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Abstract
Most streams receive substantial inputs of allochthonous organic material in the
form of leaves and twigs (CPOM coarse particulate organic matter)., 
Mechanical and biological processing converts this into fine particulate organic
matter (FPOM). Other sources of particles include flocculated dissolved matter
and soil particles. Fungi are known to play a role in the CPOM conversion
process, but the taxonomic affiliations of these fungi remain poorly studied. The
present study seeks to shed light on the composition of fungal communities on
FPOM and CPOM as assessed in a natural stream in Nova Scotia, Canada.
Maple leaves were exposed in a stream for four weeks and their fungal
community evaluated through pyrosequencing. Over the same period, four
FPOM size fractions were collected by filtration and assessed. Particles had
much lower ergosterol contents than leaves, suggesting major differences in
the extent of fungal colonization. Pyrosequencing documented a total of 821
fungal operational taxonomic units (OTU), of which 726 were exclusive to
particles and 47 to leaf samples. Most fungal phyla were represented, including
yeast lineages (e.g., Taphrinaceae and Saccharomycotina), Basidiomycota,
Chytridiomycota and Cryptomycota, but several classes of Pezizomycontina
(Ascomycota) dominated. Cluster dendrograms clearly separated fungal
communities from leaves and from particles. Characterizing fungal
communities may shed some light on the processing pathways of fine particles
in streams and broadens our view of the phylogenetic composition of fungi in
freshwater ecosystems.
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Introduction
Headwaters are almost entirely heterotrophic – up to 99% of their 
energy is supplied by coarse organic matter (CPOM, diameter 
> 1 mm) imported from the terrestrial surroundings (e.g., twigs, 
branches, and leaves). These allochthonous sources are converted 
into fine particulate organic matter (FPOM) mechanically by the 
water current, by feeding activities of invertebrate shredders (both 
by “sloppy” feeding and by feces production due to incomplete 
digestion; Cummins & Klug, 1979; Shepard & Minshall, 1981; 
Wotton et al., 1998) and by fungal maceration (Suberkropp & Klug, 
1980). Stream fungi are vitally important for energy transformation 
of submerged leaf litter (Baldy et al., 1995; Gessner & Chauvet, 
1994; Gulis & Suberkropp, 2003; Hieber & Gessner, 2002). FPOM 
may also be blown in or washed in from adjacent forest soils, or 
originate from sloughed-off algal biofilms, consist of plant spores 
and pollen (Czeczuga & Orlowska, 2001), or be produced by floc-
culation of DOM, with or without microbial participation (Lush & 
Hynes, 1973; Wotton, 1990). Due to the many biological processes 
involving CPOM and FPOM, bacteria and fungal spores will also 
contribute to the pool of stream FPOM (Bärlocher & Brendelberger, 
2004; Callisto & Graça, 2013; Edwards & Meyer, 1987; Gleason 
et al., 2009). FPOM is one of the major components of stream eco-
systems, and entire groups of organisms, such as the filter feeding 
guild, depend on it (Callisto & Graça, 2013; Wallace & Merritt, 
1980).

However, very little is known about FPOM associated microbial 
communities. Fine particles, regardless of their origin, are continu-
ally colonized and transformed by microorganisms. Due to resource 
limitation on small particles, we can assume that the biomass of 
mycelial fungi, as measured by ergosterol concentrations (Callisto 
& Graça, 2013; Findlay et al., 2002), will be low and that zoosporic 
and/or unicellular fungi will be more prominent due to their adapta-
tions to small substrates such as algae and pollen (Gleason et al., 
2008). Previous studies have shown that ascomycetous hyphomycetes 
are dominant stream dwelling fungi on leaf-litter (e.g. Bärlocher, 
1990; Duarte et al., 2015). Some of these leaf-litter fungi survive 
passage through the gut of leaf-eating amphipods (Bärlocher, 1981; 
Sridhar et al., 2011), and DNA from both ascomycetes and chytridi-
omycetes is present in fecal particles (Sridhar et al., 2011).

The present paper seeks to examine the fungal community on col-
lected stream FPOM and whether it is possible to use it as a sum 
parameter for various fungal processes in the stream ecosystem. For 
this feasibility study we collected three FPOM size fractions and com-
pared them with four weeks old submerged leaf-litter. We measured 

ergosterol as a biomass indicator of Dikarya and employed a meta-
barcoding approach in order to classify the fungal community of 
stream organic matter (OM).

Methods
The field experiment was conducted in Boss Brook, a small stream 
in Fenwick, Nova Scotia, Canada (45° 43.00’N, 64° 09.56’W) 
(Nikolcheva et al., 2003). This first-order stream runs through a 
mixed forest dominated by white birch (Betula papyrifera Marsh), 
several maple species (Acer rubrum L., Acer saccharum Marsh., 
Acer spicatum Lam.), and white spruce (Picea glauca [Moench] 
Voss). The stream bed consists of stones and gravel. At the  
sampling site, the stream is 2 to 3 m wide and 20 to 50 cm deep 
(Grimmett et al., 2012). On three dates (27 September, 25 October, 
7 November 2011), 100 l of stream water were passed through 
a stack of metal filters, yielding 4 FPOM fractions (fraction 1:  
2–1 mm; fraction 2: 1–0.5 mm; fraction 3: 0.5–0.25 mm, fraction 4: 
0.25–0.020 mm). Most material was recovered in the lowest size frac-
tion (4) and no material was recovered in fraction 1 (Dataset 1). Sam-
ples were lyophilized and weighed. Additional samples for ergosterol 
measurements were collected on 12 November. These were freeze-
dried and stored in methanol/potassium hydroxide (3 × 15 mg in  
2 ml each at – 20°C; Nikolcheva et al., 2003, Dataset 2). Samples of 
different dates were combined for pyrosequencing in order to adjust 
for the temporal variation and to increase the resolution, resulting 
in one sample each for size fractions 2 to 4. In parallel, senescent 
leaves from individual trees (Maple: Acer platanoides) were incu-
bated as leaf discs (15 cm) in duplicate bags in the stream for four 
weeks (11 October to 9 November, 2011) to evaluate fungal com-
munities on CPOM (procedures as in Grimmett et al., 2012). As 
an (aquatic) outgroup we incubated leaves from a non-native tree 
(European beech, Fagus sylvatica) in the littoral zone of a lentic 
system (Lake Utopia, near St. George, NB, Canada; 45° 10.18’N 
66° 47.67’W) for two weeks. The goal was to obtain an indica-
tion if substrate type (leaf vs. fine particles) may be more impor-
tant than species (maple vs. beech) or habitat (lotic vs. lentic). All 
leaf samples were stored at -20°C until DNA extraction. In total 
we sequenced 6 samples consisting of two replicates (Maple I 
and Maple II) from the leaf bags, one lake-derived beech leaf bag 
sample, and one sample per stream-particle sample.

DNA from freeze-dried particle fractions and frozen leaf samples 
was extracted with the PowerSoil MoBio Kit as per the manufac-
turer’s instructions (leaves were first cut into smaller pieces with a 
sterile scalpel). Amplicon PCR was performed using the barcoded 
18S primers nu-SSU-0817 and nu-SSU-1536 of Borneman & Hartin 
(2000), and AccuPrime High Fidelity Polymerase (Life Technolo-
gies # 12337016) in a two-step PCR for 32 cycles (94°C for 1 min 
and 60°C for 4 min) with an initial denaturation for 5 min; BSA was 
added at a final concentration of 0.9 µg µl-1. Amplicons were pre-
pared according to the Lib-L protocol (454 Life Sciences, Roche) 
and sequenced by a benchtop GS Junior System (454 Life Sciences, 
Roche). Raw data were processed by Mothur (version 1.26, Schloss 
et al., 2011), following recommendations for standard operating 
procedure (http://www.mothur.org/wiki/Schloss_SOP, accessed 
7/2012), implementing denoising, trimming, alignment, filtering, 
chimera removal, classification, and preclustering steps against 
the eukaryotic reference database provided by Mothur. OTUs were 
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calculated on a 97% basis of a final alignment with a median length 
of 279 nt and statistics (diversity estimates and similarities) were 
done with a random submatrix normalized to the lowest number of 
reads. After the filtering process and removal of chimeric sequences, 
there were 10,000–22,000 reads per sample, resulting in a sampling 
coverage of > 99%. The OTU table (Dataset 3) for those reads was 
exported to R (version 2.15.1) for cluster analysis with the second 
Kulczynski similarity index (http://cran.r-project.org/). In addition, 
representative OTUs of the associated FASTA file were realigned 
with SINA (version 1.2.11, Pruesse et al., 2012) and imported into 
the SILVA SSU reference database version 111 (http://www.arb-
silva.de/). The representative sequences from all OTUs were added 
to the SILVA reference database by the parsimony option activat-
ing the eukaryotic positional variability filter implemented in ARB 
(version 5.5, Ludwig et al., 2004). The resulting tree (i.e. the top 
100 subtree) was exported and processed by FigTree (version 1.4, 
http://tree.bio.ed.ac.uk/software/figtree/). The raw sequences were 
deposited in the European Nucleotide Archive (ENA; accession 
number PRJEB10809).

Results

Dataset 1. Amount of particles in the stream

http://dx.doi.org/10.5256/f1000research.7359.d107489

Dataset 1 provides the amounts of particles (mg) per liter of stream 
water. The particle size is defined as written in the method section 
for F2–F4.

Dataset 2. Ergosterol content of particle size fractions

http://dx.doi.org/10.5256/f1000research.7359.d107490

Dataset 2 provide the ergosterol content (µg) per mass of particles 
or leaf-species (g) as described in the method section.

Dataset 3. OTU matrix including fasta sequences

http://dx.doi.org/10.5256/f1000research.7359.d107491

Dataset 3 is the resulting OTU matrix after the sequencing data 
processing with Mothur as described in the method section. For 
each OTU the amount of reads per individual sample is given. In 
addition one representative read is given (Representative_read_id) 
and the corresponding aligned DNA sequence.

Average stream FPOM concentration of the three sampling dates 
was 2.7 mg l-1. Distribution among the various size fractions is 
summarized in Table 1. Due to fluctuating water flow, there was 
a high temporal variation in the amount of recovered particles. On 
average the smallest size fraction (250 µm – 20 µm) was the most 
abundant. Ergosterol concentrations decreased with lower particle 
size (Table 1). It was highest on maple leaves recovered from Boss 
Brook and also higher on our lentic outgroup: beech leaves from 
Lake Utopia.

The DNA sequences were assigned to 821 fungal OTUs. Of these, 
726 were detected exclusively in the particle fractions, and 47 (out 
of 95 OTUs detected on leaves) were restricted to leaf samples. 
The particles shared 130 OTUs (with an extrapolated shared spe-
cies Chao index of 215.5). The taxon richness of the particles was 
an order of magnitude higher than the one of maple leaf samples 

and the inverse Simpson index pointed to a more even and diverse 
community structure on particles than on leaves (Table 2). This is 
further reflected in the rank abundance curves of the two substrate 
types (Figure 1). Correspondingly, the analysis of fungal commu-
nities separates leaves from particles with less than 40% similar-
ity (Figure 2). When we looked at the most prominent 100 OTUs 
from stream particles, which accounted for 96% of all sequences  

Table 2. Number of sequences (nseqs), coverage (cov), number 
of observed taxonomic units (otu), inverse Simpson index 
(invsim), and estimated richness as Chao index (chao) for leaf 
and particle fractions F2 to F4 (based on Dataset 3).

Substrate nseqs cov otu invsim chao

F2 (1 – 0.5 mm) 18343 0.992 356 7.719 445.8

F3 (0.5 – 0.25 mm) 16375 0.990 429 6.890 523.3

F4 (0.25 – 0.02 mm) 16248 0.988 456 4.649 613.5

Maple I 9884 0.999 20 1.025 34.0

Maple II 17444 0.999 27 1.025 28.3

Beech 22267 0.998 72 1.549 115.0

Figure 1. Rank abundance curves for the dominant 100 OTUs of 
leaves and stream particles, all leaf samples (beech and maple 
samples)  and  all  size  fractions  were  combined  into  the  two 
categories “leaves” and “stream particles” (based on Dataset 3).

Table 1. Mass of FPOM fractions (mg l-1, mean ± SD; n = 3) and 
ergosterol concentrations (µg g-1, mean ± SD) of FPOM and 
beech (Utopia Lake) and maple (Boss Brook leaves). Ergosterol 
values were evaluated by ANOVA (p < 0.0001), followed by Tukey-
Kramer. Averages with same letter are not significantly different  
(p > 0.05). Based on Dataset 1 and Dataset 2.

FPOM Fraction (mm) Mass (mg l-1) Ergosterol (µg g-1)

F4 (0.25-0.02) 2.7±2.5 0.03a ± 0.01

F3 (0.5-0.25) 0.01±0.02 0.52a,b ± 0.07

F2 (1-0.5) 0.01±0.02 1.2b ± 0.2

CPOM Beech na 2.9c ± 0.7

Maple na 35.5d ± 1.1
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Figure 2. Cluster dendrogram of the fungal community composition data presenting the dissimilarity of the leave samples and the 
particle size fractions based on pyrosequencing. Data based on a Kulczynski similarity matrix, clustered with UPGMA (average) method 
(based on Dataset 3).

(Figure 1), we found representatives of most fungal phyla includ-
ing yeast lineages (e.g. Taphrinaceae and Saccharomycotina), 
Basidiomycota, and the phyla Chytridiomycota and Cryptomycota  
(Figure 3). The fungal diversity was dominated by several classes of 
Pezizomycotina (Ascomycota).

In order to trace back fungal taxa derived from leaf-litter decom-
position (marked with asterisks in Figure 3), we looked at the 
most abundant OTUs on the maple leaves incubated in the stream 
(Table 3). OTU 1 (Pezizomycotina) was the most abundant OTU 
in all samples. On average between 62.0 – 72.1% of the taxa found 
on each of the FPOM fractions were also present on submerged 
leaf litter. To get rough estimates of alternative origins and func-
tions of the fungal communities on stream particles, we split them 
into different categories: potential soil fungi (with Agaricomyc-
etes as proxy) accounted for 4.8 – 12.3%, yeast-like fungi made 
up 5.3 – 6.8%, and non-Dikarya fungal lineages ranged between 
0.8 – 1.6%.

Discussion
In this study we focussed on stream particles and we were espe-
cially interested in the fungal phyla we may find on them. Thus we 
applied a conservative marker gene, which is especially efficient 
at resolving the basal branches of Fungi (Mohamed & Martiny, 
2011). With this we could successfully detect a broad spectrum 

of fungal phyla on FPOM, including Chytridiomycota sequences 
and taxa belonging to the newly described group of Cryptomy-
cota (Jones et al., 2011). Chytridiomycota have been documented 
on leaf litter in freshwater streams before (Bärlocher et al., 2012; 
Marano et al., 2011; Nikolcheva & Bärlocher, 2004), but, to our 
knowledge, this is the first study to document Cryptomycota in 
streams (Jones et al., 2011). Cryptomycota are assumed to be 
parasitic on various organisms including fungi (Gleason et al., 
2012), however, some evidence also points to a saprobic life style 
(Wurzbacher et al., 2014). Their ecological role in streams needs 
to be further elucidated, especially since they have the potential 
for mycoparasitism. Some aspects of their occurrence and ecol-
ogy have been summarized by Grossart et al. (2016). We did not 
find typical trichomycete sequences (e.g. Lichtwardt, 1972), which 
would have pointed to a gut passage of particles through filter- 
feeders. Possibly, the sampling sites had an insufficient number of 
filter feeders or too few gut fungi on fecal pellets to allow detection 
using our methods.

The high diversity of fungi on stream particles stands in contrast 
to the very low diversity on leaf-litter. It is likely that the domi-
nant OTU 1 comprises several prominent aquatic hyphomycete 
species, since these rarely differ in their nuclear SSU sequence 
(Belliveau & Bärlocher, 2005, see also Tedersoo et al., 2015 for 
general limitations of SSU for Dikarya). In general we think that 
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Figure 3. Phylogenetic tree based on the SILVA reference database and the top 100 OTUs retrieved from particle DNA (added with 
parsimony). Numbers of retrieved sequences per OTU are written at the outer rim; asterisks mark taxa that were also recovered on leaf litter. 
Branches without numbers are reference sequences (SILVA) (based on Dataset 3).

Table 3. Comparison of OTUs on maple leaves 
(mean of replicates), FPOM (mean of size fractions) 
and beech leaves with standard deviation when 
applicable. The table is sorted after the most abundant 
OTUs on maple leaves in descending order. (n.d. = not 
detected, based on Dataset 3).

OTU Maple (%) FPOM (%) Beech (%)

1 98.79 ± 0.01 33.82 ± 7.39 79.79

75 0.35 ± 0.11 3.98 ± 0.41 n.d.

129 0.19 ± 0.08 0.14 ± 0.04 n.d.

4 0.15 ± 0.15 1.11 ± 0.25 4.77

3 0.13 ± 0.08 8.9 ± 9.90 6.98

11 0.11 ± 0.10 13.94 ± 6.95 0.18

96 0.04 ± 0.02 0.3 ± 0.29 n.d.

23 0.04 ± 0.05 0.12 ± 0.09 0.02

338 0.04 ± 0.01 0.01 ± 0.01 n.d.

6 0.02 ± 0.01 0.13 ± 0.17 0.82

the high diversity on particles reflects their multiple origins and 
histories. The fact that those few leaf-litter taxa were also abun-
dant in the stream particles points to leaf-litter as one important 
particle origin. For example, if the stream is dominated by parti-
cles washed in from the forest we would have expected Basidi-
omycota to dominate (Tedersoo et al., 2014). They accounted for 
72% in Lim et al. (2010) and for ≥ 60% in Shi et al. (2014) with 
Agaricomycetes as the most common class, a much larger propor-
tion than on leaves or particles in the current study (4.8 – 12.3%). 
However, it is also conceivable that soil particles, upon immersion 
in a stream, undergo further processing during which Basidiomy-
cota are rapidly replaced by indigenous stream fungi. The transport 
and age of FPOM and its distribution among various size classes 
is highly variable and strongly depends on hydrological fluctua-
tions throughout the seasons (Bilby & Likens, 1979; Thomas et al., 
2001). In other words, it may not possible to deduce the origin of the 
stream FPOM by looking at taxonomic composition of its myco-
flora. But the high fungal diversity on stream particles points to the 
interaction of various stream processes. In this context it is interest-
ing to compare our findings with an arctic study which focussed 
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on unfractionated water samples (Crump et al., 2012) that showed 
that only a minor fraction of eukaryotic microorganisms (< 10%) 
in a first order stream originated from the soil, while the major-
ity seemed to be indigenous. Interestingly, the situation was the 
reverse for prokaryotes, which were predominantly washed in from 
soil (Crump et al., 2012).

In our study, ergosterol concentration decreased in smaller par-
ticles, pointing to reduced biomass of living fungi derived from 
e.g. leaf-litter. Still, fungal OTUs found on submerged CPOM (leaf-
litter) dominate the sequences on all particle size classes. This sug-
gests that most fungal taxa were reduced non-selectively during 
the processing of CPOM to FPOM, or that the fungal cells were 
degraded (as suggested by the decline of ergosterol) but their DNA 
remained largely intact and attached to the particles as environmen-
tal DNA. Such bound DNA can remain stable for extended peri-
ods of time (Guggenberger & Kaiser, 2003; Nguyen & Elimelech, 
2007) and it is known that extracellular DNA occurs in consider-
able quantities in aquatic systems and sediments (summarized in 
Pietramellara et al., 2009).

In order to test the hypothesis that the fungal community of FPOM 
is indeed a function of present stream processes, the storage poten-
tial of FPOM has to be defined accurately by investigating the 
fungal taxa turnover on particles of known origin and composi-
tion incubated in a stream. Supplementing these approaches with 
ribosomal RNA will allow us to control for the proportion of envi-
ronmental DNA. Much of the biological processing of FPOM in 
streams is still unclear (Tank et al., 2010), and tracking their DNA 
levels and diversity might shed some light on their origin, history 
and in-stream transport.

Conclusions
We successfully looked at the broad phylogenetic diversity of 
stream FPOM (> 20 µm), which was much higher than on leaf-litter 
and included members of novel groups (Cryptomycota). The most 
abundant operational taxonomic units on particles were identical 
to taxa on submerged decomposing leaf litter. We documented dis-
tinct differences in ergosterol content between particle sizes, which 
points to the near absence of living Dikarya mycelium on smaller 
stream particles. Both fungal diversity and community composition 
differed significantly between the two substrate types. Neverthe-
less, more extensive efforts will be required to unravel the relative 
effects of origin (e.g., leaves decomposing in the stream vs. soil 

particles vs. algal particles) and processing or ageing of particles 
including DNA storage within the fungal community. Combining 
this information should allow us to more fully document various 
stream processes initiated by fungal organism.
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