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Abstract

Background: Previous studies have found numerous brain changes in patients with major depressive disorder (MDD), but
no neurological biomarker has been developed to diagnose depression or to predict responses to antidepressants. In the
present study, we used multivariate pattern analysis (MVPA) to classify MDD patients with different therapeutic responses
and healthy controls and to explore the diagnostic and prognostic value of structural neuroimaging data of MDD.

Methodology/Principal Findings: Eighteen patients with treatment-resistant depression (TRD), 17 patients with treatment-
sensitive depression (TSD) and 17 matched healthy controls were scanned using structural MRI. Voxel-based morphometry,
together with a modified MVPA technique which combined searchlight algorithm and principal component analysis (PCA),
was used to classify the subjects with TRD, those with TSD and healthy controls. The results revealed that both gray matter
(GM) and white matter (WM) of frontal, temporal, parietal and occipital brain regions as well as cerebellum structures had a
high classification power in patients with MDD. The accuracy of the GM and WM that correctly discriminated TRD patients
from TSD patients was both 82.9%. Meanwhile, the accuracy of the GM that correctly discriminated TRD or TSD patients
from healthy controls were 85.7% and 82.4%, respectively; and the WM that correctly discriminated TRD or TSD patients
from healthy controls were 85.7% and 91.2%, respectively.

Conclusions/Significance: These results suggest that structural MRI with MVPA might be a useful and reliable method to
study the neuroanatomical changes to differentiate patients with MDD from healthy controls and patients with TRD from
those with TSD. This method might also be useful to study potential brain regions associated with treatment response in
patients with MDD.
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Introduction

Major depressive disorder (MDD) is characterized by persistent

and overwhelming feelings of guilt, sadness, anhedonia, worth-

lessness, and hopelessness. It is the most common affective

disorders and one of the most common psychiatric disorders. It

has been estimated that the global disease burden from MDD will

be second only to heart disease by the year 2020 [1]. Among the

patients with MDD, about one-third of them do not respond to the

standard antidepressant treatments. Patients who do not respond

to a series of standard antidepressant treatments are commonly

defined as having treatment-resistant depression (TRD); mean-

while those who respond to antidepressant treatments defined as

having treatment-sensitive depression (TSD) [2]. At present, the

diagnosis of MDD is mainly based on clinical signs and symptoms,

and treatment protocols are established based on clinical empirical

evidence [3,4]. The etiology and pathogenesis of different

phenotypes of MDD remain unknown. Undoubtedly, exploration

of neurological biomarker for diagnosis and treatment of MDD

has the potential to improve the treatment outcome of patients

with MDD.

Over the past several decades, researchers have studied

structural and morphometric changes in patients with MDD.

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e40968



Abnormalities in the hippocampus [5], obitofrontal cortex [6],

anterior and posterior cingulate cortex (PCC) [7], and cerebellum

[8] in patients with MDD have been reported, but the findings are

inconsistent. In addition, a recent meta-analysis of voxel-based

imaging study find that gray matter (GM) volume reductions in

anterior cingulate cortex (ACC), dorsolateral and dorsomedial

prefrontal cortex [9]. However, these studies are based on

univariate voxel-based analysis. Voxel-based methods only provide

limited information because they need more correction for

multiple comparisons. Studies using voxel-based analysis require

a large sample size to attain sufficient statistical power [10].

Therefore, it is quite possible that the inconsistent findings from

previous studies are at least partly due to the use of voxel-based

analysis. Moreover, the univariate voxel-based methods do not

provide a mechanism for making MDD predictions at the

individual level [11].

To overcome the limitations of the univariate voxel-based

analysis, the multivariate pattern analysis (MVPA), a data-driven

technique, has been used to differentiate psychiatric patients from

healthy controls through structural or functional brain images

[12,13,14]. In contrast to treating each voxel independently in

voxel-based analysis, the MVPA assesses contributions of multiple

voxels simultaneously to best classify a group so that it may be

particularly useful to detect subtle and spatially distributed

discriminative patterns in the brain [10,15]. Specifically, the

MVPA not only can find potential neuroimaging-based biomark-

ers to differentiate patients from healthy controls at the individual

level, but also potentially detect spatially distributed information to

further highlight the neural mechanisms underlying the patho-

physiology of major depression [16].

To date, few studies have used the MVPA technique in the

analysis of structural MRI data in depression with only two studies

including the analysis for different therapeutic responses [3,17]. In

the present study, we applied a modified MVPA method that

combined searchlight algorithm and principal component analysis

(PCA) to classify subjects with TRD and those with TSD from

matched healthy subjects, and to investigate the diagnostic and

prognostic value of structural MRI data of MDD patients. We

hypothesized that structural MRI with the MVPA analysis had

discriminative effect on diagnosis and treatment response in

patients with MDD.

Materials and Methods

Subjects
The present study was approved by the Ethics Committee of

the Second Xiangya Hospital of the Central South University,

China. Written informed consents were obtained from all

subjects before any study procedure was initiated. Eighteen

right-handed TRD patients were recruited from the Mental

Health Institute of the Second Xiangya Hospital of the Central

South University, China. The patients were partially from one of

our previous studies [18]. MDD was diagnosed by two research

psychiatrists (Dr Zhao J and Dr Liu Z) using the Structured

Clinical Interview according to the DSM-IV criteria [19].

Exclusion criteria included age younger than 18 years or older

than 50 years, any history of major physical illness, cardiovas-

cular disease, bipolar disorder, neurological illness, or a lifetime

history of alcohol or drug use. Severity of depression was assessed

with the 17-item Hamilton Rating Scale for Depression (HRSD)

[20]. All patients had taken at least two classes of antidepressants

before being enrolled in the study. The TRD was defined as a

poor response to at least two adequate trials (adequate dosages,

duration, and compliance) with different classes of antidepres-

sants [21,22]. The poor response was defined as less than 50%

reduction in the HRSD total score after treatment at a minimum

dose of 150 mg/day of imipramine or the equivalents (dose

converted using a conversion table) for 6 weeks [23].

Twenty-four right-handed TSD patients partially from a

different previous study [24] were included for this analysis. All

patients were treatment-naive and at their first episode of MDD.

Exclusion criteria were similar to those of TRD patients. An

additional exclusion criterion for these patients was that the

current illness duration was more than six months. The severity of

depression was also quantified with the 17-item Hamilton Rating

Scale for Depression (HRSD). Shortly after baseline MRI

scanning was completed, all patients were prescribed an antide-

pressant at a minimum dose of 150 mg/day of imipramine

equivalents (dose converted using a conversion table) for 6 weeks

by the same psychiatrists (Dr Zhao J and Dr Liu Z) [25]. For those

who had a reduction in HRSD total score of more than 50% after

the antidepressant treatment, they were defined as having TSD.

This practice was consistent with previous studies [17,21,22,26].

Seventeen right-handed healthy controls came from the same

study as those with TRD [18]. They were recruited from the local

community through advertisements. They were also screened by

the same psychiatrists (Dr Zhao J and Dr Liu Z) with the

Structured Clinical Interview for DSM-IV, non-patient edition.

None of them had serious medical or neuropsychiatric illness.

There was no major psychiatric or neurological illness in their

first-degree relatives.

MRI Data Acquisition
A 1.5T GE scanner (General Electric, Fairfield, Connecticut,

USA) with a volumetric 3D Spoiled Gradient Recall (SPGR)

sequence was used to scan all participants. The acquisition

parameters were: repetition time/echo time (TR/TE) = 12.1/

4.2 ms, flip angle = 15u, field of view = 240 mm6240 mm, image

matrix = 51265126172, voxel size = 0.5160.5160.9 mm3.

Image Processing
All images were visually inspected for artifacts or structural

abnormalities before voxel-based morphometry (VBM) analysis

was applied to the structural MRI images by using SPM8

(Wellcome Trust Centre for Neuroimaging, Institute of Neurology,

UCL, London, UK; http://www.fil.ion.uncl.ac.uk/spm). The

detailed steps of VBM analysis were as follows. First, all structural

images were manually set the origin to the anterior commissure.

Second, all images were segmented into GM, white matter (WM),

and cerebrospinal fluid (CSF) and imported into a rigidly aligned

space [27]. Third, the segmented images were iteratively registered

by the Diffeomorphic Anatomical Registration Through Expo-

nentiated Lie algebra (DARTEL) toolbox [28]. This procedure

generated a template for a group of individuals. Fourth, the

resulting images were spatially normalized into the MNI space

using an affine spatial normalization. An additional processing step

consisted of multiplying each spatially normalized image by its

relative volume before and after normalization with the purpose of

preserving the total amount of each tissue. Finally, the images were

smoothed with an 8 mm full width at half maximum (FWHM)

isotropic Gaussian kernel.

Multivariate Pattern Analysis
In this study, we used a modified MVPA technique that

combined searchlight algorithm and PCA. The searchlight

technique was proposed by Kriegeskorte et al. [29] and has

been widely used in neuroimaging studies because of its superior

ability to extract features as the input of pattern analysis [30,31].

Pattern Analysis on Major Depressive Disorder
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Uddin and colleagues recently used this technique to discriminate

children and adolescents with autism from healthy subjects [31].

The procedure of modified MVPA method was as follows. The

inputs into MVPA were the smoothed tissue maps (i.e. GM or

WM) that were generated after image processing procedure, and

then all maps were divided into training set and testing set. At

each voxel Vi, a 33 voxels spherical cluster centered at Vi was

defined (according to the searchlight algorithm with optimal or

near-optimal detection performance [29] ). The values of the

voxels in the spherical cluster were extracted, and then data

matrices WN16V and WN26V were acquired for training set and

testing set, respectively (N1 and N2 were the number of subjects

in the two sets, and V was the number of the voxels in the

cluster). Subsequently, PCA was applied as a dimension

reduction way to reduce the data matrix to its eigenvectors in

the training set and testing set, respectively. Only the eigenvector

ES61 having the largest eigenvalue was reserved as the final

classification feature (see Figure S1 for detailed analysis). Finally,

a linear support vector machine (SVM) classifier was performed

using LIBSVM software (Software available at http://www.csie.

ntu.edu.tw/̃cjlin/libsvm). To estimate the performance of our

classifier, a leave-one-out cross-validation (LOO-CV) test was

used to assess the overall accuracy of the classifier in the present

study. Briefly, if there are N samples in total, in each LOO-CV

experiment, the N21 samples are viewed as the training set, and

the omitted one is used as a test subject to computing the

classification error. LOO-CV accuracy for voxel Vi was yielded

by averaging all accuracies obtained at each tested subject. The

resulting three-dimensional spatial map of LOO-CV accuracy at

each voxel was used to detect brain regions that exhibited

differences between the two participant groups. The flow chart of

aforementioned method was shown in Figure 1. Compared with

a previous similar study [30], a more rigorous threshold was used

in our study. A meaningful cluster of these three-dimensional

spatial accuracy maps was considered as accuracies higher than

70% (higher than the chance level of 50%) and contiguous voxels

with at least 50 voxels. Moreover, like previous studies [30,31],

the overall accuracy in our study was the peak accuracy of all

clusters identified.

To evaluate the statistical significance of the accuracies in each

cluster, the permutation test was used [32]. In permutation test,

the class labels of the training data were randomly permuted

before training. Cross-validation was performed on the permuted

training set, and the permutation was repeated 1000 times. The

accuracy values were obtained from all permutations. The

proportion of the accuracy values that were equal to or greater

than the value generated by the non-permutated data was

calculated. If less than 5% (p,.05) of the values from all

permutations exceeded the actual value, the accuracy was

considered statistically significant.

Voxel-based Analysis
To investigate the alterations of GM/WM volumes in the

identified brain regions of patients with TRD or TSD, between-

group comparisons of GM/WM volumes were performed with

two-sample t tests on smoothed images within a mask. This mask

was created by the identified brain regions using aforementioned

MVPA method between TRD and TSD patients. Outcomes were

assessed at two different statistical thresholds: (1) p,.05, family

error rate (FWE) corrected; (2) p,.001, uncorrected.

Correlation Analysis
To explore whether the identified important GM and WM

regions between TRD and TSD patients were correlated with the

severity of depressive symptoms, voxel-based correlation analyses

were applied to all voxels in the abnormal areas of the GM and

WM and the HRSD total scores. Using the AlphaSim program in

the REST software (http://sourceforge.net/projects/resting-fmri),

the resulting statistical map was corrected for multiple compar-

isons to a significant level of p,.05 (combined height threshold

p,.02 and a minimum cluster size of 10 voxels).

Comparison with Other MVPA Methods
To better understand the performance of our MVPA technique,

we compared the findings of the MVPA method in the present

study with those of other MVPA methods to the same structural

data. Other MVPA methods included recursive feature elimina-

tion (RFE), locally linear embedding (LLE) and C-means, and

LLE+linear SVM. The RFE, a feature ranking method based on

SVM, has been successfully applied in other neuroimaging studies

[10,33]. Similarly, the LLE and C-means classifier has also been

successfully used to distinguish schizophrenia patients from healthy

controls [34].

Results

Demographics and Clinical Characteristics of the
Participants

The demographic and clinical data are presented in Table 1.

Gender, age and the years of education did not differ significantly

among the three groups. There was no significant difference in

baseline HRSD score between TRD and TSD. The course of

disease was significantly greater in the TRD group compared to

TSD. Eighteen patients with TRD, 17 patients with TSD and 17

healthy subjects were included, but seven patients with TSD were

excluded due to not responsive to treatment.

Accuracy of GW and WM in Discriminating TRD from TSD
As shown in Figure 2 and Table 2, several areas of the GM in

frontal lobe, parietal lobe, temporal lobe, occipital lobe, and

cerebellum had discriminative effect on distinguishing patients

with TRD from those with TSD. Similarly, as shown in Figure 3

and Table 3, there were several areas of the WM in each lobe

showing significant differences between patients with TRD and

those with TSD. As a prognostic marker of treatment response to

antidepressants, the accuracy of the GM image and the WM

image that correctly discriminated TRD patients from TSD

patients was both 82.9% (Table 4).

Accuracy of GW and WM in Discriminating TRD or TSD
from Control

For the diagnostic predictivity, the accuracy of the GM image

that correctly discriminated TRD or TSD patients from healthy

controls were 85.7% and 82.4%, respectively (Table 4). As shown

in Figure S2 and Figure S3, and Table S1 and Table S2, there

were several areas showing significant differences between patients

with TRD and healthy controls (Figure S2 and Table S1), and

patients with TSD and healthy controls (Figure S3 and Table S2).

Similarly, the accuracy of the WM image that correctly

discriminated TRD or TSD patients from healthy controls were

85.7% and 91.2%, respectively (Table 4). The accuracy maps and

areas of the WM distinguishing patients with TRD from the

healthy controls were shown in Figure S4 and Table S3 and the

accuracy maps and areas of the WM distinguishing patients with

TSD from the healthy controls were shown in Figure S5 and

Table S4.

Pattern Analysis on Major Depressive Disorder
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Comparison of Voxel-based Analysis between TRD and
TSD

There were no significant volumetric differences in either GM

or WM between two groups with an FWE correction rate of

p,.05. To compare the results obtained with MVPA and

traditional univariate analysis of VBM, we further lowered the

statistical threshold to a lenient value of p,.001 (uncorrected) to

detect potential brain regions that might be involved in different

therapeutic responses of patients with MDD. However, as shown

in Table S5 and Table S6, the VBM detected few differences in

small clusters between the two groups.

Correlations between GM/WM Volume and the Severity
of Depression

Correlation analyses were conducted between the GM volumes

in the identified areas with MVPA (Table 2) and the HRSD total

scores of the pooled patients with MDD. Significantly positive

correlations were revealed between the GM volume of the

posterior lobe in bilateral cerebellum, the left inferior frontal

gyrus, the right superior temporal gyrus, and the left inferior

parietal lobule and the HRSD total scores of the pooled patients,

while no region showed significantly negative correlation with

HRSD score (p,.05, AlphaSim corrected; Table S7).

Similarly, correlation analysis of WM volumes in the identified

areas with MVPA (Table 3) against the HRSD score showed

significantly positive correlations for the right cuenus and

significantly negative correlations for the left medial frontal gyrus

and left median cingulate gyrus (p,.05, AlphaSim corrected;

Table S8).

Comparison with Other MVPA Methods
As we illustrated in the third and fourth row of the Table 4, the

RFE approach yielded relatively low classification accuracy. In

addition, our method that combined searchlight algorithm and

PCA outperformed the LLE+C-means and LLE+linear SVM

Figure 1. Flow chart of the proposed MVPA method.
doi:10.1371/journal.pone.0040968.g001

Table 1. Demographics and clinical characteristic of patients
with MDD and healthy controls.

Characteristics TRD TSD HC P Value

Gender(M/F) 11/7 10/7 10/7 0.987a

Age, years 27.3967.74 26.7167.73 24.2464.41 0.368b

Education, years 13.5663.60 12.3562.12 13.8262.38 0.271b

Course, months 35.5649.89 2.5961.33 – 0.010c

HRSD 23.8963.69 25.5866.32 2.5861.54 ,0.001b

HRSD, Hamilton Rating Scale for Depression. TRD, treatment-resistant
depression; TSD, treatment-sensitive depression; HC, healthy controls; plus-
minus values are Mean6SD.
aThe P value for gender distribution in the three groups was obtained by chi-
square test.
bThe P values were obtained by one-way analysis of variance tests.
cThe P values were obtained by two sample t-test.
doi:10.1371/journal.pone.0040968.t001
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method (Table 4). These results further validated the potential use

of our MVPA method for MDD classification.

Discussion

In the present study, we have shown that structural MRI with

MVPA might be a useful and reliable method to study the

neuroanatomical changes to differentiate patients with MDD from

healthy controls and patients with TRD from those with TSD.

This method might also be useful to study potential brain regions

associated with treatment response in patients with MDD. The

GM and WM had comparable accuracy to distinguish TRD or

TSD from healthy controls and TRD from TSD. Although there

were many brain regions showing differences among patients with

MDD and healthy controls, the findings support that the

neuroanatomical structures of MDD are mainly involved in a

series of specific networks that include frontal, temporal, parietal

and occipital regions as well as the cerebellum.

The core components of default mode network (DMN),

including medial prefrontal cortex (MPFC), PCC/precuneus

(PCU), and inferior parietal lobe (IPL) were found to display high

diagnostic and prognostic accuracy. Recent studies revealed a key

role for the DMN in the pathophysiology of depression. One

recent study suggested that depression could be considered as an

illness due to the pathological inability of the DMN to adjust self-

referential activity in a situationally appropriate manner [35]. In

another study, Hamilton et al. demonstrated that patients with

MDD had increased levels of DMN dominance which was related

to higher levels of maladaptive, depressive rumination and lower

levels of adaptive, reflective rumination [36]. In a VBM study,

morphologic differences in the MPFC and PCC between patients

with late-onset depression and healthy controls were observed

Figure 2. Resulting spatial maps of accuracy for discriminating between TRD patients and TSD patients using gray matter. These
clusters were identified by setting the threshold of accuracy higher than 70% and cluster size more than 50 voxels.
doi:10.1371/journal.pone.0040968.g002
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[37]. The IPL was thought to play a part in emotional modulation.

Compared depressed patients with healthy controls, enhanced

activation in IPL during the response to sad words was observed in

depressed patients [38]. In geriatric patients with remitted

depression, the activation in IPL to sad words was attenuated

[39]. The PCU, a part of the parietal lobe, had GM volumetric

abnormality in TRD [22], and increased activity after responding

to TMS treatments [40]. Results from our present study not only

extended the findings from previous studies, but also provided new

evidence that the DMN may play an important role in MDD. The

structural alterations of the DMN might contribute to the

functional abnormalities at the network level. The differences in

the structural alterations between patients with TRD and those

with TSD suggested that the structural differences might be

related to different responses to antidepressant treatments.

The ACC is a key structure in brain networks that are involved

in mood regulation [7]. The association between the change in

ACC activity and clinical response to antidepressants was reported

[41]. In a functional imaging study, Pizzagalli et al. revealed that

baseline hyperactivity in the ACC predicted treatment response in

acutely depressed patients [42]. Additionally, Chen et al.

demonstrated that ACC volumes were positively associated with

the speed of antidepressant response [43]. Moreover, in a

combined positron emission tomography (PET) and MRI study

of mood disorders, Drevets et al. reported that the ACC’s mean

gray matter volume was decreased in patients with MDD or

bipolar disorder, irrespective of their mood states [44]. In the

present study, we found that the WM volume of ACC could

discriminate TRD from TSD (Table 3), and TSD from the healthy

controls (Table S4) with high accuracy, suggesting that the ACC

might be a trait marker for MDD.

The dorsolateral prefrontal cortex (DLPFC, Broadmann’s area

9) is a critical region in the cognitive control networks [45]. This

region is involved in the modulation of emotional responses.

Dysfunction of this region will result in abnormal physiological

and psychological responses to stressful stimuli [46]. Similarly, the

role of DLPFC in the pathogenisis of MDD has been investigated

with imaging studies [47,48,49]. Results from a previous study

suggested that the involvement of DLPFC in depression was

closely related to the cognitive symptoms of depression [50].

Taken together, our finding of structural alterations in the DLPFC

strongly implicate that this region is central to the pathophysiology

of MDD.

Since the traditional emphasis on cerebellum function has been

the acquisition of motor coordination and motor behavior [51],

the relatively high accuracy of the cerebellum on distinguishing

Table 2. Most important gray matter regions discriminating between TRD patients and TSD patients.

Brain regions BA
Cluster size
(voxels) MNI coordinates (mm) Peak Accuracy(%) P value

x y z

Frontal

Left superior frontal gyrus 8 62 222 22 39 74.2 0.002

Right superior frontal gyrus 8 192 24 24 34 82.9 0.001

Left middle frontal gyrus 9 119 227 25 28 77.1 0.001

Left inferior frontal gyrus 11/47 233 239 34 21 80.0 0.001

Right precentral gyrus 4 161 58 210 40 80.0 0.001

Parietal

Left precuneus 7/31 146 230 278 39 80.0 0.001

Right postcentral gyrus 3 309 60 218 16 77.1 0.001

Left supramarginal gyrus 40 129 260 240 22 80.0 0.001

Right supramarginal gyrus 40 136 46 237 45 77.1 0.002

Left inferior parietal lobule 39/40 93 258 234 42 77.1 0.001

Right inferior parietal lobule 39/40 53 46 230 33 74.2 0.001

Occipital

Left lingual gyrus 17/18 121 213 296 222 74.2 0.001

Left calcarine fissure 17/18 103 29 2102 210 77.1 0.001

Left superior occipital gyrus 18 52 210 2106 12 77.1 0.001

Temporal

Right superior temporal gyrus 22 427 51 242 16 82.9 0.001

Left middle temporal gyrus 21 60 258 29 225 82.9 0.001

Left inferior temporal gyrus 20 335 258 258 213 80.0 0.001

Cerebellum

Left cerebellum posterior lobe – 300 242 272 240 77.1 0.001

Right cerebellum posterior lobe – 128 7 261 263 74.2 0.001

Subcortical 0.001

Right caudate nucleus 2 189 7 6 1 80.0 0.001

The P values were obtained by permutation test. BA, Broadmann’s area.
doi:10.1371/journal.pone.0040968.t002
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patients with TRD from TSD, and patients with MDD from

healthy controls was somewhat unexpected. These findings were

consistent with previous studies showing that the cerebellum

played an important part in the perception of emotional stimuli

and emotional control [52,53]. Anatomically, different regions of

the cerebellum like the vermis, fastigial nucleus, and flocculonod-

ular lobe have connections with brainstem reticular nuclei [54]

and the limbic system including hippocampus and amygdala,

hypothalamus, and periaqueductal gray [55,56,57]. Meanwhile,

the cerebellum receives projections from the caudal and rostral

anterior cingulate via the pons [58]. Hence, these connections may

provide an anatomical basis for the cerebellum to play a regulation

role in emotion and cognition. So far, several studies have found

neuroanatomical differences in the cerebellum of MDD patients.

Peng and colleagues documented decreased GM density in the

cerebellum in MDD patients compared with healthy subjects [8].

Frodl et al demonstrated that MDD patients had a significantly

decreased GM density in cerebellum [59]. A recent meta-analytic

study revealed reduced activation of cerebellum posterior lobe to

positive emotion in depressed group compared with healthy

subjects [60]. In addition, Baillieux et al. observed that patients

with cerebellar lesions would lead to a deficit in planning, learning,

and attention processes [61]. Thus, these data suggested that

structural changes of the cerebellum may result from the

emotional and cognitive deficiency that commonly encountered

in patients with MDD.

Our results also showed some temporal and occipital regions

having high accuracy in discriminating patients with MDD from

healthy subjects. The prognostic and diagnostic potential of these

regions in patients with MDD are also found in other studies

[3,17]. A previous study concluded that structural abnormalities of

the temporal regions might reflect the part of a disturbed neural

Figure 3. Resulting spatial maps of accuracy for discriminating between TRD patients and TSD patients using white matter. These
clusters were identified by setting the threshold of accuracy higher than 70% and cluster size more than 50 voxels.
doi:10.1371/journal.pone.0040968.g003
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network of MDD because patients with MDD had a decreased

GM density in the temporal lobes [8]. In a single photon emission

computed tomography (SPECT) study, occipital lobe perfusion

deficits were observed in adolescents and young adults with MDD

[62]. Similarly, abnormal spontaneous activity in the bilateral

occipital lobes was reported in patient with depression compared

with that in healthy controls [63]. These results supported the

notion that temporal and occipital regions might also be used to

diagnose or predict the treatment response of patients with MDD.

As shown in Table S1, S2, S3, S4, there were more structural

abnormal regions between TSD patients and healthy controls than

between TRD patients and healthy controls. These findings may

be implausible as one might expect that patients with TRD should

have more structural alternations relative to healthy controls than

patients with TSD do. However, these results are not incredible in

the light of previous neuroimaging studies which compared TRD

and TSD patients with healthy controls. For example, a VBM

study revealed that TSD patients had reduced GM volume in the

bilateral medial/superior frontal gyrus and left postcentral gyrus

Table 3. Most important white matter regions discriminating between TRD patients and TSD patients.

Brain regions BA
Cluster size
(voxels) MNI coordinates (mm) Peak Accuracy(%) P value

x y z

Frontal

Right medial frontal gyrus 25 459 12 21 219 80.0 0.001

Right middle frontal gyrus 8/9 140 25 25 42 82.9 0.001

Right middle frontal gyrus 10 239 25 45 24 80.0 0.001

Left anterior cingulate gyrus 32 678 218 33 18 82.9 0.001

Right anterior cingulate gyrus 31/24 416 19 230 39 77.1 0.001

Left median cingulate gyrus 24 234 210 216 39 77.1 0.001

Left precentral gyrus 6 205 237 218 37 80.0 0.001

Parietal

Left supramarginal gyrus 40 110 239 251 22 77.1 0.001

Left precuneus 7 52 218 269 48 80.0 0.001

Left posterior cingulate gyrus 23/31 979 210 242 19 77.1 0.001

Occipital

Left lingual gyrus 17/18 487 215 291 221 82.9 0.001

Right lingual gyrus 17/18 110 10 294 21 80.0 0.001

Left middle occipital gyrus 19 59 233 279 3 80.0 0.001

Left inferior occipital gyrus 18/19 156 239 284 29 80.0 0.001

Temporal

Right middle temporal gyrus 21/22 457 33 254 10 80.0 0.001

The P values were obtained by permutation test. BA, Broadmann’s area.
doi:10.1371/journal.pone.0040968.t003

Table 4. Comparison of discriminative performance of different MVPA methods on TRD versus TSD and TRD or TSD versus
controls.

Classification feature Feature selection Classifier type Leave-one-out cross-validation

TRD vs. TSD TRD vs. HC TSD vs. HC

Gray matter Searchlight+PCA Linear SVM 82.9% 85.7% 82.4%

White matter Searchlight+PCA Linear SVM 82.9% 85.7% 91.2%

Gray matter RFE Linear SVM 77.1% 77.1% 70.6%

White matter RFE Linear SVM 82.9% 85.7% 76.5%

Gray matter LLE C-Means 77.1% 77.1% 76.5%

White matter LLE C-Means 65.7% 85.7% 88.2%

Gray matter LLE Linear SVM 80.0% 77.1% 82.4%

White matter LLE Linear SVM 77.1% 85.7% 88.2%

PCA, Principal component analysis; RFE, recursive feature elimination; LLE, locally linear embedding; TRD, treatment-resistant depression; TSD, treatment-sensitive
depression; HC, healthy control.
doi:10.1371/journal.pone.0040968.t004
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compared with healthy controls, but patients with TRD did dot

have significant differences in the GM volume in these regions

compared with healthy controls [64]. Similarly, in a resting-state

functional connectivity study, Lui and colleagues found that

compared to healthy controls, TSD patients had a more

distributed decrease in connectivity than TRD patients, especially

in the ACC and in the amygdala, hippocampus, and bilateral

insula; however, the TRD group had disrupted functional

connectivity mainly in prefrontal areas and in bilateral thalamus

areas [65]. These findings suggest some alterations in the brain

may be unique to TSD patients and others may be unique to TRD

patients. Because of this reason, inconsistent findings from

pervious studies might be a result of the heterogeneity of studied

samples which included both patients with TRD and TSD.

The finding that the traditional VBM approach did not find

significant differences in GM/WM volume in any brain region

between TRD and TSD patients suggested that VBM method

may not be sensitive enough to detect subtle differences between

these two conditions. In contrast, the MVPA method used in the

present study was able to find significant differences in the GM/

WM volume in many brain regions between TRD and TSD

patients, which suggested that the MVPA can be used to detect

subtle and spatially distributed neuroanatomical differences in

different groups of patient with MDD or to study brain regions for

predicting therapeutic responses of MDD. In addition, the positive

correlations of the GM and WM volume in the identified brain

regions in TRD and TSD patients with the severity of depressive

symptoms (Table S7 and Table S8) suggested that these regions

might be used as quantitative markers for the assessment of

depressive symptoms of MDD.

To our knowledge, only two published studies have used

structural MRI data to investigate the association between brain

structures and therapeutic responses of patients with MDD. The

first study employed SVM to GM to examine the predictive

potential for clinical response to antidepressant treatment. The

accuracy of the whole brain structural neuroanatomy to predict

clinical response was 88.9% (p = .01). The accuracy as a diagnostic

marker for MDD was 67.6% with a sensitivity of 64.9% and a

specificity of 70.3% (p = .027) [3]. However, the findings from this

study may not be generalizable due to a small sample size (n = 9 for

each group). In another recent study, the diagnostic accuracy of

GM and WM was 67.39% and 58.70% for TRD vs. control,

76.09% and 58.70% for TSD vs. control, and 69.57% and

84.65% for TRD vs. TSD respectively [17]. However, the

diagnostic accuracy of the WM on discriminating TRD patients

from healthy controls is not statistically significant (p = .13). In the

present study, the accuracy of the GM and WM on discriminating

TRD from TSD was both 82.9% (Table 4) and the accuracy of the

GM and WM on discriminating TRD or TSD patients from

healthy controls were also both over 82.0% (Table 4). These data

suggested that the MVPA method might be a more effective and

accurate method to study the relationship between brain structures

and different therapeutic responses and the differences of brain

structures between patients with mood disorder and healthy

subjects.

The following limitations should be noted. First, our study was

limited by a relatively small sample size. Consequently, our

preliminary results must be confirmed with larger sample studies

of patients with MDD and healthy control subjects. Second, since

all TRD patients were not medication free before participating in

this study, therefore, the effect of medication on brain structures

could not be excluded; Future studies in drug-free TRD subjects

may help to address this issue. Third, the current study was limited

by the heterogeneous pharmacological profiles. Patients were

treated with one of three different classes of antidepressants. It is

quite possible that one patient may exhibit treatment non-response

to one antidepressant, but can be treatment-response to another.

Therefore, this heterogeneity might limit the generalizability of

our findings. For this reason, future studies should use a sequential

approach to determine TRD cases. Finally, the TSD group had

shorter illness duration than that of the TRD group. However,

there is no straightforward way to incorporate illness duration

covariates into the MVPA method for the moment. Accordingly,

we cannot fully rule out the possibility that our findings were

influenced by this variable. In the future, we will devote to

improving our method to solve this problem.

In summary, this study used a modified MVPA approach to

explore the diagnostic and prognostic potential of structural MRI

in patients with MDD. The results demonstrated that the MVPA

not only achieved a high accuracy on distinguishing patients with

MDD from healthy controls, and TRD from TSD, but also

identified brain regions that may be used as biomarkers to

diagnose and predict treatment response of MDD. Although we

focused on structural MRI here, other modalities such as

functional MRI and diffusion MRI will be integrated into MVPA

in the future.

Supporting Information

Figure S1 The accuracy as a function of the number of

eigenvector used in classification. TRD, treatment-resistant

depression; TSD, treatment-sensitive depression; HC, healthy

control; GM, gray matter; WM, white matter.

(TIF)

Figure S2 Resulting spatial maps of accuracy for discriminating

between TRD patients and healthy controls using gray matter.

These clusters were identified by setting the threshold of accuracy

higher than 70% and cluster size more than 50 voxels.

(TIF)

Figure S3 Resulting spatial maps of accuracy for discriminating

between TSD patients and healthy controls using gray matter.

These clusters were identified by setting the threshold of accuracy

higher than 70% and cluster size more than 50 voxels.

(TIF)

Figure S4 Resulting spatial maps of accuracy for discriminating

between TRD patients and healthy controls using white matter.

These clusters were identified by setting the threshold of accuracy

higher than 70% and cluster size more than 50 voxels.

(TIF)

Figure S5 Resulting spatial maps of accuracy for discriminating

between TSD patients and healthy controls using white matter.

These clusters were identified by setting the threshold of accuracy

higher than 70% and cluster size more than 50 voxels.

(TIF)

Table S1 Most important gray matter regions discriminating

between TRD patients and healthy controls.

(DOC)

Table S2 Most important gray matter regions discriminating

between TSD patients and healthy controls.

(DOC)

Table S3 Most important white matter regions discriminating

between TRD patients and healthy controls.

(DOC)

Table S4 Most important white matter regions discriminating

between TSD patients and healthy controls.
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(DOC)

Table S5 Brain regions showing gray matter volume differences

in TRD patients compared with TSD patients.

(DOC)

Table S6 Brain regions showing white matter volume differences

between the TRD patients and TSD patients.

(DOC)

Table S7 Correlation between HRSD scores and gray matter

volume in TRD and TSD patients.

(DOC)

Table S8 Correlation between HRSD scores and white matter

volume in TRD and TSD patients.

(DOC)
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