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Abstract: “How do proteins fold?” Researchers have been studying different aspects of this question
for more than 50 years. The most conceptual aspect of the problem is how protein can find the
global free energy minimum in a biologically reasonable time, without exhaustive enumeration of
all possible conformations, the so-called “Levinthal’s paradox.” Less conceptual but still critical are
aspects about factors defining folding times of particular proteins and about perspectives of machine
learning for their prediction. We will discuss in this review the key ideas and discoveries leading to
the current understanding of folding kinetics, including the solution of Levinthal’s paradox, as well
as the current state of the art in the prediction of protein folding times.

Keywords: protein folding; Levinthal’s paradox; “all-or-none” transition; free energy barrier; folding
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1. Introduction

The problem of protein folding is one of the most important problems of modern theoretical
biophysics. It appeared more than 50 years ago when Anfinsen et al. demonstrated that proteins can
spontaneously fold into their unique 3D native structure in vitro [1,2]. (We will mostly speak about
single-domain water-soluble globular proteins, mainly of ~20–300 amino acid residues, or separate
water-soluble globular domains of multi-domain proteins, because most of the research on spontaneous
protein folding has been done on that kind of protein molecules. We will not consider membrane
and fibrous proteins, which, as a rule, experience an assisted folding rather than spontaneous
self-organization.) Since Anfinsen’s experiments, the problem of protein self-organization attracted
much attention of physicists and became the major problem of protein physics (sometimes called,
after E.I. Shakhnovich, the “Fermat’s Last Theorem of protein physics”).

The protein folding problem is an umbrella term for a dozen related problems coupled with
protein folding. Here, we will review the history of investigation and solution of the conceptually
major and the most puzzling question: How can proteins confidently find their unique 3D native
structure among zillion alternatives in a biologically reasonable time? We will leave aside the other
problems, such as prediction of protein 3D native structure from protein sequence, which has an
applied character and is still unsolved in a general case [3], despite the substantial recent progress
based on usage of the multiple deep neural networks, see [4,5].

In this review, we shall consider mostly the best-studied (both experimentally and theoretically)
case of the in vitro folding of relatively small (single-domain) water-soluble globular proteins.
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However, it is not out of place to first consider the similarities and differences between in vivo and
in vitro protein folding. Fortunately, this can be done rather readily, because a recent review published
in Biomolecules [6] outlines progress in the field of in vivo protein folding. (See also References [7,8].)

We can begin by comparing protein structure formation times in vivo and in vitro. For in vivo
folding, the average time elapsed during protein synthesis has been measured at about 0.1 s per
amino acid residue, both in bacterial and eukaryotic cells [9,10], while the spontaneous folding time of
single-domain globular proteins in vitro ranges from a fraction of a microsecond per residue for small
proteins to many seconds per residue for large single-domain globular proteins. (See Supplement
Table to Reference [11].) This means that protein folding in vitro can be both faster and slower than
in vivo protein biosynthesis.

Second, a number of experiments on large proteins have shown that their N-terminal domains are
able to fold before the biosynthesis of the whole chain has been completed [12]. In addition, it has
been shown that the multi-domain protein luciferase folds during biosynthesis or immediately after
it [13,14]. It has also been shown that a chain of staphylococcal nuclease that is truncated (from the
C-end) is compact but disordered [15], but a globin chain can efficiently bind the heme when only a
little more than half of the chain has been synthesized by the ribosome [16]. It is not clear, however,
if this truncated globin chain folds before interaction with the heme or as a result of this interaction.
(If folding were to result from the interaction, that behavior would resemble that of intrinsically
disordered proteins interacting with their ligands [17,18].)

Co-translational folding can occur early, within the polypeptide exit tunnel, and/or at the surface
of the ribosome; the interaction with the ribosome can alter the folding trajectory (as compared to that
of in vitro folding) in many different ways [6]. For instance, ribosomes can facilitate protein compaction
and induce the formation of intermediates that are not observed in the solution. Some further examples
of this are summarized in the review [6].

However, it seems that there is no fundamental difference between the in vivo (co-translational)
folding and in vitro refolding of denatured proteins, at least not for small, single-domain globular
proteins: In both cases, three-dimensional native protein structures emerge only after the entire
sequence is available. Experiments on co-translational structure acquisition of small nascent protein
chains (monitored by NMR and FRET methods) have shown that “polypeptides remain unstructured
during [co-translational] elongation [at a ribosome] but fold into a compact, native-like structure
when the entire sequence is available” [19] and that “co-translational folding . . . proceeds through a
compact, non-native conformation . . . [and] rearranges into a native-like structure immediately after
the full domain sequence has emerged from the ribosome” [20]. The same effect has been observed for
co-translational folding within a mammalian cell [21]. Moreover, phi-value analysis [12], which allows
one to localize the protein folding nucleus (a key “barrier” structure, i.e., “bottleneck” in the folding
pathway), suggests that the nucleus of the Ig domain is conserved when the folding occurs on and off

the ribosome [22]. It is noteworthy, however, that the observed metastable intermediates of folding
of some small proteins, although they are not native-like, can be rather different during in vivo than
during in vitro protein folding [6]. It is also noteworthy that co-translational folding can sometimes
alleviate the need for chaperone assistance [13].

In this review, we will not consider folding of multiple-domain proteins, whose co-translational
folding seems to be facilitated by the sequential appearance of the nascent protein chain from the
ribosome. Nor will we consider membrane, fibrous, or oligomeric proteins. (See References [23–25]
for recent reviews.) That is because not all of these proteins are capable of spontaneous folding
(renaturation). Rather, we shall concentrate on water-soluble globular proteins that can spontaneously
form their unique 3D native structures in vitro [1,2].

Since these proteins fold into their native structures at proper ambient conditions independently
of initial states of their chains, there should be something special about them from the physical point
of view. Anfinsen proposed a “thermodynamic hypothesis”, assuming that the native structure is
the global free energy minimum at physiological conditions [2] because all chains of a given protein
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fold into the same native structure in diverse processes: At biosynthesis, after renaturation, or even
after chemical synthesis [26]. (We consider only conformations of separate monomeric protein chains,
and do not consider aggregated structures considered in [7]).

Then, a protein has to find the native structure within biologically relevant time (minutes) and
be sure that the found structure is the global free energy minimum. In order to prove that the found
structure is the most stable, Levinthal considered a scenario when the protein has to probe all the
conformations, check their free energies, and choose the most stable conformation [27,28]. However,
the overall number of conformations is astronomically huge: At least 2100 for a typical globular domain
of 100 amino acid residues since at least two different conformations exist for an amino acid residue
in a protein chain. If the protein chain changes its conformation every picosecond (time of thermal
vibration, the fastest physical process at room temperature), then the sampling of all 2100 conformations
would take ~1010 years. (An experiment shows that an amino acid residue of a protein chain can accept
ten different conformations, on average [29]. Originally, Levinthal assumed that an amino acid residue
in protein has even 100 different conformations, having ten possible values of φ and ten possible values
of ψ angle [28].) Additionally, at first glance, there is no way to substantially reduce the number of
conformations to sample because the folding landscape seems to be very rugged: Even a 1 Å deviation
of residue side chain can strongly decrease the stability of a densely packed protein conformation.

Therefore, we have a paradox. If the native structure is a global free energy minimum, then a
protein has to check all the conformations to be sure that the native conformation is indeed the global
minimum. On the other hand, proteins do not have billion years to sample all the conformations since
proteins have to fold within minutes, maximum in hours. Therefore, concluded Levinthal, (i) contrary
to Anfinsen’s “thermodynamic hypothesis”, the native structure does not need to be the global free
energy minimum, (ii) protein folding follows some fast special pathway invented and maintained by
the evolution, and (iii) the native structure is just the end of that special pathway. In other words,
Levinthal postulated kinetic control of protein folding because he could not reconcile kinetics (fast
folding pathway) with thermodynamics (folding into the global minimum of free energy).

However, from the experimental data, we expect the protein native structure to be the global free
energy minimum because, as mentioned above, this structure is obtained as a result of different folding
processes. We also see that proteins fold fast into their native structures. It seems that there is no
conflict between kinetics and thermodynamics; they agree with each other in real life. Conducting the
direct experiment to resolve the conflict (if any) is impossible: Assume we want to check the presence
of a structure which is more stable than the native one; should we wait for 1010 years?

As for the computer experiments, it was shown in 1994 that model protein chains do fold fast to
the structure corresponding to the global free energy minimum, provided it is at least by a few kcal/mol
deeper than the other free energy minima, i.e., in this case, the protein folding obeys thermodynamic
control [30,31]. This confirms the absence of conflict between “kinetics control” and “thermodynamics
control” for sufficiently stable protein structures and hints that fast folding pathway to the global
free energy minimum automatically exists. However, why must such a pathway exist? What are
the characteristics of such a pathway? Finally, how do proteins fold? These and other questions
address protein folding kinetics. Therefore, a protein folding model has to present a kinetic explanation
of protein folding. Probably, that was the reason why most of the protein folding models and/or
hypotheses utilized the “kinetic control” assumption:

First, Phillips in 1966 proposed that protein starts its folding using a structure formed by its
N-terminal residues [32], which are the first to emerge from a protein synthesizing ribosome, and when
the remaining protein chain comes from the ribosome, it wraps around this first-formed “seed”
structure. However, many proteins fold after a circular permutation that moves the N-terminal piece
of its chain to the C-end of the chain [33]. Thus, the N-end of the chain plays no special role.

Second, Wetlaufer hypothesized that the adjacent residues should form the native-like “seed”
structure first [34]. However, numerous later experiments showed that it is not necessary for
successful folding.
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Third, Ptitsyn proposed a model of hierarchical folding, where native-like elements of secondary
structure fold first, and only after that, the tertiary structure appears [35].

Finally, the “folding funnel” concept became extremely popular to illustrate and give a kind of
explanation of protein folding [36–39] (we will discuss folding funnels below).

Note that the question “What governs protein folding, kinetics or thermodynamics?” is not purely
scholastic; it has a significant practical impact. For example, when designing a protein de novo, should
we try to design high stability of the native structure or a fast folding pathway to it? When predicting
3D native structure from the amino acid sequence, should we look for the most stable or for the most
rapidly folding structure?

Let us refresh some basic experimental facts about thermodynamics and kinetics of folding and
denaturation of single-domain proteins. These facts will help us understand what chains and what
folding conditions we have to consider. The facts are as follows:

1. Although a denatured protein chain can be in a number of thermodynamic states (such as
molten globule and random coil), transitions between these states are much less pronounced than
transition between any of them and the native protein globule; a strong denaturant can bring
proteins to the state of the completely unfolded random coil [40].

2. Unfolding and folding of separate protein molecules are reversible processes [2,12,41]; we will
not consider protein aggregation, which can only prevent this reversibility.

3. Both these processes, unfolding and folding, are observed even at the mid-transition (i.e.,
equilibrium) point, where the native and unfolded states have equal stabilities [12,41].

4. The transition between the native and denatured structure is an “all-or-none” transition [29],
meaning that only native and denatured states are observed to any detectable quantity, while all
alternative structures, “half-folded” or “misfolded”, are virtually absent. (Note that: (i) The
"all-or-none" transition ensures the robustness of protein functioning: Like a light bulb, the protein
either works or not; (ii) the physical theory shows that the "all-or-none" transition requires the
protein sequence to provide a sufficiently large "energy gap" between the most stable structure
and the bulk of misfolded ones [31,42–45].)

5. Even at physiological conditions, the native (i.e., the most stable) state of a protein is just slightly
more stable than its unfolded or any other denatured state of the separate protein molecule
in solution. The difference in their stabilities constitutes only a few kilocalories per mole [29],
which is much less than the energy of the native relatively to the denatured state. Additionally,
at the mid-transition (i.e., equilibrium) point, the native and unfolded states have, obviously,
equal free energies and equal stabilities.

The “all-or-none” transition means that a sufficiently high free-energy barrier separates the native
and denatured states. It is the height of this barrier that defines the kinetics of protein folding and
unfolding. Thus, just the barrier height is to be estimated to elucidate the Levinthal’s paradox.

2. Folding Funnels per se do not Solve Levinthal’s Paradox

Now, it is reasonable to take a closer look at the Levinthal’s paradox from the physical point of
view, that is, to build a physical model corresponding to the Levinthal’s model. Maybe, the closer look
will show that there is nothing physically paradoxical in this paradox at all! Indeed, the Levinthal’s
model looks more like a computer program: Protein goes one-by-one through the ordered list of
conformations, somehow remembers the most stable conformation, and then comes back to the best
choice. The first strange thing here is, how can a protein order the list of conformations? The second is,
how can a protein remember the most stable conformation and come back to it at the end? Too smart
for a protein, right?

The physical model most closely matching the Levinthal’s is the “golf course” model (Figure 1a) [38].
Here, a protein like a ball rolling over a flat landscape, samples conformations randomly until it hits the
golf hole that is the native structure. To better imagine the protein conformational sampling problem,
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note that if we would build the golf field following Figure 1a, its size (covering the area of 2100 golf
holes) would be much bigger than the solar system. The average time of hitting the native structure in
the golf course model is the same as in Levinthal’s model. A small technical difference is that in the
original Levinthal’s model, a protein must check all the conformations, and thus, the time for every
folding run is exactly 2100 ps. In the golf course model, the most probable (and the average) time is
2100 ps, but the time of a run may be somewhat shorter or larger due to random sampling.
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Figure 1. Illustrations of the protein energy landscape for different models. For illustrative purposes,
the coordinates q1 and q2 schematically present the protein conformational space, which has, in reality,
hundreds of dimensions. (a) The energy landscape for the “golf course” model. (b) A general “energy
funnel” illustration. The funnel centers on the protein native structure having the lowest energy.
(We should remind that the term "entropy" in the context of protein folding models conventionally refers
only to the configurational entropy, while the term "energy" refers to the free energy of interactions, so
that solvent-mediated forces (for example, hydrophobic and electrostatic ones), with all their solvent
entropy [40] come within "energy"; therefore, we avoid applying the word “enthalpy” to protein
folding models.) (c) A more detailed general energy landscape. The term “gap” denotes an energy
gap between the global and other energy minima, necessary to provide the “all-or-none” transition
between native and other structures of the chain. The gap must be large enough, of many kBTmelt,
where Tmelt is protein melting temperature (thus, usually, kBTmelt ≈ 0.7 kcal/mol). Adapted from [46]
with some modifications.

Unlike the ball in golf, the protein has an opportunity to escape from the native structure due to the
thermal movement characterized by thermal energy kBT (kB is the Boltzmann constant, T is the absolute
temperature of the medium). However, the free energy barrier between the native (hole) and unfolded
(flat surface) states in the “golf course” model is inevitably high [47]: The native protein structure has
to lose all its negative stabilizing energy (that is, thermal movements push it out of the native “hole”)
before it gains the entropy of the unfolded state. Vice versa, during folding, the protein has to lose first
(before falling into the hole) all its entropy, and only after that, it gains the native structure stability.
For our future consideration note also that the energy of the native state, as well as the unfolded state
entropy, and therefore the free-energy barrier in the “golf course” model is proportional to the size of
the protein, i.e., to the number of amino acid residues L. However, a separation of the unfolded and
native-like phases during the folding creates much lower barriers (see below).

Overall, the problem of huge sampling comes from the “combinatorial explosion”; finding the
lowest free-energy conformation of a protein by sampling is an “NP-hard” problem (a problem
which, in general, cannot be solved in a time polynomial with respect to L), as it has been proved
mathematically [48,49]. This, loosely speaking, means that the problem requires an exponentially big
time for its solution, by a man or by a protein chain. Usually, one takes “NP-hard” as “endlessly long”,
but we will show (see below) that although the protein folding problem is NP-hard indeed, it can
be solved in a reasonable time for such chains with L . 500 that allow a separation of the unfolded
and native-like phases during the folding, which creates a special kind of funnels, i.e., funnels with
phase separation.
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It is interesting that the stepwise mechanism proposed by Ptitsyn [35], taken per se, also cannot
simultaneously explain (1) nonastronomical folding time, and (2) co-existence of folding and unfolding
processes close to the mid-transition point [12,41]. In Ptitsyn’s model, the most stable structure built
at each step serves as a seed for the even more stable next-step structure. This helps to avoid a huge
sampling of the conformational space. However, the thermodynamic stability of the intermediate
structures constantly increases on the course of folding, meaning that the native structure is much more
stable than the unfolded one. Such a scenario can work only far from the point of thermodynamic
equilibrium and does not explain the observed [12,41] folding at the mid-transition point.

Thus, although the considered theories captured some of the important features of protein folding,
they do not solve the Levinthal’s paradox. The solution of the Levinthal paradox for the simplest
case [50–52] relies on the nucleation–condensation mechanism, where the key role is played by the
separation of the unfolded and native phase. We will consider the solution of Levinthal’s paradox in
the next part of the paper.

3. Nucleation-Based Physical Theory Solves the Levinthal’s Paradox

The major prerequisite for the building of the physical theory is to consider folding at the
mid-transition point where folding looks the simplest. Protein folding has the following crucial
peculiarities here:

1. The native protein structure folds and unfolds reversibly, and, by definition, the unfolded state of
the chain is as stable as the native protein state at the mid-transition point, where the energy of
the native state compensates the entropy of the unfolded state.

2. The native structure folds and unfolds through an “all-or-none” transition, which means that the
free energy barrier separates the native protein from the ensemble of unfolded structures [29].
Without the barrier, a protein chain of ~100 residues would fold within a microsecond because
the experimentally measured elementary time of inclusion of a residue into growing secondary
structure is τ ~ 1–10 ns [53] (this elementary time τ includes, of course, all femto- and picosecond
rearrangements of liquid water around polypeptides). Proteins of ~100 residues fold within
millions or billions of microseconds because they spend almost all the folding time t attempting
to overcome the free energy barrier. According to the transition state theory [54], the time to
overcome a free-energy barrier of the height ∆G# at temperature T is

t ~ τ × exp(+∆G#/RT). (1)

3. The “all-or-none” transition implies the existence of a substantial energy gap between the native
protein and alternative misfolded structures [31,42–45]. Thus, when the unfolded and the natively
folded states are equally stable, we can ignore folding into misfolded alternative structures
because their free energy is very high and thus their population at the mid-transition point is
invisibly low, so that they cannot compete with correct folding.

4. According to the physical “detailed balance principle” [55] (following from the impossibility
of a “perpetual motion machine of the second kind”, which, in turn, is a direct consequence
of the Second Law of thermodynamics: such a machine would be possible, if a pathway of
direct reaction were different, under the same equilibrium ambient conditions, from the pathway
of recurrent reaction, because this difference would lead to a perpetual directed flow under
equilibrium ambient conditions, and this flow would be able to power the perpetual motion
machine of the second kind), the distribution, probabilities, and rates of the folding pathways are
the same as those of the unfolding pathways (under the same equilibrium ambient conditions,
of course), but going in the reverse direction. (If ambient conditions under which the direct
reaction (say, folding) is studied differ from the ambient conditions under which the recurrent
reaction (say, unfolding) is studied, the pathways of these two studied reactions can be different,
of course.)
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The scheme of free energy picture looks symmetrical at the mid-transition point (Figure 2a).
Indeed, there are two equally stable states with a free energy barrier between them. The height of the
barrier is, therefore, the same when looking at it from both sides. Both folding and unfolding processes,
under the same ambient conditions, take the same time and follow, according to the conventional
“detailed balance principle” [55] the same pathway(s) and thus also look symmetrical: A protein chain
tries to overcome the barrier and succeeds after millions or billions of trials. It is curious that many
people have considered and discussed the Levinthal’s paradox of protein folding, but nobody has ever
mentioned its symmetry to the paradox of protein unfolding. Though, according to the conventional
“detailed balance principle”, the folding and unfolding should take one and the same time at the
mid-transition point! (And close times in a vicinity of this point: When the native state is more or less
stable than the unfolded one by a few kcal/mol, which is typical of proteins [29], the activation barrier
for folding is lower or higher than that for unfolding by a few kcal/mol as well, and the folding time is
smaller or greater than the unfolding time by a few orders of magnitude [12,41], which is nothing as
compared to those many tens orders of magnitude that appear in the Levinthal’s paradox.)
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Figure 2. A schematic view of a sequential reversible folding–unfolding pathway of a globular
protein [50,51]. At each step in the direction of folding, an unfolded residue joins the growing native
structure. The native-like part (shaded) of semi-folded intermediates on the fast folding–unfolding
pathway should be compact, i.e., the boundary separating unfolded (depicted with the broken line),
and native phases should be minimal. The free energies of natively folded, unfolded, and transition
states, which determine the folding/unfolding rates, depend on ambient conditions, but, being functions
of the states, they are independent of how protein arrives at these states. ∆G#, the transition state free
energy (i.e., that of the nucleation of the folded structure) is counted off that of the initial unfolded
state; it corresponds to the maximal free energy on the fastest folding–unfolding pathway. (a) The
mid-transition case: Equal stabilities of the unfolded and native states (i.e., ∆G = 0) maintain dynamic
(50%:50%) equilibrium between them. (b) The in-water case: The native state is more stable than the
unfolded one (i.e., ∆G < 0), and therefore all or nearly all protein molecules obtain their folded native
state. Adapted from [52] with some modifications.

Using the folding–unfolding symmetry, we can consider the pathway of unfolding instead of
folding to get a rough estimation of the barrier height.

In the “golf course model”, folding takes an astronomically long time because protein has to
lose all its entropy before starting to gain the negative energy of interactions. For a faster folding,
it is necessary that the gain of the interaction energy nearly immediately compensates the loss of
conformational entropy [56].

Such a compensation is achieved at a sequential folding–unfolding pathway, where all intermediate
structures are compact (Figure 2). On the folding pathway (restored from the corresponding unfolding
pathway, which is much easier to imagine), the next residue joins the growing globule losing its
entropy but gaining the energy of its interactions with globule. At the end of the folding pathway,
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the gain of energy compensates for the loss of entropy completely; however, during the folding,
this entropy-to-energy tradeoff occurs partially since the interactions of the considered residue with still
unfolded part of the globule are not yet formed, thus leading to a temporary energy loss. The resulting
delay is more prominent at the beginning of the folding and reaches its maximum in the transition
state, being proportional to the interface between the natively folded and unfolded phases, i.e., to L2/3,
where L is the number of amino acid residues in the protein chain. In addition to the temporary
energy loss, closed loops that may protrude (see central parts of Figures 2 and 3a) from the folding
nucleus (corresponding to the native-like part of the transition state [12]) lead to additional temporary
entropy loss, increasing the barrier height, and decelerating the folding. This looping effect is also
proportional to ~L2/3, having the maximum when loops maximally cover the boundary between
the native and unfolded phases in the transition state. The accurate analysis gives the following
expression [11,50–52,57]:

t ~ τ × exp[(1 ± 0.5)L2/3]. (2)

The lower estimate (proportional to exp[0.5 L2/3]) concerns “simply folded” proteins where there
are no closed loops protruding from the folding nucleus, and the upper estimate (proportional to
exp[1.5 L2/3]) concerns proteins with complicated chain folds that inevitably have many closed loops
protruding from the folding nucleus. The influence of these loops on the folding time is much greater
than the influence of the chain knotting when L is less than ~1000 [57].

The above estimate has been obtained for the unfolded chain↔ native globule transitions, but,
because transitions between various denatured states are much less pronounced than transition
between any of them and the native protein globule [40], Equation (2) should also be approximately
valid for mid-transitions between the native and any denatured state of a separate protein molecule.

Thus, on the described sequential folding pathway going through compact semi-folded structures,
the gain of energy nearly immediately and nearly completely compensates for the loss of entropy.
The folded part is in its final (native) conformation; all chain rearrangements occur in the unfolded
phase. The free energy barrier on that kind of pathway depends only on relatively subtle surface
effects, being higher for the transition states having many closed loops covering boundary between the
native and unfolded phases and lower in case of absence of the closed loops. The barrier scales with
the number of amino acid residues L as L2/3.

Figure 3b shows that the deduced range of protein folding times fits well the experimental data
at the above-considered mid-transition conditions (usually obtained at moderate concentrations of
denaturants [12]), where the native and denatured states of proteins are equally stable. This fit remains
true for proteins at more biological “in-water” conditions, where their native states are sufficiently
more stable than the denatured ones (see below).

The range in the Equation (2) defines the folding times in the mid-transition point. At biological
conditions, the times should be corrected depending on the stability of the native structure ∆G [11]
(∆G is below zero at “biological” conditions, while ∆G ≡ 0 at mid-transition):

t ~ τ × exp[(1 ± 0.5) × (L2/3 + 0.4 × ∆G/RT)], (3)

where factor 0.4 reflects the fact that transition state structure has ≈40% of the native interactions,
on average [11]. According to the Hammond postulate [58], the resulting stabilization of the transition
state should constitute 40% of that for the native state.

Equation (3) shows that the term ∆G/RT (which can reach −20 under “biological” conditions) can
decrease the folding time by up to five orders of magnitude [11], in a reasonable coincidence with the
experiment; these five orders of magnitude cover about a half of the “allowed” by theory folding times
for proteins of L ~ 100 amino acid residues (see Figure 3b).

Figure 3b also shows that, in accordance with the initial assumptions done in works [50,51], there is
no principal difference between folding times for the equal-size proteins that fold with or without
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folding intermediates [11]; earlier, it has been also shown [59] that there is no principal difference
between folding times for the equal-size proteins with or without SS bonds.

Equations (2) and (3) show that all proteins of less than 80–100 residues fold sufficiently fast
regardless of peculiarities of their native structures; they do not need construction of any “special
pathway” to fold within a biologically-reasonable time (minutes), and thus their native 3D structures
are under complete thermodynamic control. Thus, the Levinthal’s paradox is solved for the proteins of
~100 or less residues.

Figure 3b also shows that the upper limit of folding times for proteins of L > 100 amino acid
residues corresponds, actually, not to a “physical limit” given by Equations (2) and (3), but to a
“biological limit” of about 10 min under “biological” conditions.
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Figure 3. (a) The free energy diagram for the folding of a globular domain. Unfolded (left), native
(right), and transition state (middle, #) structures are given. The dashed line denotes the unfolded
phase, while the dotted body denotes the native phase. (b) Experimentally measured in vitro folding
times at mid-transition and at “biological” (“in water”) conditions (or close to them) for 107 proteins.
The bright triangular region defines the folding times at the mid-transition point outlined by physical
theory (Equation (2)). If we additionally draw the biological limit line (“bio-limit”) corresponding to
~10 min, we get a “golden” triangle reflecting the physical and biological restrictions for the protein
folding times at the mid-transition point. Two additional bronze areas join the “golden” triangle if we
also consider physiological conditions. Two extra dashed lines define the mid-transition (yellow) and
in-water (bronze) boundaries for proteins with more elongated or oblate native structures (axis ratio
2:1 or 1:2). L denotes the number of amino acid residues in a protein. ∆G is the free energy difference
between the native and unfolded states of the protein for particular (“in water” or “mid-transition”)
conditions. Adapted from [11] with some modifications.

Structures of bigger, consisting of more than ~100–200 residues, single-domain proteins, if they
are too “complicated” (so that they cannot avoid formation of too many loops in their transition
states), would fold significantly longer (days, weeks, etc.). These “too complicated”, as well as all
“too large” (of L > 500 residues) quasi-spherical domains are not observed [11], and it seems that
they had no chance to appear in the course of evolution. Such “structural control” of large protein
domains resembles “kinetic control” proposed by Levinthal, but it works only for proteins of more
than 100 residues.

It should be noted that protein chains consisting of many hundreds or thousands of amino
acid residues form several domains (cf. [6,11]). Folding of multi-domain proteins in vivo usually
proceeds in a domain-wise fashion [6], and although each domain can somewhat stabilize or destabilize
neighboring domains, a quasi-independent (both in vivo and in vitro) folding of these domains can
allow them to fold within a time typical for folding of separate domains.
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4. Enumeration of Protein Folds

Despite the solution of the Levinthal’s paradox, some issues are still left. We can imagine unfolding
as a process where fluctuating protein structure samples neighbor conformations until it occasionally
samples the transition state and overcomes the free energy barrier. However, the symmetrical process of
folding, though justified physically, is counterintuitive to imagine: Unfolded chain samples neighboring
conformations, and after millions-to-billions fluctuations, it achieves the structure where approximately
half of the protein has already folded in the native structure. It sounds a bit similar to the Levinthal-like
search, so it is tempting to modify the Levinthal’s scenario to reconcile exhaustive search with reality.

As already pointed out by Levinthal, proteins obviously do not do the search at the level of
individual conformations. We know from the computer experiments that each local minimum is a
center of local energy funnel [36]. A protein has just to hit any conformation inside the native funnel,
and after that, it immediately folds. Thus, we have to estimate the number of local minima and the
time of jumping from one minimum to a neighbor.

This idea resulted in the topomer search model (TSM) proposed by Debe et al. [60] and developed
further by Makarov and Plaxco [61]. TSM suggests two-stage folding: First, a protein searches
randomly for the native “topomer” (cluster of states having native-like topology) and after that, quickly
folds into the native structure. The estimated number of protein topomers was ~107 for a 100-residue
protein [60], which drastically reduced Levinthal’s zillions years to biological times.

The application of TSM to distinct protein native structures gave such good results in the estimation
of protein folding times [62] that it seemed that TSM reconciles the Levinthal-like search with reality.
To check this, Wallin and Chan performed a computer experiment of protein folding on lattice models
with explicit chains [63] guided by the TSM implementation proposed in [61]. However, Wallin and
Chan found that “finding the correct native topomer state in a random, unbiased TSM search is so
unlikely that it is comparable to the hypothetical Levinthal search process.” [63].

Finkelstein and Garbuzinskiy used an alternative idea on how to cluster the protein conformational
space [64,65]. They argued that each local minimum has to be more or less compact, with formed
secondary structure elements. Thus, the number of local minima to enumerate is just the number of
different compact folds composed by the secondary structure elements. Having considered the full
combinatorics at the level of secondary structure formation, they obtained that the search time scales as

t ~ τs·LN (4)

or
t ~ τs·exp[N × ln(L)], (5)

where τs is some characteristic time constant associated with the secondary structure rearrangement,
and N is the number of secondary structure elements (note that N is smaller than L by at least an order
of magnitude, and ln(L) . 5 for L ~ 100). The value of τs (estimated from that chains of L ≈ 20 residues
form a single α-helix within ~0.2 µs [66] and a hairpin of two β-strands within ~6 µs [67]; see also
references in [11,68]) turned out to be ~10 ns, i.e., rather close to the τ value in Equations (2) and (3).

Considering a secondary structural element length as a diameter of a globule of an L-residue
protein having a volume of ≈150 Å3

× L [46], they found that α-helix and β-strand consist of ≈3 L1/3

and ≈1.5 L1/3 residues, respectively; and the loops connecting the secondary structure elements are
known to be of approximately the same size as β-strands [46], i.e., of about 1.5 L1/3 residues. Having
divided the chain length L by the length of a secondary structure element plus a loop, they found the
number of the secondary structure elements in a globule to be, at most, N = L2/3/3. Substituting this
into Equation (5) gives the scaling for a chain of L ~ 100 residues (Equation (6)), which coincides with
the upper estimate from the Equation (2). Note that the time in the Equations (4) and (6) gives only the



Biomolecules 2020, 10, 250 11 of 19

upper limit of the enumeration time since many of the obtained folds do not exist in nature (such as a
sole β-strand in a protein or an α-helix being in the same layer with β-strands or vice versa).

t ~ τs·exp{[ln(L)/3] × L2/3} ≈ τs·exp(1.5 × L2/3) (6)

Of course, this estimation does not mean that proteins fold by enumeration of the secondary
structure packings. From the structure of the folding nuclei, we know that tertiary structures
form concurrently with secondary structure during the unfolded chain—native structure transitions.
However, it is noteworthy that the above given analysis of the Levinthal-style enumeration of secondary
structure packings, resulting in Equations (4)–(6), does not contradict either to the upper estimate of
the time of overcoming the free energy barrier separating the unfolded and native states of protein
chain (given by Equations (2) and (3)), or to the observed time of the most slow protein folding.

5. Refinement of Existing Estimates of Protein Folding Times

Physical theory based on the nucleation mechanism reduced the time of searching for the global
free energy minimum from Levinthal’s zillion years to milliseconds–hours. The resulting range of
the folding times at mid-transition given by Equation (2) entirely agrees with the experimental data
(Figure 3b), but the correlation of logarithms of the theoretically estimated and observed folding times
is about 69% only. Can one develop a more accurate estimation?

This problem seems feasible because the dependence given by Equation (2) describes only the
general reliance of folding time on the protein length and existing of protruding closed loops in the
transition state. There is a hope that one can improve the folding time estimate by taking into account
the peculiarities of the 3D native structure and/or amino acid sequence of a particular protein.

However, before that let us consider physiological conditions, which are more interesting for
researchers than the mid-transition point. Up to now, we only have a stability-induced correction as an
additional term in Equation (3). This correction is useful for understanding the folding time but not for
its actual prediction because for most of the proteins we do not have experimentally defined stability
under physiological conditions.

Thirumalai has considered downhill folding at conditions providing a high protein structure
stability [69]. The folding, in this case, is decelerated only by the energy landscape ruggedness, which is
proportional to L1/2. Gutin et al. carried out computer experiments at the conditions providing the
fastest folding [70], i.e., also very far from the transition midpoint. They found that the folding time
scales as ln L. Overall, this can mean that folding time can scale with L as LP, where P, depending on
conditions, ranges from nearly zero [70] to 1/2 to 2/3 [50,51].

Coming back to Equation (2), recall that L2/3 reflects the surface for a general case of an L-residue
protein. However, the shapes of real proteins can differ a lot, providing different cross-sections, even for
proteins of the same size. Uniformly spherical proteins cannot avoid big boundary between the native
and unfolded phases in the transition state and fold slower than elongated proteins, which can “choose”
the smallest cross-section and fold faster [71] (see also [11] and dashed lines in Figure 3b).

Another way to correct the length dependencies is to recall that α-helices are very rapidly
formed [66] folding units. Subtraction of the helical residues (but for those forming the first helix turn)
from the protein chain length L gives the “effective chain length Leff” defining the protein folding time
better than L [72].

An alternative (or rather complementary) view of helices is that they accelerate folding because
they form mostly local contacts. The fraction of local contacts in a protein structure shows a good
correlation with the logarithms of the folding times of small proteins having approximately one and the
same size [73]. In 1998 Plaxco et al. introduced “relative contact order” (rCO), a general characteristic
of the locality of the native contacts in protein structure: It is small for α-helical proteins (having
relatively small folding time) and large for β-structural proteins (more entangled because of many
long-range contacts and having relatively large folding time) [74]. The value of rCO discriminates
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well folding times for proteins of more-or-less the same size, but it fails to predict folding times of
large proteins, because it depends on the chain length L, as approximately L−1/3 [75] (i.e., rCO is small
for large proteins and has to predict that they fold more rapidly than small proteins, which is so far
not true).

As a result, for proteins of different sizes it turned necessary to use the “absolute contact
order” [75,76] (Equation (7)), which scales with L as about L2/3 [75], in accordance with Equation (2),
and is higher for more entangled chain folds. Therefore, when AbsCO is used instead of (1 ± 0.5) L2/3 in
Equation (2), the quality of the logarithms of folding times predictions increases from 69% to 73% [75].
What is more interesting is that when 9.5 × ln AbsCO (where 9.5 is an adjustable parameter) instead of
AbsCO is used this gives even a much greater increase in correlation with logarithms of protein folding
times, up to 87% for 107 proteins used in Figure 3b [77].

AbsCO = L × rCO (7)

The reason seems to be the presence of the biological limit, see the corresponding “boil-limit” line
in Figure 3b. It cuts off the upper part of the physically allowed range, and the resulting “allowed”
area for protein folding times shrinks (“golden triangle”, Figure 3b). As a result, the line corresponding
to 9.5 × ln AbsCO + 0.4 × ∆G/RT can be well fitted to the beginning (up to L = 100) of the line ln (t/τ) =

L2/3 + 0.4 × ∆G/RT, corresponding to the middle of the “golden triangle” in Figure 3b, while the rest (at
L > 100) of the line 9.5 × ln AbsCO + 0.4 × ∆G/RT comes close to the “bio-limit” line.

At the end of this part, we should review and assess the attempts to apply machine learning
techniques for a more accurate prediction of protein folding times. Machine learning has made enormous
progress in different fields; see, for example, the recent improvement in protein three-dimensional
structure prediction [4,5]. Machine learning relies on computer algorithms that build predictive
models from experimental data without explicit instructions. Sometimes the term “machine learning
methods” includes statistical methods as well; we will also use this convention henceforth. The first
machine learning method for predicting protein folding times was published in 2001 [78], soon after
the publication of the first empirical method for such prediction in 1998 [74].

In preparing to apply machine learning methods, an investigator must choose which protein
features to use in building a given prediction method. That is, the researcher must decide which factors
are potential determinants of protein folding time; this choice is entirely up to the researcher. If it
becomes clear that a protein feature does not improve the prediction, or it appears to be highly similar
to another feature, the researcher can remove that feature from the predictive model. For that reason,
researchers often put many protein features into their initial pool of parameters and then winnow them.

Overall, machine learning methods have used features including protein length [79–86], amino acid
composition [85–87], number of hydrophobic and charged residues [81], protein secondary structure [79,
80,86,88], relative [78,80,82,89] and absolute [82] contact orders, long-range order [86,89,90], total contact
distance [82,89,90], stability [78], size of amino acids, polarity, and other amino acid properties [85,89,
91–93], among other features.

Machine learning algorithms applied in predicting protein folding times fall into three categories:

1. Multiple linear regression [79–81,84,85,87–89,91–94], in which logarithms of folding times are
approximated by the sum of the protein features, with each feature having an adjusted weight.
The Equation (8) below is an example of multiple linear regression.

2. Neural networks [78,83,90]. Two sources provide general descriptions of the neural networks
approach [95,96].

3. Support vector machine regression [82,86]. Two sources provide general descriptions of the
support vector machine approach [97,98].

Ideally, a prediction method should work for any single-domain globular protein, independently
of its size, structural class, or the presence of folding intermediates [78,83,84]. However, because of
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importance of two-state folding proteins in studies of protein folding [12], many methods are built
only for them [79–81,85,90,92,93].

Machine-learning methods optimize the agreement (specifically, the Pearson correlation coefficient,
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) of calculated values with experimental
ones. The obtained model cannot be translated to a physical model of protein folding (at least,
not directly); we can only state that some protein features influence folding time more than others do.
Therefore, we can discuss the performance of machine learning methods, but not their consistency
with our current understanding of protein folding. The correlation coefficients between predicted and
experimentally measured folding times range from 0.74 [83]—which is almost as good as that for the
best empirical methods discussed above—to the amazingly high 0.99 [91].

As we can see, most machine learning methods seem to outperform analytical and empirical
methods. It is, therefore, useful to recall the difference between them concerning the building of
the predictive model. Analytical and empirical methods usually hypothesize a single dependence,
which looks reasonable, either physically (resulting in analytical methods of prediction) or logically
(resulting in empirical methods)—for example, a dependence based on contact order [74] or on chain
length [51], or on contact order and chain length [75]. The parameters for empirical and analytical
models are meaningful (e.g., contact cutoff and definition of neighbor residues in the contact order
paper [74]). Empirical methods use experimental data to justify the tested hypothesis and, sometimes,
to fine-tune the parameters of the model (e.g., adjustment of the contact cutoff in the contact order
hypothesis [74]). However, the adjustment of the parameters is optional for the empirical methods
(because the parameters have a clear physical sense); on the other hand, for machine learning methods
the adjustment of the parameters plays a central role [78,79,81–83,87,89–92,94].

Due to the principal differences noted above, it is interesting to look at the proof of statistical
significance for both empirical and machine learning methods. For a method having one hypothesis
and no adjustable parameters, the correlation coefficient and p value are enough to elucidate its
predictive power. (The p value is the probability of getting the obtained correlation coefficient for the
given data solely by chance; p value < 0.05 conventionally denotes a statistically significant result.)
When several hypotheses are tested, the probability of obtaining a good correlation just by chance
increases correspondingly, so that the correction for multiple hypotheses should apply. In the case
of adjustable parameters, to avoid overfitting, the model has to be checked against data not used for
building the model.

Analytical and empirical methods usually use one hypothesis, while the adjustable parameters
(if any) are few, and they are meaningful. Therefore, the correlation coefficient obtained for the
whole (training) set, as well as the p value without correction for multiple hypotheses, are close to the
correct values obtained from the testing set. In contrast, the number of generated hypotheses and the
number of adjustable parameters can be enormous when researchers use machine learning methods.
For example, Gromiha (who obtained the amazingly high 0.99 correlation without any attempt to
correct the p value for using many hypotheses at once) investigated 2,138,409 hypotheses in a single
study [91] and presented the three best correlations as prediction methods. In the same study, he used
a pool of 49 adjustable parameters [91]; in another study, Jiang et al. used 270 features in the pool of
parameters [85]. In the absence of a physically/logically reasonable idea, the formally, uncritically used
“statistical proof” too often becomes the only priority for machine learning methods.

To study this phenomenon, which, in principle, can lead to drastically worse results obtained for
the testing sets than those reported for the training sets, Corrales et al. checked three machine learning
methods by applying them to new data, data not used when building the models [99]. It turned out
that for all three considered machine learning methods the obtained correlations were significantly
worse than those declared in the original publications. In all three cases, we see an overtraining in
a general sense, meaning that the correlation obtained on the training set was substantially better
than that for the testing set. The reason for the overtraining is that the number of experimentally
measured folding times is only a little higher than a hundred (if to exclude mutant proteins) [11,100],
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and a part of this limited number has to be used to compose the training and the rest for the testing
set, while the number of used adjustable parameters amounted to several tens. Typically, machine
learning techniques optimize these tens of parameters to achieve maximal correlation on the training
set, though, having a low amount of available data, this sometimes may be done only at the cost of
dropping the predictive power on the testing set.

To illustrate the problem of the low amount of available data, Corrales et al. built the model
having 19 adjustable parameters based on the amino acid occurrences in proteins having different
folding times [99]:

ln t = a0 + λΣ20
i=1 ai Ni, (8)

where Ni is the number of amino acid residues of type i in the given protein sequence, and λ, a0, a1, . . . ,
a20 are parameters fitted from the experimental data (note that a1 + . . . + a20 ≡ 1 by definition, and the
values of λ and a0 do not influence the correlation of the “predicted” (computed) and experimental ln
t values).

From machine learning experiments, Corrales et al. drew the so-called “learning curves” (Figure 4):
From a general dataset that included 114 proteins, they first sampled a subset of a given size (from 35
to 114 proteins), see Figure 4, and then they used randomly chosen 60% of proteins from the selected
subset for training the model (the aim was to adjust the variable parameters so as to obtain the highest
correlation of “predictions” and experiment), while the remaining 40% of proteins were used for testing
the model. They repeated this procedure thousands of times to have distributions of the correlation
coefficients on the training and the testing sets.
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current machine learning techniques that use too many adjustable parameters (provided that 
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only for fine-tuning small second-order corrections to the existing rough but physically or 

Figure 4. Learning curves for the model having 19 adjustable parameters based on the amino acid
occurrences in proteins having different folding times (left). For sub-datasets of different sizes (x-axis)
sampled randomly from the general experimental dataset for 114 proteins, the 60% and 40% of the
sub-dataset were used for training and testing the model, respectively. The shaded area depicts the
most frequently observed values of the correlation coefficient (within one standard deviation from the
average value): Blue and red for the training and testing sets, respectively (left). The same for the above
described (see Equation (2) and Figures 2 and 3) model, where t = τ × exp[L2/3], that has no adjustable
parameters (right). Adapted from [99] with minor modifications.

We see that the current amount of data is far from being sufficient to get the same (or at least close)
correlation coefficient on the testing and training sets (Figure 4, left panel). In contrast, the “physical”
model, which follows from Equation (2) and has no adjustable parameters shows a perfect coincidence
of the correlation coefficients obtained on the testing and the training sets (Figure 4, right panel).
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Figure 4 shows that results obtained by machine learning techniques (with many adjustable
parameters) on small training sets are very good, but then results obtained by these techniques on
testing sets are very bad. When the training sets grow, results obtained on them become worse, but the
really sought-for results obtained on testing sets become better. However, the results for training
and testing sets can converge only when the volume of testing sets exceeds the number of adjustable
parameters by at least an order of magnitude.

6. Conclusions

To summarize, the theoretical and semi-empirical methods (that use such meaningful parameters
as the chain length [51,69,70], protein globule cross-section [71], α-helical content [72], locality of
contacts [73], contact order [74,75], etc., but do not use or use a very small number of adjustable
parameters) show better predictive power and correlation with experiment than the current machine
learning techniques that use too many adjustable parameters (provided that correlations are obtained
on testing and not training sets) [99]. Given the still relatively low number of experimental points,
the purely statistical and machine learning techniques can be currently useful only for fine-tuning small
second-order corrections to the existing rough but physically or biologically meaningful estimates, or for
finding relatively small corrections for parameters already known to play a physically or biologically
meaningful role in folding [83]. For the machine learning techniques, to predict protein folding times
better than the existing theoretical and semi-empirical methods, the number of experimental points
should be much higher than now.
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