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Fluorescence spectroscopy and 
chemometrics for simultaneous 
monitoring of cell concentration, 
chlorophyll and fatty acids in 
Nannochloropsis oceanica
Marta Sá1,2, Carlo G. Bertinetto3, Narcís Ferrer-Ledo2, Jeroen J. Jansen3, Rene Wijffels2, 
João G. Crespo1, Maria Barbosa2 & Claudia F. Galinha1 ✉

Online monitoring of algal biotechnological processes still requires development to support economic 
sustainability. In this work, fluorescence spectroscopy coupled with chemometric modelling is studied 
to monitor simultaneously several compounds of interest, such as chlorophyll and fatty acids, but also 
the biomass as a whole (cell concentration). Fluorescence excitation-emission matrices (EEM) were 
acquired in experiments where different environmental growing parameters were tested, namely light 
regime, temperature and nitrogen (replete or deplete medium). The prediction models developed have 
a high R2 for the validation data set for all five parameters monitored, specifically cell concentration 
(0.66), chlorophyll (0.78), and fatty acid as total (0.78), saturated (0.81) and unsaturated (0.74). 
Regression coefficient maps of the models show the importance of the pigment region for all outputs 
studied, and the protein-like fluorescence region for the cell concentration. These results demonstrate 
for the first time the potential of fluorescence spectroscopy for in vivo and real-time monitoring of these 
key performance parameters during Nannochloropsis oceanica cultivation.

Microalgae industrial production is still a niche industry, although efforts are being done to improve the eco-
nomic viability of the overall process1,2. Online monitoring through spectroscopic techniques is already a reality 
in several other bio-based industries3–6. Development of an appropriate tool able to monitor several metabolites 
simultaneously would be a great advantage. Nowadays, biological parameters are monitored off-line, where a 
sample is withdrawn, from the cultivation or from the process in the biorefinery, to be analysed. These analyses 
can take some minutes or a couple of hours, or days, depending on the parameter to be measured and techniques 
involved. For example, cell concentration is a rather fast and simple method, while assessing metabolites’ con-
tent is much slower, because extraction steps and chromatographic techniques are often needed. Fluorescence 
spectroscopy represents a viable solution since it is a non-invasive and non-destructive technique that already 
proved its value in other industries, like the food industry3–5, or even in wastewater treatment plants that are 
characterised for being complex biological systems6–8. This technique is able to detect natural fluorophores but 
is also sensitive to interactions between fluorophores and non-fluorescent compounds, increasing the range of 
compounds that can be monitored by it9. Additionally, with the improvement of chemometric tools, it is possible 
to extract more information from such signals.

Nannochloropsis oceanica is a promising microalga due to its ability to produce high amount of lipids. This 
microalga is cultivated in sea water, which has been pointed as the most sustainable solution for microalgae pro-
duction2,10,11. The most common product of a microalgae industry is still the whole biomass, being of extreme 
importance to monitor cell concentration12. It is also known that chlorophyll is an important pigment in several 
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industries13,14, and being a oleaginous microalga, there are an increasing interest in industrializing N. oceanica to 
produce high quantities of lipids, but also high nutritional value oils2,10.

Previous studies demonstrated the advantage of using fluorescence spectroscopy in a microalgae biorefinery 
context using Dunaliella salina15–17. This microalga is also a saline microalga capable of producing high contents 
of carotenoids, being already produced at industrial scale for it. Fluorescence spectroscopy coupled with che-
mometric tools was used to develop prediction models for several parameters, such as cell concentration and 
viability, carotenoids content and nitrate concentration for D. salina upstream processes15–17. Cell concentration 
of Chlorella vulgaris and Spirulina sp. was also determined by Shin et al. using a in situ fluorometry technique18.

More recently, a new study from the authors, showed that eicosapentaenoic acid (EPA) can be also monitored 
using fluorescence spectroscopy in N. oceanica cultures19. Therefore, the goal of this work was to develop models 
to predict simultaneously cell concentration, chlorophyll and fatty acid content in N. oceanica, based only on 
fluorescence spectra acquired directly from in vivo culture broths. Furthermore, the spectral regions with higher 
relevance for the prediction models of all parameters were also studied, providing a better understanding of how 
the fluorescence can be useful to monitor fluorophores and non-fluorophores molecules. The development of this 
monitoring tool, able to be used online and based on a non-destructive technique will enhance the knowledge 
about the culture at real time, during the cultivation process, contributing for an increase competitiveness of 
microalgae industry.

Material and Methods
Nannochloropsis oceanica pre-culture and experiments.  Nannochloropsis oceanica NCT02 was 
provided by NECTON, S.A. (Olhão, Portugal). The N. oceanica inoculum was kept in 250 mL Erlenmeyer 
flasks, under the follow conditions: 25 °C, 90 rpm in an orbital shaker, 100 µmol/m2.s of incident light, day/
night cycle (16/8 hours) light regime, and 0.2% CO2. The cultivation media contained natural sea water (from 
Eastern Scheldt, the Netherlands) filtered (0.2 µm) and supplemented with 10.7 mM of NaNO3, 0.535 mM of 
KH2PO4. NUTRIBLOOM from PhytoBloom, a nutrient solution, and HEPES buffer (20 mM) were added to 
the media and the pH set to 7.8. Medium sterilization was performed by cellulose acetate membrane filtration 
(using SARTOBRAN Capsule with 0.2 µm of pore size, Sartorius) directly into the Erlenmeyer or bioreactor. 
Experiments were performed in batch mode, in a heat-sterilized flat-panel, with a 1.8 L of working volume and a 
light path of 20.7 mm (Labfors 5 Lux, Infors HT, Switzerland, 2010). The light was provided by LED lamps (28 V, 
600 Watt) with warm spectrum (450–620 nm). In the beginning of the experiment light was set at 200 µmol/m2.s, 
and increased to 636 µmol/m2.s when the back light reached 50 µmol/m2. The culture homogenization was done 
by filter sterilized air in an airlift-loop at a flow rate of 1 L/min, and the pH was controlled by CO2 injection. The 
bioreactor temperature was controlled by water-jacket.

Three cultivation parameters were tested in eight experiments (Table 1): light regime, temperature, and nitro-
gen supply – with (√) or without (X) nitrogen. Light regime was set in the beginning of the experiment and two 
approaches were tested: 24 hours of light or 16 h of light and 8 h of dark (d/n cycle). Temperature was set in the 
beginning (15, 20, 25 and 30 °C) and kept through the experiment; in one batch, the temperature was decreased 
from 25 to 15 °C when a light supply rate of 1 × 10–13 µmol/cell.s was reached. All batches started with a replete 
nitrogen medium to enable biomass growth. For six of the eight batches (Table 1, Nitrogen supply “X”), a second 
step, the nitrogen depletion phase, was performed. Briefly, the biomass was collected, centrifuged (2500 rpm, 
15 minutes) and washed with nitrogen deplete medium, and the bioreactor was then refilled with culture and 
nitrogen deplete medium until reaching a specific light supply rate of 1 × 10−13 µmol/cell.s. More detailed infor-
mation about the experiments are available in Sá et al.19.

Offline measurements.  Samples were taken every day to measure cell concentration, chlorophyll content, 
fatty acid composition and spectrofluorescence.

Cell concentration was measured in a MULTISIZER II (Beckman Counter), in duplicates, using a 50 µm aper-
ture tube and Isotone II diluent to dilute the samples.

Chlorophyll content was assessed by a spectrophotometric method as described by Leu and Hsu20. An aliquot 
of 2 mL was centrifuged (5000 g, 5 min) and stored at −80 °C until further analysis. Extraction was performed 
with 2 mL of methanol, samples were sonicated for 5 min and incubated for 40 min at 60 °C, following by cooling 
for 15 min in ice. Extraction steps were repeated until a white pellet was recovered. The modified Arnaud equa-
tion was used to calculate chlorophyll content:

Temp (°C) Nitrogen supply(a) Light cycle (hours)

15 X d (24)

20 X d (24)

25(b) X d (24)

25 X d/n (16/8)

25 √ d/n (16/8)

25 → 15 √ d/n (16/8)

30 X d (24)

Table 1.  Experimental conditions of the eight batch experiments performed. Three different environmental 
growing parameters were tested, namely temperature, nitrogen supply. ((a)X = absent; √ = present;) and light 
cycle (d (24): 24 h of light; or d/n (16/8): 16 h of light and 8 h of dark). (b)This batch was performed twice.
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Lipid composition was measured in lyophilized biomass samples, previously washed with 0.5 M ammo-
nium formate, as described by Breuer et al. and Leon-Saiki21,22. Briefly, 10 mg of sample were disrupted by beat 
beater and an extraction was performed with chloroform:methanol (1:1.25, v-v), containing the internal stand-
ards for triacylglycerol (TAG) and polar (PL) fractions, 170 µg/mL of tripentadecanoin (9:0) and 170 µg/mL of 
1,2-dipentadecanoyl-sn-glycero-3-[phosphor-rac-(1-glycerol)] (sodium salt) (15:0) respectively. TAG and PL 
were then separated in a SPE silica gel column (Sep-Pak Vac 6cc, Waters) using hexane:diethylether (7:1, v-v) 
and methanol:acetone:hexane (2:2:1, v-v) respectively. Methylation was performed in both fractions prior to 
quantification by gas chromatography (GC-FID). The results were calculated as percentage of total, saturated and 
unsaturated fatty acids in a dry weight basis.

Fluorescence spectra were acquired in a Shimadzu RF-6000 spectrofluorophotometer. The samples were 
placed in a cuvette and no sedimentation was observed during the spectra acquisition, which occurred in 5 min-
utes. The excitation-emission matrices (EEMs) obtained ranged from 250 to 790 nm for excitation wavelengths, 
and between 260 and 800 nm for emission wavelengths, in steps of 5 nm. Excitation and emission monochroma-
tor slit widths were set at 3 nm, with a scan speed of 12000 nm/min.

Chemometric models development.  The EEMs obtained during the eight experiments were combined 
and pre-processed together using drEEM toolbox (http://www.models.life.ku.dk/dreem)23. Rayleigh scatter of 
first order was removed and replaced by empty values; the second order was replaced with an interpolation of sur-
rounding data points23. Any fluorescence signal corresponding to emission wavelengths (y-axis) shorter than the 
excitation wavelengths (x-axis) was replaced by zeros. Inner filter effects, i.e. whenever excessive concentration 
causes re-absorption within the sample and thus a non-linear fluorescence response, were accounted for using a 
correction matrix derived from the sample’s absorbance spectrum24.

The pre-processed EEMs were correlated with five biological parameters (cell concentration, chlorophyll and 
fatty acids content as total, saturated and unsaturated) using Projection to Latent Structures (PLS) regression. This 
method finds linear combinations of the observed variables (i.e. the excitation-emission wavelengths, the inputs) 
that yield the best linear regression to the predicted variables (i.e. the biological parameters, the outputs). These 
linear combinations are known as Latent Variables (LVs), and can be seen as underlying structures or patterns 
that are correlated to the predicted parameters more directly than the original spectral variables measured by the 
experiment. More extensive descriptions of PLS can be found elsewhere25. In the current work, the multiway ver-
sion of PLS, known as N-PLS26, was used, which allows for fully exploiting the mathematical relationships among 
the three modes of the EEM data (i.e. sample, excitation, emission).

To facilitate the modelling task, the predicted variables were converted into their logarithm with base 10 
to normalise their distribution. The predictive models were validated by a 4-fold double cross-validation27. In 
short, the data set was split randomly into a training and validation set, consisting of 75% and 25% of the total 
data, respectively. The training set was used to calibrate the model and optimise the number of LVs, using a 
leave-one-out cross-validation (LOOCV), in which one sample from the training set was removed, a PLS model 
was built on the remaining training samples and assessed for the left-out sample; this procedure was then repeated 
with a different leave-out sample until all samples have been rotated. The external validation set was held out of 
this loop and was used to validate the model with the optimal number of LVs as determined by the LOOCV. The 
whole procedure (LOOCV + external validation) was repeated three more times, using the external validation 
data that was previously used for training, until every sample has appeared in the external validation set once.

Several parameters were evaluated to assess model’s quality: the variance explained in the biological param-
eters (%), the root mean square error of cross-validation (RMSECV) and prediction (RMSEP), and the R2 and 
slopes of the training and external validation (from now on mentioned as validation) sets.

After evaluating the quality of the models, a final model was built for each predicted parameter using the 
whole data set, using the optimal number of LVs defined by the previous validation, in order to determine and 
examine the regression coefficient values.

All multivariate statistical analysis were performed in MATLAB (The MathWorks) using the drEEM toolbox 
(http://www.models.life.ku.dk/dreem) and n-way toolbox26,28.

Biological material.  The strain Nannochloropsis oceanica NCT02 was kindly provided by Necton S.A. 
(Algarve, Potugal). Necton S.A. is willing to provide the strain on request.

Results and Discussion
Nannochloropsis oceanica production can aim at different final products. The whole biomass of microalgae 
is rich in pigments and fatty acids, but also has high valuable proteins and carbohydrates. Depending on the 
end-product desired, the production of the biomass can be tuned to reach higher yields. For that reason, the 
experiments of this work were designed to increase the concentration range of three different products, biomass 
(as cell concentration), chlorophyll and fatty acids. Having a wider range of scenarios increases the range of the 
outputs, which results in an increased strength of the prediction models. The information about the experimental 
conditions tested and the respective cell concentration, chlorophyll and fatty acids measurements are available in 
Supplementary Information.

Microalgae cultivation is characterised by low biomass concentrations, mainly to avoid dark zones in the 
bioreactors that can lead to lower photosynthetic efficiencies29. For this reason, microalgae samples have high 
water content, that results in the presence of high intensity Rayleigh scatter (Fig. 1a). The presence of water scatter 
would impact the estimation of the regression coefficients of the final models (presented in section 3.4)30, and 
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since its signal is not proportional to the water content in the sample, it was removed before the PLS modelling, as 
described in Section 2.3. An example of the pre-processed spectra is shown in Fig. 1b.

Cell concentration.  The model obtained to monitor cell concentration of N. oceanica can explain 84% of 
variance captured by the fluorescence spectroscopy (Fig. 2) with five LVs. A low root mean square error of N. 
oceanica concentration prediction (RMSEP) was observed (0.27 log10 cells/mL), which represents the average 
distance between the observed values and the ones predicted by the model. The relative error (in percentage), 
calculated as a quotient between the prediction error (RMSEP) and the observed cell concentration average value, 
is 3.18%. The root mean square error of cross-validation (RMSECV) of 0.30 log10 cells/mL indicates absence of 
model overfit. The reported R2 for training refers to the model built on the whole training set, whereas the vali-
dation data was never used for any step of model building and therefore tends to have a lower R2. Furthermore, 
the observed lack-of-fit is mainly due to the poor predictions for samples with lowest cellular concentrations, see 
Fig. 2.

In the current industrial scenario, most microalgal products are sold as whole biomass powder, making total 
biomass a key parameter to control process efficiency. During cultivation at industrial scale, too high or too low 
biomass concentration can have an influence in several biological parameters. Low concentrations can result in an 
inefficient light absorption or photo inhibition, while high concentrations result in dark regions in the bioreactor 
triggering endogenous respiration29.

Biomass concentration can be monitored under different parameters, such as optical density (OD), dry weight 
(g/L) and cell concentration (cells/L). In the present work, biomass concentration was measured as cell concen-
tration. The main reason was because the experiments were designed to give a wide range of cell concentration, 
but some experiments induce also other biological changes, such as different coloration or accumulation of fatty 
acids. For example, as mentioned by Janssen et al.31, accumulation of fatty acids in lipid bodies, due to nitrogen 
depletion medium, leads to an increase of the dry weight while the cell concentration reaches a plateau. This phe-
nomenon was also observed with the experiments of this work (data not shown). Experiments using day/night 
cycle lead the biomass to follow circadian rhythms, which means that the cell size increases during the day while 
the cell concentration increases during the night (due to cell division)32,33.

Figure 1.  Fluorescence spectra of a Nannochloropsis oceanica sample: original spectra (a) and final spectra used 
as inputs in the PLS models (b). Rayleigh scatter of first order was removed and replaced by empty values; the 
second order was replaced with an interpolation of surrounding data points. Fluorescence signal corresponding 
to emission wavelengths (y-axis) shorter than the excitation wavelengths (x-axis) was replaced by zeros. Inner 
filter effects were also corrected whenever present.
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A previous study reported the use of fluorescence spectroscopy to monitor cell concentration of a different microal-
gae, Dunaliella salina34. A slightly different modelling approach was used then, since PCA (principal component analy-
sis) was performed on the EEMs, without the need to remove the scatter, prior to PLS modelling. Nevertheless, a similar 
explained variance was observed (between 85.7 and 86.3%), with similar values of R2 for training and validation sets 
(between 0.82 and 0.86). These results, together with the results of this work, demonstrate the potential of using fluores-
cence spectroscopy as a monitoring tool for cell concentration with different microalgae biomass.

Chlorophyll.  Chlorophyll is the most abundant light harvesting pigment in nature, enabling the photosyn-
thesis, and is a molecule well-studied for its potential in several fields. In the feed and food supplements industry, 
chlorophyll is relevant for its anti-oxidant properties. Because of its bright green colour, it is also an appealing dye 
for the food and paint industries13,14.

Chlorophyll content in microalgae is tightly correlated with the light intensity and circadian rhythms. It was 
reported that chlorophyll content increases during the light period, and starts to decrease with the beginning of 
a dark period32,33,35. That phenomenon is explained by the fact that the cell division mechanism is favourable in 
the dark period, and since Nannochloropsis genus divide by binary fission, the chlorophyll content of the “adult” 
cell is divided by its new cells33.

The experimental conditions induced a considerable variability in the chlorophyll content. As mentioned 
previously, day/night cycles induce the chlorophyll to oscillate during the experiments. Moreover, microalgae are 
known for their ability to adapt their photosynthetic apparatus to different light conditions, a process called pho-
toacclimation. High light intensities reduce chlorophyll content to protect the cell, while low intensities induced 
the photosynthetic apparatus to synthesise chlorophyll, to provide the cell with more light harvesting capacity31,36. 
Nitrogen starvation, however decreases chlorophyll content and increases carotenoid concentrations to equip the 
cell with stress defence mechanisms31,33.

The chlorophyll content studied in these experiments enabled the development of an accurate model (Fig. 3), 
with a relative error of 1.31% using five LVs. The validation and training sets show high R2 and low errors, both 
RMSECV and RMSEP.

The possibility of monitoring chlorophyll content online provides information about the physiological state 
of the microalgae at real time. With this knowledge it is possible to take decisions during the cultivation process, 
without the need to perform the time-consuming lab analysis that are usually required.

Lipids.  Several microalgae are being studied for their potential to produce high content and/or high-quality 
lipids. Having in mind the different opportunities for an enriched-lipid biomass, the N. oceanica lipid profile was 
assessed through a set of different experiments. Nitrogen depletion is a well-documented strategy to increase lipid 
content in the TAG fraction10,37, while low light conditions were documented to lead to an increase in the cellular 
membranes37. Also, low temperatures were described to increase the content of unsaturated fatty acids10,38,39, 
whereas high temperature favour the saturated40.

Models were obtained to monitor fatty acids as total content (Fig. 4a), as well as saturated (Fig. 4b) and unsatu-
rated (Fig. 4c) content only (Table 2). Values of explained variance ranged between 87 and 92%. When compared 
with the previous models of this work, a higher number of LVs is needed (between 9 and 10). The relative error of 
prediction for total and unsaturated fatty acids was 5.89% and 5.62%, respectively, lower than the value found for 
saturated fatty acids (9.54%). All R2 of validation and training set were above 0.74 and slopes close to 1.

When cultivated under optimal growing conditions, most of the microalgae lipids are present on the cellular 
membrane11. However, under stress growing conditions some microalgae, like Nannochloropsis, can accumulate 
up to 45% of their dry weight in triacylglycerol (TAG)10,37. According to the fraction of the cell where the lipid is 

Figure 2.  Cell concentration prediction model (one of the four partitions of training/validation data sets). 
Training (●) (n = 69) and validation (▲) (n = 23) data are represented in log10 cells/mL. Model performance 
parameters: variance captured (Variance); root mean square error of cross-validation (RMSECV); root mean 
square error of prediction (RMSEP); coefficients of determination (R2) and slopes of linear regression between 
observed and predicted data obtained respectively for the training and validation data sets; number of LVs used 
by the model.
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accumulated and its profile, the final destination of the lipid-enriched biomass can vary from feed or food supple-
ments to biodiesel production11,41,42.

Fatty acids can be classified into saturated or unsaturated, the latter into mono- or polyunsaturated according 
to the number of double chemical bonds. Biomass produced with the aim of supplying feed or food supplements 
industries is desired to be rich in unsaturated fatty acids, preferably omega-3 fatty acids such as EPA (eicosap-
entaenoic acid) or DHA (docosahexaenoic acid)11,37. Biomass produced for biofuel applications needs to fulfil 
quality parameters such as ignition and combustion performance, and those are directly correlated with saturated 
and unsaturated content10,43.

To our knowledge, fluorescence spectroscopy was not previously reported as an online monitoring tool for 
lipid content. It is known that fluorescence spectroscopy is highly sensitive to detect the presence of natural 
fluorophores and that lipid molecules are not natural fluorophores. In the presence of a complex matrix, like 
microalgae cultivation broth, fluorescence spectroscopy is able not only to identify the natural fluorophores (intra 
or extracellular) but also the relations between these compounds and the non-fluorophores9. For that reason, 
fluorescence spectroscopy spectra cannot be directly used for quantification, but is a powerful tool revealing the 
correlations between compounds that emit natural fluorescence, the ones that capture it, and the ones that some-
how mask the fluorescence signal.

Regression coefficients of the final models for cell concentration, chlorophyll and fatty 
acids.  The experiments performed enabled to acquire a wide range of scenarios of a N. oceanica cultivation for 
different end products. After calibrating the models for the parameters cell concentration, chlorophyll and fatty 
acids, it is possible to confirm that fluorescence spectroscopy has a great potential for online monitoring of all 
three parameters simultaneously.

Aiming at the application of fluorescence spectroscopy, a final model was created for each parameter studied, 
using 100% of the data as training set. Figure 5 shows the regression coefficients obtained for each output, where 

Figure 3.  Chlorophyll content prediction model (one of the four partitions of training/validation data sets). 
Training (●) (n = 57) and validation (▲) (n = 19) data are represented in log10 mg/cell. Model performance 
parameters: variance captured (Variance); root mean square error of cross-validation (RMSECV); root mean 
square error of prediction (RMSEP); coefficients of determination (R2) and slopes of linear regression between 
observed and predicted data obtained respectively for the training and validation data sets; number of LVs used 
by the model.

Total Saturated Unsaturated

Variance (%) 92.30 91.24 86.77

RMSECV
(log10% g/gDW)

0.21 0.29 0.17

RMSEP 0.19 0.23 0.15

Training
R2 0.87 0.90 0.85

Slope 0.92 0.93 0.95

Validation
R2 0.78 0.81 0.74

Slope 0.84 0.95 0.99

Number of LVs 10 10 9

Table 2.  Prediction model parameters for total, saturated and unsaturated fatty acids. Model performance 
parameters: variance captured (Variance); root mean square error of cross-validation (RMSECV); root mean 
square error of prediction (RMSEP); coefficients of determination (R2) and slopes of linear regression between 
observed and predicted data obtained respectively for the training (n = 54) and validation (n = 18) data sets; 
number of LVs (latent variables) used by the model.
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Figure 4.  Fatty acids (FA) prediction models for total (a), saturated (b) and unsaturated (c) FA (one of the 
four partitions of training/validation data sets). Training (●) (n = 54) and validation (▲) (n = 18) data are 
represented in log10% g/g DW.

Figure 5.  Regression coefficients of the prediction models for cell concentration, chlorophyll, and fatty acids 
(FA) as total, saturated and unsaturated. The training set used 100% of the data set. Excitation wavelengths are 
represented in the x-axis, emission wavelengths in the y-axis, and intensity is represented in the colour bar on 
the right side.
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the excitation and emission wavelengths (in nm) are in the x-axis and y-axis, respectively, and each square is an 
excitation/emission pair. The weight of each regression coefficient is represented in colour-scale.

For the cell concentration model, two main regions can be distinguished as having relevant regression coeffi-
cient weight (positive or negative): a band at emission wavelengths higher than 600 nm (whole excitation wave-
length range), and a region for excitation and emission wavelengths lower than 400 nm. This reveals a similarity 
with the overall fluorescence signal of a sample, where these two regions have high fluorescence intensities. As 
described previously, these two regions of the spectra correspond to the pigments fluorescence band and the 
protein-like region (aromatic aminoacids), respectively34,44–46. Several differences can be noticed between the 
regression coefficients map of the cell concentration model and the remaining outputs. The protein-like region 
does not have the same weight as for cell concentration, and different weights are attributed to the pigments band. 
As expected, a high correlation is shown between the pigments band and the regression coefficient map for chlo-
rophyll content prediction. Also, specific areas of this pigment band are used for fatty acids content prediction (as 
total, saturated or unsaturated). These results confirm the relationship previously described between chlorophyll 
and fatty acids content33, and that although fatty acids do not emit fluorescence, they interfere with the signal 
of natural fluorophores like chlorophyll. The development of a simpler spectrofluorometric technique, able to 
acquire signal in those two regions of the spectra, instead of the entire range, would possibly simplify the analysis 
by decreasing the acquisition time of each data point.

Using fluorescence spectroscopy to simultaneously monitor several biological parameters has been described 
as one of the powerful characteristics of this technique9. By coupling the fluorescence EEMs and the regression 
coefficients developed by chemometric models, more knowledge about the cultivation process can be acquired, 
enabling important decisions at real time, like the optimum harvesting time.

Conclusions
The present work demonstrates the feasibility of using fluorescence spectroscopy coupled to chemometrics to 
assess multiple parameters during N. oceanica cultivation. It was shown that this technique can be applied to this 
microalga to assess not only biomass (as cell concentration) and pigments (chlorophyll), as in previous studies, 
but also different fractions of fatty acids. This outcome has a major impact on the monitoring of microalgae pro-
duction, especially when aiming lipids production.

Different environmental conditions were tested to increase the response range of the parameters under 
study, which allowed the development of accurate models for all the parameters with low errors (REMSECV and 
RMSEP between 0.12 and 0.40) and high R2 (between 0.65 and 0.93). Furthermore, the regression coefficient 
maps highlight the importance of the pigment and the protein regions for the development of these models.

In overall, the fluorescence excitation-emission matrices contain a huge amount of diverse information from 
the process that can be translated into quantitative information using adequate mathematical tools, such as devel-
oped in this study.

Data availability
The datasets generated and analysed during the current study will be available in the MAGNIFICENT Zenodo 
repository, after publication.
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