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Abstract
In this study, we propose an evolution law of COVID-19 transmission. An infinite ordered lattice represents population. 
Epidemic evolution is represented by a wave-like free spread starting from a first case as an epicentre. Free energy of the 
virus on a given day is defined equal to the natural logarithm of active infected cases number. We postulate a form of free 
energy built using thermodynamics of irreversible processes in analogy to isotherm wave propagation in solids and non-local 
elastic damage behaviour of materials. The proposed expression of daily free energy rate leads to dissipation of propagation 
introducing a parameter quantifying measures taking by governments to restrict transmission. Entropy daily rate represent-
ing disorder produced in the initial system is also explicitly defined. In this context, a simple law of evolution of infected 
cases as function of time is given in an iterative form. The model predicts different effects on peak of infected cases Imax 
and epidemic period, including effects of population size N, effects of measures taking to restrict spread, effects of popula-
tion density and effect of a parameter T similar to absolute temperature in thermodynamics. Different effects are presented 
first. The model is then applied to epidemic spread in Tunisia and compared with data registered since the report of the first 
confirmed case on March 2, 2020. It is shown that the low epidemic size in Tunisia is essentially due to a low population 
density and relatively strict restriction measures including lockdown and quarantine.

Keywords COVID-19 · Transmission · Lattice · Wave · Free energy · Dissipation

1 Introduction

First cases of pneumonia unknown etiologies have been 
declared in Wuhan, China, since December 8, 2019. Pneu-
monia starts with severe acute respiratory infection symp-
toms and some cases developed acute respiratory distress 
syndrome with failure complications. On January 7, 2020, 
Chinese centre for disease control and prevention identified 
a new coronavirus (Chen et al. 2020).

COVID-19 is a human coronavirus include in the gender 
beta coroanvirus group 2b, family coronaviridae. It is the 
third strain of virus of the coronavirus family (CoV), isolated 
in humans in the context of an epidemic after SARS-CoV 
in China (2002) and MERS-CoV in Saudi Arabia (2012). 

Examination of the COVID-19 genome showed genetic 
similarity to SARS-CoV about 79.5%. Human to human 
transmission takes place by either respiratory droplets or 
close contacts. According to the world health organization, 
COVID-19 is a virus with unique characteristics that causes 
respiratory disease and which spreads via oral and nasal 
droplets (Kolifarhood et al. 2020).

On March 2, the first case has been declared in Tunisia.
Actually, COVID-19 is causing a disease representing a 

planetary problem for public health and negative impact on 
humanity (Boccaletti et al. 2020).

The objective of this paper is to propose a simple model 
to predict COVID-19 transmission using early data of the 
outbreak. Majority of epidemic transmission models are 
based on compartmental mathematical models dividing pop-
ulation in different interacting groups and assuming different 
rates of transmission between them. Solutions are conducted 
using integration of differential equations and principle of 
conservation (Kermack and McKendrick 1927). Population 
is generally assumed as a closed system, the probabilistic 
formalism of transmission between individuals of different 
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groups leads to saturation and a population size effect on 
epidemic size and epidemic period. Models that are more 
sophisticated include also Monte Carlo numerical simula-
tions for stochastic models and more realistic epidemic net-
works. See for example a review by House et al. (2013) and 
recent studies by Kim et al. (2020), Liang (2020) and Li 
et al. (2020) among several others for COVID-19 modelling.

Epidemic networks and lattice methods have their ori-
gin in social science and computer science (see for example 
a review by Keeling and Eames 2005). Lattice models are 
representation of an ordered network in which epidemic 
transmission is similar to a wave-like spread in regular grid 
representing connected individuals. Epidemic starts from 
an epicentre and spreads out in a roughly circular manner. 
Figure 1 illustrates an example in two dimensions. Lattice 
models are suitable for example for forest-fire models (Bak 
et al. 1990) where nodes represent trees that burn leaving 
empty sites. Keeling and Eames (2005) interpreted this rep-
resentation as similar to epidemic transmission.

This paper proposes, in this context, a phenomenological 
model of propagation and dissipation in analogy to elastic 
wave propagation and a size and temperature-dependent 
elastic damage material model (Ben Hassine et al. 2019; 
Limam et al. 2014). The advantage of a formalism inspired 
from thermodynamics is that different effects emerge from 
principles.

2  Materials and methods

Wave propagation is particularly studied in biomechanical 
applications for example in evaluation of dental implant 
stability (Vayron et al. 2015). In addition, elastic damage 
models are considered in geomechanics and biomechanics 
to model shock waves dissipation. For example, Nelms et al. 
(2017) applied a finite element elasto-plastic damage model 

in order to evaluate mechanical shock waves decay in cement 
microstructure. Fovargue et al. (2018) developed a model 
for kidney stone fragmentation in shock wave lithotripsy 
assuming elastic damage behaviour with reduction in the 
apparent Young modulus, in a context of thermodynamics 
of generalized standard materials behaviour (Lemaître and 
Chaboche 1978). Non-local damage mechanics are par-
ticularly considered to model shock waves dissipation. For 
example, Lu et al. (2005) developed a non-local damage 
approach to model damage wave slow propagation in solids. 
Non-local damage approaches predict a size effect on mac-
roscopic constitutive behaviour (Pijaudier-Cabot and Bazant 
1987). Size effect phenomenon was experimentally observed 
in biomechanics since the time of Galileo.

Furthermore, Limam et al. (2014) and Ben Hassine et al. 
(2019) proposed that, for isotherm processes, a scaling law 
should be associated with specific entropy S depending on 
size N and that the specific free energy � should be written 
� = U − TS(N) . In fact, internal energy is extensive and spe-
cific internal energy U should be independent of N. On the 
contrary, entropy is non-additive at small scales and become 
additive as size N tends to infinity (Tsallis 2009). Irreversible 
isotherm processes assume equilibrium at successive states 
and allow heat transfer in agreement with Fourier law. For 
this isotherm case, specific free energy � linearly decreases 
as temperature increases. This was confirmed experimen-
tally. We can cite, for example, structural health monitoring 
related to concrete and composite structures (Wang et al. 
2018; Moll et al. 2019).

On the contrary, Carlioz et al. (2019) showed that mate-
rial damage corresponding to high velocity process and to 
sudden and abrupt nature of a crack nucleation process is 
adiabatic rather than isothermal with temperature rising 
at crack tip during dynamic crack propagation due to heat 
accumulation at solid boundaries.

In this paper, in the case of epidemic transmission con-
text, isotherm open system hypothesis will be considered 
in analogy to isothermal damage process allowing heat 
transfer. Physicians who modelled epidemics spread using 
information entropy concept and epidemic thermodynam-
ics, assumed this hypothesis. For example Koivu-Jolmaa 
and Annilaa (2018) proposed an isotherm natural process 
based on thermodynamics of open systems to predict Ebola 
virus transmission using statistical mechanics and analogy 
to chemical potentials. Tsallis and Tirnakli (2020) developed 
analytical model to predict COVID-19 transmission based 
on non-extensive Tsallis Entropy.

The proposed scientific method proposed in this paper 
is developed in the same context of isotherm open systems 
considered for example by Koivu-Jolmaa and Annilaa (2018) 
and Tsallis and Tirnakli (2020), but with a free energy postu-
lated equal to the natural logarithm of active infected cases 
and written in the form U − TS(N) . The proposed approach 

Fig. 1  Lattice representation of population with a wave-like epidemic 
spread
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can be viewed as part of epidemic physical models. It rep-
resents also a complement to compartmental mathemati-
cal models and complex network based on sophisticated 
approaches taking in to account real interaction between 
different groups and heterogeneous fields of motion and 
density depicted in real maps (Gomez et al. 2020). We adopt 
a method based on an empirical macroscopic description 
of epidemic spread inspired from mechanics and thermo-
dynamics. It is noted that phenomena related to effects of 
ambient temperature or population size on COVID-19 epi-
demic transmission were recently reported in the literature. 
The proposed model is presented and explained in Sect. 3. 
In Sect. 4, the model is applied to study different effects 
including measures to restrict spread, effect of population 
density and size and effect of a parameter T similar to abso-
lute temperature in thermodynamics. Epidemic evolution in 
Tunisia is also analysed. We consider for comparison, data 
from national observer for new and emergent diseases (https 
://www.onmne .tn) until June 12.

We present also an “Appendix”. Firstly, this appendix 
aims to present the considered mechanical model (Ben 
Hassine et al. 2019). We present the simplified case of 
unidirectional behaviour, which is macroscopic, and size 
dependent. This model is therefore non-local in the sense 
of damage mechanic. Secondly, we present some phenom-
enological similarities between virus spread and mechani-
cal wave spread. Finally, this appendix includes also a table 
with both, epidemiology and damage mechanics to list the 
similarities, parameters, Equations local or non-local and 
their interpretation.

3  Theory

Consider first a simple mathematical model given by 
Eqs. (1) and (2). I

n
 is the number of infected people on day 

n . Theses Equations correspond to epidemic theoretical free 
transmission in a population of size N defined in a finite 
roughly circular convex domain part of a perfect infinite 
ordered lattice of connected people and starting from an epi-
centre I

0
= 1 belonging to the domain. Population density is 

inversely proportional to the square of distance d as depicted 
in Fig. 1. Coefficient C defined by Eq. (1) is considered as 
an intrinsic characteristic of population density and inde-
pendent of population size. It is clear that it decreases when 
distance d increases which means that when population den-
sity decreases. It represents the number of transmission 
between every infected person at wave front to other persons. 
A theoretical free transmission in the lattice corresponds to 
the linear curve with a slope ln[C] in a semi-logarithmic 
scale as depicted in Fig. 2a, b for a domain representing, for 
example, a typical dense city with N = 12 Million and 
C = 1.62. In that case, population size N will be reached at 

n
s
=

ln(N)

ln(C)
 , on day 34; meanwhile epidemic will continue to 

propagate in the lattice outside the population domain, as the 
considered population is fixed but transmission to the out-
side was made possible by hypotheses.

In reality transmission, process is dissipative and the lin-
ear curve of slope ln[C] corresponds only to early stage. It 
can be deduced, for example, from initial data curves fit-
ting in a semi-logarithmic curve as shown in Fig. 2. This 
coefficient should be reduced by measures imposed by gov-
ernments including lockdown and quarantine. It is reduced 
also by population behaviour including social distancing, 
personal hygiene, for example by wearing a mask in fear of 
the spread of the virus. This is similar to the effect described 
by, for example, Kim et al. (2020) or Liang (2020).This 

(1)I
n+1 = CI

n

(2)I
n
= C

n
I
0

(I
0
= 1)

Fig. 2  Infected cases as function of time (day n): analogy to wave 
spread in elastic damage material

https://www.onmne.tn
https://www.onmne.tn
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behaviour emerges naturally after first deaths inducing a 
disorder and long range interaction in the initial lattice of 
Fig. 1, which means physically that entropy should increase.

The idea of the proposed model can be highlighted 
when we made an empirical analogy of the linear curve as 
depicted in Fig. 2 with energy as function of time of elastic 
wave propagation in a rod obeying Hooke’s law of elastic-
ity and submitted to harmonic imposed power. Therefore, 
we defined by analogy free energy of the virus spread by 
� = ln

(

I
n

)

 which gives a constant daily rate in the case of 
linear curve as depicted in Fig. 2 and defined by Eqs. (1) 
and (2).

In reality, material behaviour as epidemic spread is dissi-
pative and wave velocity will decrease due to material dam-
age. In analogy to reduction in Young modulus of elasticity 
in damage mechanics (Kachanov 1958), we should introduce 
a reduction in C in a semi-logarithmic scale. Therefore, we 
postulate the evolution model of infected cases I

n
 on day 

n, given by Eqs. (3–7), where T is a parameter similar to 
absolute temperature in thermodynamics and where a first 
case is I

0
= 1.

In order to give a physical sense to these Equa-
tions, we define first a free energy rate of the virus noted 
�
n+1 − �

n
= Δ� given by Eq. (8). In a thermodynamically 

consistent isotherm framework, Helmholtz free energy is 
defined by the rate Δ� = ΔU − TΔS , where ΔU is internal 
energy rate and ΔS is entropy rate given, respectively, by 
Eqs. (9) and (10) in the case of virus spread analogy and 
identified from Eq. (8).

(3)
I
n+1(T)

I
n(T)

= C(n)

(

1 − D
n

)

(

1 + F
n

)T

(4)D
n
= 0 for n ≤ 21 and D

n
=

J
n−21

J
n+1

for n > 21

(5)F
n
= 0 for n ≤ 21 and F

n
=

J
n

N
for n > 21

(6)With
J
n+1

J
n

= C(n)
(

J
0
= 1

)

(7)C(n) = C for n ≤ 21 and C(n) = CR for n > 21

(8)Δ� = ln

(

I
n+1

I
n

)

= ln
(

C(n)
(

1 − D
n

))

− T ln
(

1 + F
n

)

(9)ΔU = ln
(

C(n)
(

1 − D
n

))

In order to consider lockdown and quarantine effect, C is 
decreased from day 22 and noted CR, a coefficient between 
1 and C (Eq. 7). Equation (4) is introduced to model recover-
ing or death from day 22 with parameter D

n
 . This is justified 

by recent studies reporting that observed duration of viral 
shedding among survivors was between 8 and 37 days (Zhou 
et al. 2020). This means an average of 22 days correspond-
ing to a first death. This means also different behaviours of 
governments and people for different time intervals n ≤ 21 
and n > 21 before and after this event. Equations (4, 6 and 7) 
define different coefficients C and CR to distinguish between 
no measures before the event and measures taking after the 
event. Evolution law of damage defined by these Equations 
is independent of population size and temperature and can 
be considered as an intrinsic property of virus spread but 
dependent upon people density through coefficient C and 
measures taking through coefficient CR. C and CR are there-
fore depend on different cities or countries. Equations (3) to 
(7) were inspired using similarities with non-local damage 
behaviour as shown in Table 1. As explained in the “Appen-
dix” non-local damage predicts a size effect and local dam-
age does not. In Table 1, the particular case of local damage 
behaviour corresponding to T = 0 is also presented, where 
Eq. (11) is obtained from Eq. (3) using Eqs. (4) and (6). We 
can underline here that Eq. (11) is a conservation Equation 
eliminating recovered or deceased individuals from infected 
individuals to obtain only active infected cases with a delay 
of 22 days. This Equation is similar to Equations defined by 
compartmental models as for example SIR or SEIR models. 
Meanwhile, the advantage of the present physical approach 
is that some intrinsic characteristics of virus spreading are 
considered in the model, including local interaction between 
individuals leading to its transmission and non-local interac-
tions leading to its dissipation due to an entropic effect as 
explained in analogy to the non-local damage model pre-
sented in the “Appendix”.

Its application with CR = 1.15 ignoring entropy dissipa-
tive effect which means with T = 0, leads to the trilinear 
curve presented in Fig. 2a, b where population size will 
be reached with an epidemic period n

s
= 89 days for the 

considered example in Fig. 2. Figure 2a shows also the 
theoretical case of an ideal lockdown with CR = 1 and 
T = 0. This leads to an epidemic period of 40 days due to a 
recovering rate higher than infection rate in that case with 
an epidemic peak of 11,200, reached on day 21 and inde-
pendent of N. Evolution law of damage given by Eqs. (4, 
6 and 7) is defined exclusively by C and CR and remains 

(10)ΔS = ln
(

1 + F
n

)

(11)

I
n+1(0)

I
n(0)

= C(n)
(

1 − D
n

)

=
J
n+1

J
n

(

1 −
J
n−21

J
n+1

)

=
J
n+1 − J

n−21

J
n
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independent of population size. This evolution law of dam-
age induces a decreasing of internal energy rate defined by 
Eq. (9) which remains also independent of population size 
and temperature and equal to free energy rate when T = 0. 
Effects of T and N are rather due to entropy production. 
Similar hypothesis was considered for a damage evolution 
law as an intrinsic characteristic of the material independ-
ent of specimens size and temperature see Ben Hassine 
et al. (2019) and (Limam et al. (2014).

Equation  (5) is introduced to consider population 
size effect, also from day 21. It is worth mentioning that 
the considered free energy is choosing with an entropy 
rate ΔS = ln

(

1 + F
n

)

 , null before damage initiation 
(F

n
= 0 for (n ≤ 21)) and always positive, which means that 

entropy increases according to the second law of thermo-
dynamics and contributes to dissipate free energy of the 
virus. Theoretical free transmission in an ordered lattice 
case given by Eqs. (1) and (2) can be obtained when con-
sidering CR = C, and T = 0, in analogy to absolute zero 
state in thermodynamics, where entropy effect vanishes. 
Parameter T should be understood as for example hygiene 
measures in the system which can be linked also to ultra-
violet rays increasing with ambient temperature rising. 
When increased it contributes to increase entropy effect 
and consequently to decrease free energy rate and epi-
demic spread. This is in agreement with recent environ-
ment studies shown also through statistical analysis of 
data that transmission decreases as ambient temperature 

increases, see for example Prata et al. (2020) and Liu et al. 
(2020).

Figure 2b shows an example applying the proposed model 
with N = 12 Million, C = 1.62, CR = 1.15 and T = 7. Introduc-
ing entropic effect, epidemic size is decreased with a peak 
of 79,000 infected cases and an epidemic period of 56 days. 
Parameters were chosen to give an order of epidemic com-
parable to a dense city like Wuhan (Liang 2020; Li et al. 
2020); . C was identified from the first slope of data using a 
regression analysis between day 8 and day 21. This choice of 
linear behaviour was not arbitrary. In fact, we assumed that 
virus spread similarly to material behaviour is linear at early 
stages of loading. Similarities between local elasticity and 
linear spread are depicted in Table 1 (“Appendix”).

4  Results

4.1  Restriction measures (CR) effect

Figure 3 presents an example of the model applied first with 
N = 12Million, C = 1.62, CR = 1.15 and T = 7 in a Cartesian 
scale and then with the same parameters but more restricted 
measures traduced by a reduction in C on day 21 to CR = 1.1. 
It can be observed that CR = 1.1 describes stricter meas-
ures that induce a decreasing of epidemic size and slightly 
increase epidemic period. The maximum of positive cases 
Imax is decreased from 79,000 to 46,000. Figure 3 presents 

Table 1  Phenomenological analogy between damage mechanics and virus spread

Mechanical model Virus spread

Time (t) Time (day n)
Cartesian scale Semi-logarithmic scale
Young modulus E Coefficient C
Material density constant Density of population constant
Unidirectional semi-infinite rod x ∈ [0,+∞[ considered system x ∈ ]0,L[ 

system size L
Population of size N part of infinite population

constant imposed power at x = 0 First case
Local elasticity Linear spread (Eqs. 1 and 2)
Stored energy proportional to � ∝ Et Free energy of the virus �

n
= ln

(

I
n

)

= n ln (C)

Specific internal power proportional to Young modulus ��
�t

∝ E

Free energy rate of the virus 
Δ�

n
=

�n+1−�n

n+1−n
= ln

(

In+1

In

)

= ln (C)

Local damage (without size and temperature effect)
Macroscopic damage parameter due to a shock wave D
Specific internal power proportional to ��

�t
∝ (1 − D)E

Independent of L

Non linear spread (without size and temperature effect) (Eq. 11)
Damage parameter of virus spread D

n

Free energy rate of the virus Δ� = ln

(

In+1

In

)

= ln
(

C(n)
(

1 − D
n

))

Independent of N
Non local damage (with size and temperature effect)
Specific internal power proportional to ��L

�t
∝ (1 − D − Tk(L) ln (1 + D))E

Specific internal energy U ∝ (1 − D)E

Independent of L
Specific entropy S(L) ∝ k(L) ln(1 + D)E

Depend on L

Non linear spread (with size and temperature effect) Eqs. (3–10)
Free energy rate of the virus 
Δ� = ln

(

In+1

In

)

= ln
(

C(n)
(

1 − D
n

))

− T ln
(

1 + F
n

)

Internal energy rate ΔU = ln

(

In+1

In

)

= ln
(

C(n)
(

1 − D
n

))

Independent of N
Entropy rate ΔS = ln

(

1 + F
n

)

Depend on N
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also real data of infected active cases in Wuhan, China 
(Liang 2020; Li et al. 2020), until epidemic wave end on 
March 2020. Real data show that Imax is equal to 57,900 
cases, which means that CR is effectively between 1.1 and 
1.15. It is observed also that the epidemic real period is 
larger than the predicted one. This can be explained by a 
possibility of a second epicentre with a shift in time and 
space from the first one. This can be confirmed also by the 
shift in the data curve shape. It can be noted here that the 
model assumes a unique epicentre. A superposition can be 
made to include the effect of a second epicentre.

4.2  Population size (N) effect

Figure 4 shows effect of population size N on infected cases 
in a Cartesian scale. C, CR and T are fixed and the size N 
is changed from 3 to 12 and 24 Million. It is deduced that 
when population size increases epidemic size and period 
increase, with respective maximums Imax of 25,000, 79,000 

and 128,000 reached, respectively, on days 30, 39 and 
42with, respectively, epidemic periods of about 41, 56 and 
60 days. When N increases the ratio (Imax/N) decreases and, 
respectively, given by 0.83%, 0.66% and 0.53%. Figure 4 
presents also real data of infected active cases in Wuhan, 
China. Comparison shows an agreement with data. Esti-
mated population size in Wuhan is 11 Million.

4.3  Tunisian case, population density effect and T 
effect

Figure 5 presents data in Cartesian scale in Tunisia until 
April 25. On this date, our ministry of health reported 38 
deaths and 194 recovered cases. The model is depicted and 
reproduces actual data tendencies, considering C = 1.3 cor-
responding to initial data fitting in semi-logarithmic scale. 
It represents quarantine and lockdown effects thereafter 
with CR = 1.115.The model reproduces data tendencies 
with Imax = 912 and an epidemic period of 92 days, which 
means an epidemic spread end at the beginning of June if 
the same measures are maintained. It is noted that a reduc-
tion in C from 1.62 to 1.3 induces a reduction in epidemic 
peak of about 50 times as deduced when comparing Fig. 5 
with Fig. 3. Furthermore, it is noted in Fig. 5 that parameter 
T when changed from 7 to 25 slightly decreases epidemic. 
Furthermore, Fig. 6 presents updated real data until June 12. 
A good agreement is observed between data and the model.

5  Discussion

An evolution law of COVID-19 based on analogy with 
wave propagation in elastic solids and a non-local damage 
model is proposed. The key coefficient C is obtained by a 
linear fitting of initial slope of data in a semi-logarithmic 
scale between day 8 and day 21. Results are very sensitive 
to this parameter, considered as an intrinsic parameter of 

Fig. 3  Restriction measures effect on infected cases curve (N = 12E6, 
C = 1.62, T = 7)

Fig. 4  Population size effect on 
infected cases curve (C = 1.62, 
CR = 1.15, T = 7)
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population density. For populations of a comparable size, 
but with coefficients, respectively, C = 1.3 and C = 1.62, 
results show that epidemic size can increase very fast. The 
second important parameter is CR. It traduces measures like 
lockdown and quarantine. When controlled, which means 
decreased, it decreases epidemic size.

6  Conclusion

The low predicted epidemic size in Tunisia is essentially 
due to a low population density (C = 1.3) and strict restric-
tion measures (CR = 1.115). Population density is inversely 
proportional to the square of distance d depicted in Fig. 1 
which explains its important effect on transmission. Infor-
mation exchange, democratization of access to knowledge 
and long-range non-local interaction between humans at a 
planetary level contribute to dissipate pandemic and help 
humanity to be prepared to a possibility of a second wave.

Author contributions OL proposed the model and wrote the manu-
script. ML developed medical aspects of the model and wrote the 
manuscript.
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Appendix

Presentation of the mechanical non‑local damage 
model

The model was applied to unidirectional isotherm behav-
iour of concrete under quasi-static compression. It was 
validated using comparison with experimental tests. It was 
derived in a context of generalized standard behaviour of 
material verifying Clausius–Duhem inequality (Limam 
et al. 2014). Constitutive macroscopic behaviour (Eq. 12) 

Fig. 5  COVID-19 spread in 
Tunisia (N = 12E6, C = 1.3, 
CR = 1.115, T = 7, T = 25)

Fig. 6  COVID-19 spread in 
Tunisia with updated data until 
June 12
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exhibits a size and ambient temperature effects on mac-
roscopic strength and secant modulus of elasticity with 
decreasing as size and temperature increase.

Consider a rod of length L and imposed displacements 
u(0) and u(L) at its boundaries.

Macroscopic elastic damageable constitutive behaviour 
associating macroscopic stress �

L
 to macroscopic strain 

�
L
=

u(L)−u(0)

L
 is given by Eq. (12).

This macroscopic behaviour derives from a chosen spe-
cific free energy �

L
 given by Eq. (13) where D is damage 

parameter between 0 and 1, E is Young modulus and k is 
an increasing positive function with horizontal asymptote. 
A unique evolution law of damage parameter D as function 
of loading history was considered. This law is independ-
ent of the size L and absolute temperature. Evolution law 
of damage was considered as an intrinsic characteristic 
of material.

It is important to note here that specific free energy was 
obtained through a second-order Taylor series development 
ln (1 + D) ≈ D −

D2

2
 and can be written as follows:

This specific free energy �
L
= U − TS(L)  was defined as 

function of a specific internal energy U and specific entropy 
S given, respectively, by Eqs. (15) and (16).

Specific internal energy U is independent of L and inter-
nal energy is proportional to L; meanwhile specific entropy 
S(L) depends on L and is size dependent. This hypothesis is 
based on physical principles. For discrete physical systems 
with weak correlation between microstates, entropy associ-
ated with a given macro-state is not necessary additive at 
small sizes. However, it becomes additive for large sizes. 
This means also that specific entropy increases as function of 
system size and tends asymptotically to a constant for large 
sizes (Tsallis 2009).

In Eq.  (12), stress is the sum of tow components the 
first one is derived from the internal energy and given by 
Eq. (17).

(12)�
L
=

��
L

��
L

=

(

1 − D − Tk(L)D

(

1 −
D

2

))

E�
L

(13)�
L
=

(

1 − D − Tk(L)D

(

1 −
D

2

))

E
�2
L

2

(14)�
L
= (1 − D − Tk(L) ln(1 + D))E

�2
L

2

(15)U = (1 − D)E
�2
L

2

(16)S(L) = k(L) ln(1 + D)E
�2
L

2

The second component is an entropic stress given by 
Eq. (18)

Physicians state that entropic forces are long range 
(March’s principle). This means that long-range non-local 
interactions should be defined in order to obtain macroscopi-
cally Eq. (18).

Figure 1 is a simple representation drawn to understand 
phenomenologically virus spread.

The key ideas to explain virus spread is that:

1. Without exchange of information between individuals, 
virus is spreading by transmission or diffusion due to 
close contact. This means that transmission is a local 
phenomenon. This means also that persons represented 
by nodes in Fig. 1 are not informed about what happens 
far from them.

2. Long range exchange of information and interaction 
between persons induce a non-local entropic force oppo-
site to virus spread in analogy to mechanical entropic 
stress given by Eq. (18). Dissipation of spread is there-
fore a non-local phenomenon.

Table 1 presents, firstly, similarities between elastic wave 
propagation in a semi-infinite rod submitted to a constant 
power and free linear spread. Similarities are extended 
thereafter to shock wave propagation in a semi-infinite rod 
modelled as a non-local damage medium. Resolution of 
dynamics with non-local equations remains possible but 
complicated. The presented Equations are therefore phe-
nomenological and macroscopic.
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