
score calculated as a sum of variances for each vitamin
phenotype (OPVS, ranges between 0 and 4.5 for nine phenotypes)
(Supplementary Table S4A). The highest individual vitamin
variability score 0.5 corresponds to a case when a species is
represented by an equal number of vitamin auxotrophic and
prototrophic strains.

Overall, 282 out of 694 analyzed HGM species are represented
by more than one strain, including 34 species with 10
or more strains (Supplementary Table S1). Of those, 45
species (∼15%) have at least one variable vitamin phenotype
(Figures 4A,B) including 10 species characterized by more
than one variable phenotype (NVP > 1). Ruminococcus
torques represented by two strains in the analyzed set of
genomes shows the highest variability of vitamin phenotypes
(NVP = 6; OPVS = 3), suggesting that these strains could be
incorrectly classified. Indeed, based on phenotypic, biochemical,
phylogenetic and genomic evidence one of these strains
has recently been reclassified as Mediterraneibacter torques
ATCC 27756 (Togo et al., 2018). From an evolutionary
perspective, the observed cases of intraspecies variability of
vitamin phenotypes can be explained by either loss or
acquisition of vitamin biosynthesis genes, which are often
co-localized into gene clusters on the chromosome. For
example, comparative analysis of 62 strains of Enterococcus
faecalis revealed that 27 strains presumably have lost the
panDBGC gene locus encoding all essential enzymes from the
de novo pantothenate biosynthesis pathway (Supplementary
Table S2). Four out of five strains of Faecalibacterium
prausnitzii and three out of five strains of Lactobacillus
reuteri possess the riboflavin biosynthesis operon ribADHBE,
while their closely related strains apparently have lost the B2
biosynthetic gene clusters. In contrast, one out of five strains
of Streptococcus parasanguinis likely has acquired a contiguous
gene locus encoding 20 enzymes required for B12 biosynthesis
(Supplementary Table S2).

The same metrics were used to assess interspecies variations
and variations at higher taxonomic levels (Supplementary

Table S4). At the genus level, 139 out of 230 analyzed
genera are represented by more than one species, and 76
of them (55%) demonstrated various degrees of phenotype
variability. Genera with the highest NVP and OPVS values
belong to the Clostridia, Bacilli and Tissierellia classes
from the Firmicutes phylum, as well as some genera from
the Actinobacteria and Proteobacteria phyla (Figure 4C).
Variability of vitamin phenotypes gradually increases at
higher taxonomic ranks. At the family level, 82 out of 96
families are represented by more than one genus, and 61 of
them (74%) exhibit various degrees of phenotype variability.
Interestingly, the top four families with the greatest variability
scores, namely Eubacteriaceae, Ruminococcaceae, Clostridiaceae,
and Lachnospiraceae, belong to the Clostridia class further
emphasizing its contribution to vitamin phenotype variability
in the gut microbiome. At the order level, 30 out of 36 taxa
represented by more than one genome (83%) demonstrate
highly variable vitamin phenotypes. At the phylum and class
levels, Actinobacteria and Firmicutes (including Clostridia,
Bacilli and Tissierellia) demonstrate the highest degree of
phenotype variability (OPVS > 2) with 8 and 9 variable
phenotypes, respectively.

We also calculated vitamin-specific variability scores that
take into account variability of phenotypes in all taxa at
a given taxonomic rank (Figure 4D). At the species level,
biosynthesis of vitamin B2 (riboflavin) and B12 (cobalamin) are
the least and most variable phenotypes, respectively. Vitamin B1
(thiamine) shows the highest variability scores both at the genus
and family levels.

Based on this analysis, we conclude that an accurate
phylogeny-based vitamin phenotype projection from reference
genomes to OTUs or phylotypes mapped by 16S rRNA gene
profiling of HGM samples, is generally impossible at the
taxonomic level higher than a family. Moreover, the projection
at lower levels, of families, genera and even species may be
affected by varying phenotype heterogeneity within respective
groups. Therefore, to optimize the accuracy and coverage of
microbiome-wide phenotype predictions, we have to account for
phenotype heterogeneity characteristic of each phylotype/OTU
(see next section).

Microbiome-Wide Predictive
Vitamin/Cofactor Phenotype Profiling
We applied the obtained BPM that captures vitamin/cofactor
production capabilities and requirements across a collection
of curated reference genomes in a simplified digital form for
prediction of community-wide phenotypes from HGM 16S
samples profiling data. This analysis is performed in two stages,
each enabling a particular type of community phenotype profiling
(Supplementary Figure S2B).

The goal of the first stage is to tentatively assign
prototrophy/auxotrophy phenotypes to all OTUs (or phylotypes)
identified in a sample (above a certain abundance threshold)
that are subsequently confidently mapped to our reference
collection at least at the family level. As discussed in the
previous section, unlike the case of reference genomes,
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FIGURE 3 | Distribution of vitamin producers among analyzed HGM strains. The phylogenetic tree of HGM genera was obtained from the larger tree constructed by
RAxML based on concatenated sequences of ribosomal proteins from the analyzed HGM species. Number of analyzed strains per genus is shown in the inner circle;
higher-level taxonomic groups such as orders, classes, and phyla are highlighted inside the tree. Colored bars show average vitamin production phenotypes
(prototrophy) of each genus. Empty bars correspond to auxotrophic phenotypes.

some of these assignments (especially those mapped at
higher phylogenetic level) are bound to have fractional
values (between 0 and 1). In the current implementation
of the Phenotype Profiler pipeline (by Phenobiome Inc.),
this is achieved by OTU taxonomic assignment mapping to
reference genomes using a hierarchical averaging approach
(see Materials and Methods for computational details).
A final product at this stage of the analysis is a Community
Phenotype Matrix (CPM) containing nine columns with
respective weighted average phenotype values computed for
all mapped OTUs. Similar to BPM, each line in CPM is a
nine-digit string reflecting a metabolic potential, biosynthetic
capabilities (prototrophy) vs. micronutrient requirements
(auxotrophy = 1-prototrophy) of each OTU.

The main product of the second stage is a value, which
is obtained via transformation of the OTU-abundance-
phenotype table into a string of nine values reflecting fractional
representation (%) of nine prototrophy phenotypes in the
analyzed HGM sample. For each phenotype, this value, termed
CPI, is computed as a sum of probabilistic phenotypes in
each of the nine columns weighted (multiplied) by relative
abundance of respective OTUs. A nine-value CPI string reflects
the vitamin prototrophy/auxotrophy phenotype representation
extended from an individual OTU to the entire community.
Using CPI strings as simplified microbiome-wide metrics of
vitamin/cofactor metabolic capabilities and requirements,
enables a comparative analysis of multiple samples in model
studies [as applied in the accompanying publication (Sharma
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et al., in review)] or across large datasets, as illustrated here by
the analysis of HMP and AGP collections.

We applied the Phenotype Profiler pipeline to the comparative
analysis of two large HGM 16S rRNA datasets from the HMP
and AGP projects containing 245 and 2,863 samples, respectively.
Both datasets were pre-processed using the QIIME2 pipeline
and the obtained OTUs were taxonomically assigned using our
custom heuristic-based procedure (see Materials and Methods).
The OTU-abundance values were further renormalized to
take into account substantial variations in 16S rRNA gene
copy number between different species of HGM bacteria

(Supplementary Table S5 and Supplementary Figure S4). CPI
values and respective prediction errors were calculated for each
vitamin (B1, B2, B3, B5, B6, B7, B9, B12, and Q) and each
sample from the HMP and AGP datasets using both, original
phylogenetic profiles and renormalized by 16S rRNA gene copy
number (Supplementary Table S6). The prediction errors for
individual CPI values were in the range 1–7% for HMP and 2–5%
for AGP showing only a moderate impact of imprecise phenotype
mapping and phenotype microheterogeneity. The distribution of
CPI values for B-vitamins and Q across all samples in the two
analyzed datasets is illustrated here for the original taxonomic

FIGURE 4 | Inter-and intra-species variability of binary vitamin production phenotypes in HGM genomes. (A) Species with multiple variable vitamin phenotypes.
(B) Species with a single variable vitamin phenotype. (C) Genera with variable vitamin phenotypes. (D) Vitamin phenotype variability at various taxonomic levels.

FIGURE 5 | Distribution of Community Phenotype Indices for B and Q vitamins in HGM samples from HMP (A) and AGP (B) datasets. CPIs are calculated based on
taxonomic assignments before 16S count renormalization.
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TABLE 2 | Mean CPI values for B-vitamins and Q in HMP and AGP datasets
before and after renormalization of taxonomic profiles by 16S gene counts.

Dataset B1 B2 B3 B5 B6 B7 B9 B12 Q

HMP (original) 72.1 89.7 82.6 78.5 82.2 65.3 82.3 51.7 64.9

HMP (renormalized) 66.4 90.4 81.8 79.1 81.8 59.9 82.2 43.9 58.2

AGP (original) 60.7 78.6 73.1 56.0 63.9 38.3 67.4 61.4 44.8

AGP (renormalized) 58.9 78.9 73.7 57.9 65.4 35.6 68.4 56.8 42.4

profiles (Figure 5). The impact of renormalization by 16S rRNA
gene copy number is shown in a Supplementary Figure S5.
In both datasets, CPI values are significantly variable between
samples suggesting distinct micronutrient requirements of the
respective gut communities. Although the obtained vitamin
phenotype profiles for HMP and AGP datasets differ substantially
we also noted common trends for certain vitamins (see Figure 5
and Table 2 for mean CPI values). Thus, both datasets show
the highest mean CPI values for B2, B3, B6, and B9. The HMP
dataset is characterized by the lowest mean CPI value for B12. In
contrast, vitamin B7 and Q demonstrate the lowest average CPIs
in the AGP dataset.

Overall, the phenotype profiling approach proposed in
this study complements the established taxonomic profiling
approach commonly used for description and comparative
analysis of microbial communities. Thus, vitamin-specific CPIs
provide useful metrics to compare and contrast micronutrient
requirements of HGM communities, while the community-wide
distribution of phenotype strings points to major vitamin
acceptors and potential donors in these communities.

Lifestyle Preferences in the Human Gut
Microbial Communities
A more granular analysis of phenotype profiles of numerous
HGM samples allowed us to implicate specific taxa providing
major contributions to predominantly prototrophic vs.
auxotrophic phenotypes in gut microbial communities. To
compare fitness (by relative abundance) of various combinations
of vitamin phenotypes in individual species from HGM samples
representing different “lifestyles” (e.g., multi-prototrophy vs.
multi-auxotrophy lifestyles), we calculated relative contribution
of ordered nine-digit strings of individual binary phenotypes (as
described in Materials and Methods). As a first approximation
of such lifestyles, we introduced a simple metric, vitamin
prototrophy rank (VPR), ranging from 0 (complete auxotrophy)
to 9 (complete prototrophy) with respect to all nine analyzed
micronutrients. Intermediate VPR values, 1 through 8, are
assigned to groups of species showing prototrophy with respect
to 1 through 8 (out of 9) micronutrients. For each sample
in the analyzed HMP and AGP communities, we calculated
two values: (i) the observed VPR frequencies (Pobs), and (ii)
the expected VPR probabilities obtained in the assumption of
independence of individual phenotypes in each organism (Pexp)
(Supplementary Figure S6).

The results of this analysis are illustrated by ratios of the
observed over expected frequency of nine aggregated lifestyles
across all samples in HMP and AGP datasets (Figure 6). Despite

TABLE 3 | Taxonomic genera mostly contributing to VPR ranks in HGM samples
from the HMP and AGP datasets.

Ranks HMP∗ AGP∗

7–9 Bacteroides (61%), Alistipes (15%),
Parabacteroides (5%),
Paraprevotella (3%)

Bacteroides (44%),
Ruminococcus (8%),
Akkermansia (5%),
Anaerostipes (4%)
Parabacteroides (4%)

4–6 Alistipes (28%), Blautia (10%),
Roseburia (8%), Eubacterium (7%),
Prevotella (5%)

Alistipes (16%), Roseburia (14%),
Blautia (13%), Prevotella (9%),
Bifidobacterium (7%)

0–3 Faecalibacterium (17%),
Oscillibacter (13%),
Lactobacillus (8%),
Parasutterella (5%)

Faecalibacterium (22%),
Lachnoclostridium (7%),
Oscillospira (5%),
Lactobacillus (4%)

∗Average contribution of a genus to a subset of VPR ranks (by abundance) is
given in parentheses.

differences in absolute frequencies of distinct VPRs (such as
a clear prevalence of multi-prototrophs with VPR = 8 or 9,
see Supplementary Figure S6A), the comparison of relative
frequencies (Pobs/Pexp) reveals enrichment for both extreme
lifestyles, multi-prototrophy and multi-auxotrophy (VPR ≤ 3).
This trend, which is observed in both datasets, may reflect
fundamental properties of organization of syntrophic microbial
communities where species with an extreme “parasitic” lifestyle
are not only tolerated but gain certain selective advantages
as long as multi-prototrophic donors of micronutrients are
sufficiently abundant. Major genera contributing to the extreme
prototrophic, auxotrophic and intermediate lifestyles are enlisted
in Table 3. The Bacteroides spp. are major contributors to a multi-
prototrophic lifestyle in both HMP and AGP datasets. Among
major multi-auxotrophs, Faecalibacterium spp. are common
in both datasets representing the most successful B-vitamin
acceptors in microbial gut communities. It is tempting to
consider major taxa representing multi-prototrophic lifestyles as
potential vitamin donors enabling sustainability of numerous
auxotrophic acceptors. Identity of such donors and genomic
features distinguishing sharing from non-sharing prototrophs
(e.g., a particular class of efflux transporters or/and regulators)
remain an important direction of future research, which
would impact our understanding of metabolic interactions in
microbial communities.

Comparison of Phenotype Profiling and
Pathway Abundance Approach
Of several approaches to functional description of microbial
communities, a combination of PICRUSt [an ancestral-state
reconstruction algorithm (Langille et al., 2013)] with the MinPath
tool (Ye and Doak, 2009) and MetaCyc pathways collection
(Caspi et al., 2012) implemented in the PICRUSt2 pipeline
enables a similar analysis. Indeed, this analysis yields pathway
abundances, which, at least for the case of eight B-vitamins,
may be directly compared to respective CPI values. For the
purpose of such comparison, we used our BPM for 2,228
reference HGM genomes as an input trait table to predict vitamin
phenotype abundances in HGM samples from HMP and AGP
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datasets by using PICRUSt algorithm (Supplementary Table S7).
The obtained PICRUSt-based relative phenotype abundances
(termed this way by analogy with pathway abundances) are
essentially equivalent to CPIs, and their distributions show
similar trends (compare Figure 7 and Figure 5). Thus, we
consider a combination of BPM with PICRUSt-based phenotype
abundances as a potential alternative approach to community
phenotype profiling.

We further compared the PICRUSt-based phenotype
abundance profiles with vitamin biosynthesis pathway
abundances computed for the same HMP and AGP metagenomic
datasets using the default PICRUSt2/MinPath approach (see
Materials and Methods). We selected a subset of metabolic
pathways in MetaCyc database that most closely describe
the reconstructed in this work de novo vitamin biosynthetic
capabilities. For B3, B7, and B12 we included in the analysis two
alternative biosynthetic pathways captured in MetaCyc, and their
abundances were summed up to get cumulative values for each
vitamin (Table 4). The obtained MinPath/MetaCyc pathway
abundances (Supplementary Table S7) were compared with the
BPM-based phenotype abundances for each vitamin pathway
(except B12) and dataset (Supplementary Figure S7). For most
compared B-vitamins, the observed correlation coefficients
exceeded 0.75 (with the exception of B12, where the predicted
MinPath/MetaCyc-based pathway abundances of both anaerobic
and aerobic pathways were too low reflecting some technical
problem, and vitamin B6, see below). The best correlation was
observed for B3, B5, and B9 in both HMP and AGP datasets
(Table 4). A weaker correlation for vitamin B6 is potentially
explained by the absence of the alternative pathway 2 variant
in MetaCyc database, while according to our analysis this
pathway is very common among HGM bacteria. Likewise, a
relatively weak correlation for vitamin B1 can be explained by
the absence in MetaCyc collection of the alternative pathway 2
for biosynthesis of the HET moiety.

CONCLUSION AND FUTURE
PERSPECTIVES

By applying the subsystem-based genomic reconstruction, we
have analyzed pathways for biosynthesis, salvage and uptake

TABLE 4 | Correlation coefficients for comparison of phenotype abundances
produced by PICRUSt2 with binary phenotype and MetaCyc pipelines.

Vitamin AGP HMP MetaCyc pathway(s)

B1 0.62 0.88 Superpathway of thiamin diphosphate
biosynthesis I

B2 0.79 0.87 Flavin biosynthesis I (bacteria and plants)

B3 0.84 0.89 NAD biosynthesis I (from aspartate); NAD
biosynthesis II (from tryptophan)

B5 0.86 0.94 Pantothenate and coenzyme A biosynthesis I

B6 0.57 0.62 Pyridoxal 5′-phosphate biosynthesis I

B7 0.82 0.76 Biotin biosynthesis I; biotin biosynthesis II

B9 0.89 0.93 Superpathway of tetrahydrofolate biosynthesis

B12∗ – – Adenosylcobalamin biosynthesis II (late cobalt
incorporation); adenosylcobalamin biosynthesis I
(early cobalt insertion)

Q 0.78 0.91 preQ0 biosynthesis

∗Both anaerobic (early cobalt insertion) and aerobic (late cobalt incorporation)
pathways of B12 biosynthesis received very low or zero abundances in most
analyzed HGM samples using MinPath/MetaCyc approach, thus we did not
compare them with predicted phenotype abundances for vitamin B12.

of eight B-group vitamins (and queuosine) for HGM bacteria
represented by a diverse reference set of 2,228 genomes.
Overall, nine reconstructed metabolic subsystems include over
two hundred functional roles encoded by distinct protein
families (Figure 1 and Supplementary Figure S1). Specific
combinations of the inferred components of biosynthetic
pathways and transporters for vitamins and precursors
provide genomic signatures, which allowed us to classify all
organisms in the collection with respect to their biosynthetic
and uptake capabilities (pathway variants) and predict their
prototrophic vs. auxotrophic phenotypes (Table 1). The
obtained results further supported the importance of vitamin
cross-feeding and pointed to specific families of transporters
potentially contributing to this type of metabolic interactions
in HGM communities (Figure 2). We detected subsets of
auxotrophs encoding partially truncated pathway variants
implicating some precursors and derivatives of canonical
vitamins (such as thiazole, quinolinate, dethiobiotin, and
pantoate) as alternative vitamers potentially broadening the
vitamin exchange “market” in HGM consortia (Table 1).
Robustness of the predicted nutritional requirements and

FIGURE 6 | Distribution of ratio of observed and expected probabilities for Vitamin Prototrophy Ranks in HGM samples from HMP (A) and AGP (B) datasets.
Distributions are presented on a logarithmic scale.
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FIGURE 7 | Distribution of relative phenotype abundance for B and Q vitamins in HGM samples from HMP (A) and AGP (B) datasets. Relative phenotype
abundances are calculated using PICRUSt based on external traits from BPM for 2,228 reference genomes obtained in this study.

vitamin production capabilities is supported by the observed
consistency between the in silico phenotype predictions and
published experimental data.

To enable quantitative comparative analysis of community-
wide phenotype profiles, we have converted all detailed
pathway variant codes to a simplified form of digital binary
phenotypes with 1 or 0 values corresponding to prototrophy
and auxotrophy, respectively. These values computed for each
of the nine vitamin phenotypes across 2,228 HGM genomes
capture our reference collection in a compact form of a Binary
Phenotype Matrix (BPM). Overall, auxotrophic phenotypes are
very common in HGM species, and only a small subset of
microorganisms can synthesize all vitamins further supporting
the micronutrient sharing hypothesis (Figure 3). The analysis
of phylogenetic distribution of phenotypes within the entire
BPM reveals substantial intraspecies and interspecies variations
of micronutrient requirements and production capabilities
(Figure 4). It also allowed us to establish taxonomic boundaries
of phenotype conservation, which is essential for phylogeny-
based projection of phenotypes from reference genomes to
a variety of phylotypes (OTUs) comprising HGM samples.
This analysis shows that most vitamin phenotypes are largely
conserved at the level of species although some variations
between strains and isolates are observed and need to be
accounted for by phenotype projection tools. While the
phenotype heterogeneity is gradually increasing at higher
taxonomic levels, reasonably accurate probabilistic phenotype
prediction (weighted for the observed frequency of alternative
phenotypes within given taxa) is still feasible at the genus
and, to a lesser extent, at the family (but not higher) level.
Quite obviously, a well-anticipated growth in the number
of sequenced and analyzed reference genomes as well as
the increased accuracy of phylogenetic mapping (e.g., by
using longer 16S rRNA gene sequences or/and additional
phylogenetic signatures) will improve accuracy of phylogeny-
based phenotype assignments and provide better estimates of
prediction confidence.

Combining the BPM with phylogenetic profiles of HGM
samples (e.g., obtained by 16S profiling) enables a new
computational approach to in silico phylotype-to-phenotype

predictive profiling. Application of this approach to the analysis
of a broad range of HGM samples from HMP and AGP data
sets yielded a comprehensive coverage (in most cases > 95%
by relative abundance of mapped OTUs) and high confidence
(estimated average error< 10%) of microbiome-wide phenotype
predictions. The output of this analysis, in the simplest
aggregated form of Community Phenotype Indexes (CPIs),
provides an estimate for a fractional representation (relative
abundance, from 0 to 100%) of auxotrophy vs. prototrophy
for all nine analyzed phenotypes in each analyzed HGM
sample. Substantial variations of CPI values are observed
between individual samples as well as between these two
data sets (Figure 5) potentially reflecting some technical
differences between HMP and AGP sample and data acquisition
pipelines. Indeed, we have compared the average Shannon alpha
diversities between HMP and AGP datasets (Supplementary
Table S6) and found that the HMP dataset is characterized
by relatively lower diversity (4.3 for HMP vs. 5.2 for AGP,
see Supplementary Figure S4C). Quite likely this difference
in diversity may at least partially account for the observed
phenotypic differences between these datasets. Nevertheless,
some common trends are also observed providing the first
estimate of micronutrient requirements (auxotrophy) as well
as production/sharing (prototrophy) capabilities of HGM
communities. Thus, despite the aforementioned high frequency
of auxotrophic phenotypes in reference genomes, in real-life
HGM samples, the abundance-weighted prototrophy is a
dominant phenotype with mean CPI values above 50–60%
for most (but not all) vitamins. This analysis confirmed a
substantial level of auxotrophy and, thus, a requirement
for the exogenous supply of the entire set of nine analyzed
micronutrients (eight B vitamins and queuosine), as a
characteristic feature of HGM communities across a broad
range of samples.

Overall, in addition to further supporting a hypothesized role
of syntrophic micronutrient metabolism in HGM communities,
a comparative phenotype profiling approach established in
this study has provided a computational framework for the
experimental testing of this hypothesis (Sharma et al., in
review). This approach is extending methodology of a functional

Frontiers in Microbiology | www.frontiersin.org 19 June 2019 | Volume 10 | Article 1316

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01316 June 11, 2019 Time: 15:37 # 20

Rodionov et al. Vitamin Metabolism in Human Gut Microbiome

description of microbial communities, which, presently, is
not as established as phylogenetic profiling methods. A side-
by-side comparison of our phenotype-based approach with
the most advanced existing approach, PICRUSt2, predicting
pathway abundance via a combination of MinPath algorithm
with MetaCyc pathways, revealed a generally good agreement
(Table 4) for most (but not all) vitamin phenotypes, as well
as substantial differences, which could be partially explained
by the differences in the applied rules and in the extent of
gene/pathway curation.

An anticipated further advancement of microbiome genomics,
most importantly: (i) deeper coverage of relevant microbial
communities by complete reference genomes and (ii) increased
coverage and resolution of phylogenetic profiling (e.g., via better
amplicon-based or shotgun metagenomics methodology), is
expected to substantially improve the accuracy of predictive
phenotype profiling of complex microbial communities. This
approach can be further expanded via inclusion of additional
digitized phenotypes covering other nutrient requirements
(e.g., amino acids), utilization capabilities (e.g., carbohydrates)
(Yatsunenko et al., 2012; David et al., 2014; Zhang et al.,
2014; Wu et al., 2015; Blanton et al., 2016; Hibberd et al.,
2017; Sheflin et al., 2017; Gehrig et al., 2019), catabolic
end-products (e.g., production of short-chain fatty acids,
other physiologically active metabolites) as well as some
non-metabolic phenotypes (antibiotic resistance, virulence,
etc.) and by taking into consideration other characteristics
of metagenomic samples (diversity, advanced metadata).
Future practical applications employing comparative analyses
of phenotype profiles across numerous HGM samples may
include diagnostics (classification and correlations with patients’
data) and prevention/treatment of disbyosis-related syndromes
via rational and personalized selection of probiotics and
nutritional supplements.
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