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Abstract

Ovarian cancer is the leading cause of cancer related deaths in women. Genetic alterations including overexpression of EGFR
play a crucial role in ovarian carcinogenesis. Here we evaluated the effect of phenethyl isothiocyanate (PEITC) in ovarian
tumor cells in vitro and in vivo. Oral administration of 12 mmol PEITC resulted in drastically suppressing ovarian tumor
growth in a preclinical mouse model. Our in vitro studies demonstrated that PEITC suppress the growth of SKOV-3, OVCAR-3
and TOV-21G human ovarian cancer cells by inducing apoptosis in a concentration-dependent manner. Growth inhibitory
effects of PEITC were mediated by inhibition of EGFR and AKT, which are known to be overexpressed in ovarian tumors.
PEITC treatment caused significant down regulation of constitutive protein levels as well as phosphorylation of EGFR at
Tyr1068 in various ovarian cancer cells. In addition, PEITC treatment drastically reduced the phosphorylation of AKT which is
downstream to EGFR and disrupted mTOR signaling. PEITC treatment also inhibited the kinase activity of AKT as observed
by the down regulation of p-GSK in OVCAR-3 and TOV-21G cells. AKT overexpression or TGF treatment blocked PEITC
induced apoptosis in ovarian cancer cells. These results suggest that PEITC targets EGFR/AKT pathway in our model. In
conclusion, our study suggests that PEITC could be used alone or in combination with other therapeutic agents to treat
ovarian cancer.
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Introduction

Ovarian cancer is one of the leading causes of gynecologic

cancer-related deaths among women in western countries [1]. The

cause of ovarian cancer is not clear and it is often detected at an

advanced stage. The overall prognosis of ovarian cancer is very

poor despite significant advances in surgical and therapeutic

management [2]. The current standard of care includes

cytoreduction followed by cytotoxic chemotherapy. However,

recurrence remains a significant problem [3]. The most common

form of ovarian cancer arises from ovarian surface epithelium.

Epidermal growth factor receptor (EGFR) is commonly expressed

in ovarian surface epithelium [4].

Activation of various tyrosine kinases including EGFR is

important in ovarian cancer pathogenesis. Approximately 70%

of ovarian tumors express activated EGFR [5]. EGFR is a trans-

membrane receptor whose activation is a highly conserved

process. Various ligands such as EGF and TGF activate EGFR.

EGFR plays a significant role in neural development and

formation of skin. However, in cancer cells, EGFR is involved in

various pro-survival and anti-apoptotic pathways [6–8]. Further-

more, EGFR is also involved in cell migration, metastasis,

angiogenesis and EMT [9–11].

One of the major downstream pathways that are regulated by

EGFR is AKT. Activation of EGFR leads to the activation of

AKT by its phosphorylation at Ser-473 [12,13]. AKT is frequently

activated or overexpressed in ovarian tumors [14,15] and plays a

major role in ovarian carcinogenesis. The overexpression of AKT

is frequently associated with poor prognosis and more aggressive

phenotype. Like EGFR, AKT also plays a major role in

angiogenesis, metastasis and anti-apoptosis. Since EGFR and

AKT are involved in various aspects of cancer growth ranging

from tumor initiation, angiogenesis, and metastasis, EGFR-AKT

axis represents an attractive target for therapeutic intervention.

PEITC is a major isothiocyanate present in cruciferous vegetables

[16]. Accumulating epidemiological evidence indicates an inverse

relationship between intake of cruciferous vegetables and the risk of

ovarian cancer [17,18]. Several studies, including those from our

laboratory suggested that various isothiocyanates possess chemo-

preventive and therapeutic properties [16,19,20]. PEITC in

particular was shown to be effective against prostate, cervical and

lung cancers [21–23]. Interestingly, PEITC is in clinical trials for

lung cancer. In the present study, we investigated the mechanism by

which PEITC inhibits the proliferation of ovarian cancer cells and

evaluated its efficacy in vivo in a tumor xenograft model.

Materials and Methods

Chemicals
Antibodies against Cl-caspase3, Cl-PARP, p-EGFR (Tyr-1068),

EGFR, p-AKT (Ser-473), p- mTOR (Ser 2481), Raptor and AKT
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Figure 1. PEITC suppresses the growth of ovarian tumor xenografts by inhibiting EGFR-AKT pathway. SKOV-3 tumor cells were
implanted into athymic nude mice and randomized into two groups. Mice received PBS or 12 mmol PEITC by oral gavage every day until day 42. (A–i)
Effect of PEITC on tumor growth. (A-ii) Tumor weight from control and treatment groups (B) Inhibition of EGFR signaling in the tumors of mice
administered with PEITC. Tumors from control and treated mice were excised at day 42, lysed and analyzed by western blotting for p-EGFR (Tyr-1068),
EGFR, p-AKT (Ser-473), AKT, Cl-Caspase 3 and Cl-PARP. Blots were stripped and reprobed with actin antibody to verify equal protein loading. Each lane
represents a different tumor sample. (C) Densitometric quantitation of western blotting represented above. The differences between the groups were
compared by student’s t-test. Statistical tests were two sided. *p,0.05 when compared to control.
doi:10.1371/journal.pone.0043577.g001
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antibodies were obtained from Cell Signaling Technology

(Danvers, MA). Rictor antibody was obtained from Novusbio

(Littleton, CO). PEITC, actin antibody, TGF, SRB, MCDB105

and Medium 199 were procured from Sigma Aldrich (St. Louis,

MO). RPMI and McCoy 5A were purchased from Mediatech

(Manassas, VA). AnnexinV apoptosis kit was procured from BD

biosciences (San Jose, CA).

In vivo Tumor Xenograft
Four to six week old female athymic nude mice were purchased

from Charles River Laboratories (Wilmington, MA). Institutional

Animal Care and Use Committee (IACUC), Texas Tech

University Health Sciences Center approved the use of mice and

their treatment, and all the experiments were carried out in strict

compliance with regulations. Mice were fed with antioxidant-free

AIN-76A special diet for a week before starting the experiment.

About 56106 SKOV-3 cells were injected subcutaneously into

both right and left flanks. Ten mice were assigned randomly to

each group. Since each mouse was implanted two xenografts, each

group had twenty tumors. Mice in the control group received PBS,

whereas, mice in the treatment group received 12 mmol PEITC

suspended in PBS by oral gavage every day. Tumor growth was

monitored until day 42 as described by us previously [16,24]. At

day 42, mice were euthanized and tumors were removed, weighed

and processed for western blot analysis.

Cell Cultures
SKOV-3, OVCAR-3, TOV-21G cells lines were procured from

American Type Culture Collection (ATCC, Manassas, VA).

SKOV-3 cells were maintained in McCoy’s 5A medium

supplemented with 10% Fetal Bovine Serum (FBS). OVCAR-3

cells were maintained in RPMI medium supplemented with 20%

FBS, 10 mM sodium pyruvate, 10 mM HEPES, 10 mg/L bovine

insulin and 4.5 g/L glucose. TOV21G cells were maintained in

1:1 mixture of MCDB105 and Medium 199 supplemented with

15% FBS. A 1% antibiotic mixture was used in all the above

media. All the cell lines were maintained at 37uC in a humidified

incubator circulated with 5% CO2/95% air.

Sulphorhodamine B Cell Survival Assay
About 5,000 cells in 0.1 ml medium were plated in 96 well

plates and allowed to attach overnight. Desired concentrations of

PEITC were added to the cells and incubated at 37uC for 24 h.

The cells were then processed and stained with 0.4% SRB solution

and the absorbance was read at 570 nm using a Biotek plate

reader as described by us previously [25].

Western Blotting
SKOV-3, OVCAR-3 and TOV-21G cells were exposed to

varying concentrations of PEITC alone or in presence of TGF. In

another experiment, cells were treated with 15 mM PEITC for

different time intervals. For concentration dependent study

SKOV3 cells were treated with 7.5, 15 and 30 mM PEITC for

24 hours. Cells were collected, lysed, and 20–80 mg of protein was

subjected to SDS gel electrophoresis followed by immunoblotting

as described by us previously [20,25].

Annexin-V Apoptosis Assay
SKOV-3, OVCAR-3 or TOV-21G cells were plated at a

density of 0.36106 cells per well in a six-well plate and allowed to

attach overnight. Cells were then treated with or without PEITC.

After 24 hours, cells were washed, suspended in binding buffer and

incubated for 15 minutes with Annexin V-FITC. Fluorescence was

measured using C6 Accuri flow cytometer (Ann Arbor, MI) with a

minimum of 10,000 events per sample as described by us

previously [16,26].

Immunoprecipitation Assay
Immunoprecipitation assay was performed to examine the effect

of PEITC on the complex of mTOR with Rictor and Raptor.

Briefly, SKOV3 cells were treated with 15 mM PEITC for 24

hours. The cell lysates from control and PEITC treated cells were

immunoprecipitated with the mTOR antibody (Cell Signaling), as

described by us earlier [27]. The proteins were separated by SDS-

polyacrylamide gel and transferred to PVDF membrane. The

membranes were immnobloted for Rictor, Raptor and mTOR

using respective antibodies.

TGF Treatment
SKOV-3 or OVCAR-3 cells were treated with 50 ng/ml TGF

for 1 hour followed by incubation with different concentrations of

PEITC for 24 hours. Cells were then processed for western

blotting as described above.

AKT Overexpression
SKOV-3 cells were transiently transfected with plasmid

containing wil-type AKT (a generous gift from Daniel Altschuler,

University of Pittsburgh, Pittsburgh, Pennsylvania) by using

Fugene (Roche). Briefly, 0.36105 cells were transfected with

0.5 mg of the AKT plasmid diluted in Opti-MEM serum-free

medium to which Fugene reagent was added before the mixture

was added to cells. Cells were incubated with plasmid-Fugene

mixture for 6 hours and then media was replaced with fresh

growth medium and incubated for another 24 hours. Transfected

cells were treated with 10 mM PEITC for 24 hours. Whole cell

lysates were subjected to Western blot analysis and actin was used

as loading control.

Quantitation and Statistical Analysis
All the statistical analysis was performed using Prism 5.0

(GraphPad Software Inc., San Diego, CA). The data represents

mean 6 S.D. Student’s t-test was used to compare the control and

treated groups. In experiments involving more than three groups,

non-parametric analysis of variance followed by Bonferroni post

hoc multiple comparison test was used. All statistical tests were two

sided. Differences were considered statistically significant when the

p value was less than 0.05.

Results

Phenethyl Isothiocyanate (PEITC) Suppresses Ovarian
Tumor Growth in a Xenograft Model

Isothiocyanates were shown to be therapeutically active against

various malignancies. To test the possibility that PEITC treatment

would suppress the growth of ovarian tumors, SKOV-3 tumor

xenografts were established in female athymic nude mice by

subcutaneously injecting 56106 cells in both right and left flanks.

Mice were randomly divided into control and treatment group.

Tumor bearing mice were fed 12 mmol PEITC every day and

tumor growth was recorded periodically. Our results demonstrate

that PEITC substantially suppressed the growth of ovarian tumors

in athymic nude mice. For example, at day 42, the average tumor

volume in mice from treatment group was approximately 60 mm3,

whereas average tumor volume in mice from control group was

approximately 220 mm3 (Fig. 1A). Both tumor volume and tumor
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Figure 2. PEITC is cytotoxic to human ovarian cancer cells. Effect of varying concentrations of PEITC for 24 hours on (A) SKOV-3, (B) OVCAR-3
and (C) TOV-21G cells was determined by Sulphorhodamine B cell survival assay. Values are means 6 SEM of 2 independent experiments with 8
replicates. *p,0.05 when compared to control.
doi:10.1371/journal.pone.0043577.g002
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weight in the treatment group was reduced by almost 70% as

compared with control groups (Fig. 1A).

Tumor Growth Inhibition by PEITC was Associated with
Blockade of EGFR-AKT Pathway

EGFR-AKT pathway is constitutively activated in majority of

ovarian tumors. Over-expression of EGFR or its mutations are

reported in approximately 70% of ovarian tumors. Since we

observed suppression of ovarian tumors by oral administration of

PEITC, we hypothesized that growth inhibitory effects of PEITC

in ovarian tumors in vivo were through inhibition of EGFR-AKT.

To test our hypothesis, phosphorylation levels of EGFR and AKT

were examined in tumor lysates by western blotting. As shown in

Figure 1B, phosphorylation of EGFR at Tyr-1068 and AKT at

Ser-473 were drastically suppressed by PEITC treatment. Next,

we looked for apoptosis in the tumors from PEITC treated mice.

As expected, we observed cleaved products of caspase-3 and

PARP in the tumors from PEITC treated mice indicating that

PEITC induces apoptosis in ovarian tumors in vivo (Figure 1B).

These observations indicate that tumor growth suppression by

PEITC was associated with the inhibition of EGFR-AKT pathway

and induction of apoptosis.

PEITC Inhibits the Proliferation of Ovarian Cancer Cells
To determine the mechanism of PEITC, three different ovarian

cancer cells were used. SKOV-3, OVCAR-3 and TOV-21G cells

were exposed to varying concentrations of PEITC for 24 h. We

observed that PEITC treatment reduced the proliferation of

ovarian cancer cells in a concentration dependent manner

(Figure 2 A–C). The IC50 of PEITC was approximately 15 mM

in SKOV-3 cells (Figure 2A). In OVCAR-3 and TOV-21G cells,

IC50 was observed to be approximately 20 mM and 5 mM

respectively (Figure 2 B–C).

Figure 3. PEITC induces apoptosis in ovarian cancer cells. SKOV-3, OVCAR-3, TOV-21G, cells were treated with varying concentrations of PEITC
for 24 hours. Flowcytometry and western blotting were used to determine apoptosis. (A) SKOV-3, (B) OVCAR-3 and (C) TOV-21G cells treated with
varying concentrations of PEITC.
doi:10.1371/journal.pone.0043577.g003
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PEITC Induces Apoptosis in Ovarian Cancer Cells
In another experiment, we tested whether growth inhibitory

effects of PEITC were concurrent with its apoptosis inducing

ability. Treatment of SKOV-3 cells with various concentrations of

PEITC resulted in approximately 2 to 5 fold apoptosis over

control (Fig. 3A i). To rule out the cell specific effects of PEITC,

we evaluated PEITC-induced apoptosis in two other ovarian

cancer cell lines. Our results showed that apoptosis induced by

PEITC was nearly 4 to 6 fold in OVCAR-3 and 2 to 10 fold in

TOV-21G cells (Fig. 3 B–C). These observations clearly establish

that PEITC reduces the proliferation of ovarian cancer cells by

inducing apoptosis.

Apoptosis inducing effects of PEITC were further confirmed by

western blot analysis that revealed cleavage of Caspase-3 and

PARP in PEITC- treated ovarian cancer cells (Figure 3 A–C).

PEITC Inhibits the Activation of EGFR in Ovarian Cancer
Cells

To extend the molecular observations made in vivo, we treated

SKOV-3 and OVCAR-3 cells with PEITC for 24 hours. As shown

in Figure 4, PEITC treatment significantly blocked the phosphor-

ylation of EGFR at Tyr-1068 in a concentration dependent

manner in all the three cell lines tested. Approximately, 50%

decrease in the phosphorylation of EGFR at Tyr-1068 was

observed in SKOV-3 cells when treated with 30 mM PEITC

(Figure 4A), whereas 65% inhibition was observed in OVCAR-3

cells exposed to 10 mM PEITC for 24 hours (Figure 4B).

Interestingly, our results also revealed a dramatic reduction in

the protein expression of EGFR in ovarian cancer cells treated

with PEITC (Figure 4 A–B). Taken together, these results

demonstrate that PEITC blocks the phosphorylation as well as

reduce protein levels of EGFR in ovarian cancer cells.

PEITC Treatment Blocks AKT Activation
EGFR regulates various cellular processes by directly acting on

downstream molecules such as AKT. Activation of EGFR leads to

the phosphorylation of Akt at Ser 473. Because we observed a

significant blockade in EGFR activation by PEITC treatment, we

sought to determine the effect of PEITC on both activation and

constitutive expression of AKT. Exposure of SKOV-3, OVCAR-3

or TOV-21G cells to different concentrations of PEITC for 24 h

resulted in the significant inhibition of the phosphorylation as well

as constitutive expression of AKT (Fig. 5 A–C). More than 50%

reduction was observed in the phosphorylation of AKT at Ser 473

in SKOV-3 cells (Figure 5A). AKT phosphorylation was reduced

by70% and 90% in OVCAR-3 and TOV-21G cells respectively

(Figure 5 B–C). PEITC had similar effects on constitutive

expression of AKT in all the three ovarian cancer cell lines.

These results indicate that PEITC modulates the downstream

molecules of EGFR pathway.

AKT Kinase Activity
Since substantially reduced phosphorylation of AKT was

observed by PEITC treatment; we wanted to confirm these

observations by AKT kinase activity, which measures the

functionality of AKT. AKT activity was determined by evaluating

the phosphorylation of its downstream substrate GSK. As shown

in Figure 5D, a significant reduction in the kinase activity of AKT

was observed in OVCAR-3 and TOV-21G cells. For example,

treatment of OVCAR-3 cells with 10 mM PEITC for 24 hours

resulted in the inhibition of approximately 80% AKT kinase

activity as compared with control cells (Figure 5D).

Early Inhibition of EGFR by PEITC
To evaluate whether induction of apoptosis by PEITC was

associated with EGFR inhibition, SKOV-3 cells were treated with

15 mM PEITC at different time intervals. The reduction in the

phosphorylation of EGFR and AKT was observed just after 2

hours of PEITC treatment and this effect increased at later time

points (Figure 6A). However, cleavage of PARP was observed only

after 8 hours PEITC treatment suggesting that inhibition of

EGFR/AKT lead to apoptosis in our model (Figure 6A).

Figure 4. PEITC inhibits the activation of EGFR in ovarian
cancer cells. Representative blots showing the concentration depen-
dent effect of PEITC on p-EGFR (Tyr-1068) and EGFR in (A) SKOV-3 and
(B) OVCAR-3 ovarian cancer cells. Actin was used as loading control.
Each *p,0.05 when compared to control.
doi:10.1371/journal.pone.0043577.g004
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Figure 5. PEITC inhibits AKT in ovarian cancer cells. Representative blots of the concentration dependent effect of PEITC on p-AKT (Ser-473)
and AKT in (A) SKOV-3, (B) OVCAR-3 and (C) TOV-21G ovarian cancer cells. Actin was used as loading control. *p,0.05 when compared to control. (D)
Concentration dependent effect of PEITC for 24 h on AKT kinase activity as represented by phosphorylation of GSK at Ser-21/9 in OVCAR-3 or TOV-
21G cells.
doi:10.1371/journal.pone.0043577.g005

PEITC Targets EGFR to Suppress Ovarian Cancer

PLOS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e43577



Activation of EGFR-AKT by TGF is Inhibited by PEITC
EGFR can be activated by growth factors and ligands such as

TGF and EGF. When TGF binds, EGFR is phosphorylated which

in-turn phosphorylates its downstream molecules such as AKT.

Treatment OVCAR-3 cells with 50 ng/ml TGF resulted in the 3

fold activation (phosphorylation) of EGFR and AKT (Fig. 6B).

However, PEITC treatment was able to reduce the activation of

EGFR and AKT induced by TGF (Figure 6B). The effect of TGF

and PEITC on cleavage of caspase-3 and PARP was also

evaluated. From Figure 6B, it is clear that PEITC treatment was

able to induce cleavage of caspase-3 and PARP in OVCAR-3

cells.

AKT Overexpression Abrogates the Effects of PEITC
To further strengthen our observation that PEITC-induced

apoptosis was mediated by AKT inhibition in ovarian cancer cells,

we transiently transfected SKOV-3 cells with AKT encoding

plasmid for 24 hours, resulting in almost 7 fold increase in the

expression of AKT. Correspondingly, phosphorylation of AKT at

Ser-473 also increased substantially. AKT overexpression com-

pletely prevented PEITC induced suppression of AKT phosphor-

ylation. Furthermore, AKT overexpression abrogated PEITC

induced apoptosis as evaluated by cleavage of PARP (Figure 6C).

Taken together, our results clearly indicate that apoptosis induced

by PEITC was almost completely blocked in the cells overex-

pressing AKT, indicating AKT as a target of PEITC in ovarian

cancer cells.

PEITC Inhibits mTORC1 and mTORC2 Complexes
Recent literature suggests that EGFR-AKT activation regulates

mTOR activity which is important for cell proliferation [28,29].

mTOR is regulated by two complexes- mTORC1 and mTORC2.

The mTORC1complex consists of regulatory associated protein of

mTOR (Raptor), which binds to mTOR and facilitates mTOR

signaling in translation and cell growth [30,31]. On the other

hand, mTORC2 complex consists of Rapamycin insensitive

companion of mTOR (Rictor) bound to mTOR. The Rictor-

mTOR (mTORC2) complex regulates the phosphorylation of

AKT at Ser 473 [32]. Since, we observed that PEITC suppressed

the phosphorylation of AKT, we hypothesized PEITC treatment

would disturb mTOR signaling. As expected, our results

demonstrated that PEITC treatment disrupted mTOR signaling

Figure 6. TGF treatment of AKT overexpression overrides the
effects of PEITC. (A) Representative blot of time dependent effect of
15 mM PEITC on p-EGFR (Tyr 1068), p-AKT (Ser-473), Cl-PARP in SKOV-3
ovarian cancer cells. Actin was used as loading control. (B) OVCAR-3
cells were stimulated with 50 ng/mL TGF for 1 hour after treatment
with varying concentrations of PEITC for 24 hours. Whole-cell lysates
were resolved on 10% SDS-PAGE for the analysis of phosphorylation of
EGFR at Tyr-1068, phosphorylation of AKT at Ser-473, and cleavage of
caspase-3 and PARP. Actin was used as a control for loading. Effect of
AKT overexpression on PEITC induced apoptosis was also determined in
SKOV-3 cells. (C) Representative blots showing p-AKT (Ser 473), AKT and
Cl-PARP. Actin was used as a loading control.
doi:10.1371/journal.pone.0043577.g006

Figure 7. PEITC treatment inhibits mTOR, Raptor and Rictor of
mTORC1 and mTORC2 complexes. (A) Representative blots of the
concentration dependent effect of PEITC (0–7.5 mM) on p-mTOR (Ser-
2481), Rictor and Raptor on SKOV-3 ovarian cancer cells. Actin was used
as loading control. (B) SKOV3 cells treated with 5 mM PEITC for 24 h
were immunoprecipitated with mTOR antibody. The blots were probed
with antibodies for Rictor and Raptor.
doi:10.1371/journal.pone.0043577.g007
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by down-regulating p- mTOR (Ser 2481) and expression of

Raptor and Rictor, which are involved in mTORC1 and

mTORC2 complexes (Fig. 7A). To confirm the dissociation of

the complex, mTOR was immunoprecipitated from control and

PEITC treated cells and immunoblotted for Rictor and Raptor.

Our results clearly showed that mTOR complex partners Rictor

and Raptor were suppressed by PEITC treatment in SKOV3 cells

(Fig. 7B). The expression of mTOR-associated Rictor was reduced

more than Raptor by PEITC treatment (Fig. 7B). These

observations suggest that the mTORC2 complex was affected

more by PEITC treatment than mTORC1 complex. Nonetheless,

further studies are required to delineate the exact mechanism by

which PEITC disrupts mTORC1 and mTORC2 complexes.

Discussion

In the present study, we showed the mechanism by which

PEITC suppressed the growth of ovarian cancer cells in culture as

well as in animal model. Our results show that oral administration

of 12 mmol PEITC to athymic nude mice significantly suppressed

the growth of SKOV-3 ovarian tumor xenografts. Tumor growth

suppression by PEITC treatment was associated with increased

apoptosis in the tumor cells, which in turn was linked with the

inhibition of EGFR and AKT activation. Inhibition of phosphor-

ylation of EGFR and AKT were confirmed in SKOV-3 and

OVCAR-3 ovarian cancer cells by western blotting. PEITC also

blocked TGF-mediated activation of both EGFR and AKT.

Overexpression of AKT by transient transfection substantially

blocked the apoptosis inducing effects of PEITC. Our results

showed that PEITC inhibits ovarian tumor growth in vivo by

suppressing EGFR-AKT pathway and identifies EGFR-Akt axis as

a target of PEITC.

Constitutive activation of EGFR has been reported in various

cancers including breast, prostate and ovarian [33–35]. EGFR

family of proteins is vital for cell growth. Activated EGFR is

diversely involved in transducing growth signal and inhibiting

apoptosis. In addition, it is also involved in angiogenesis, EMT and

metastasis [9,10]. A study conducted by Alper and colleagues have

shown that approximately 70% of ovarian tumors express high

levels of EGFR [36]. Inhibition of EGFR activation has been

shown to suppress the growth of human cancer cells [37,38].

Moreover, most of the cancers acquire drug resistance due to the

activation of EGFR pathway [3,39]. Therefore, inhibiting EGFR

could be one potential approach to treat ovarian cancer. Our

results showed that PEITC treatment substantially suppressed the

phosphorylation of EGFR at Tyr-1068 as well as constitutive

protein expression of EGFR in different ovarian cancer cell lines.

In agreement with these results, tumors from PEITC treated mice

also showed drastic suppression of both active and constitutive

expression of EGFR. Our results indicate that PEITC suppress the

growth of ovarian cancer cells by disrupting the phosphorylation

of EGFR. These results are in agreement with several studies

which showed that chemopreventive agents such as diindolyl-

methane, resveratrol, capsaicin and silibilin suppress the growth of

prostate, breast and lung cancer cells by targeting EGFR [40–43].

Studies by Trachootham et al., and Satyan et al. demonstrated the

anti-cancer effects of PEITC in ovarian cancer cells through ROS

generation and MAPK activation [44,45]. Our current study

indicates an additional mechanism of action of PEITC in ovarian

cancer cells.

AKT is pivotal to EGFR activation. Activated EGFR further

activates AKT by phosphorylating it at Ser 473 [46]. AKT is a

potent survival pathway that may mediate resistance to the

apoptosis inducing effects of chemotherapy and radiation therapy

in a variety of cancer types including ovarian cancer [47]. Several

studies have shown the involvement of AKT signaling in apoptosis

[48]. AKT is frequently overexpressed in ovarian cancer and plays

a major role in ovarian carcinogenesis [14,15]. Overexpression of

AKT is frequently associated with aggressive phenotype and poor

prognosis of ovarian cancer. Blockade of AKT has been shown to

cause apoptosis in breast and pancreatic cancers [16,49,50]. Our

study reveals that PEITC blocks both the activation and protein

expression of AKT in all the three ovarian cancer cells. PEITC

mediated inhibition of AKT was further verified by kinase activity

of AKT by determining the phosphorylation of GSK. Several

studies demonstrated the association of AKT activity with EGFR

activation [51,52]. Our results also showed that PEITC treatment

reduced mTOR, Raptor and Rictor indicating that PEITC targets

mTORC1 and mTORC2 complexes. Curcumin and fisetin also

were shown to modulate the expression of mTOR, Rictor and

Raptor in colorectal and prostate cancer cells respectively [53,54].

The immunoprecipitation studies demonstrated that the expres-

sion of mTOR-associated Rictor was reduced more than Raptor

by PEITC treatment. These observations suggest that the

mTORC2 complex was affected more by PEITC treatment than

mTORC1 complex. Since mTORC2 complex regulate the

activation of AKT in cancer cells, our results suggest that reduced

phosphorylation of AKT by PEITC treatment was primarily

associated with the disruption of mTORC2 complex. Our results

are in agreement with the studies published by Toschi et al.

demonstrating the dissociation of Rictor from mTORC2 complex

to enhance cell death by Rapamycin [55]. Furthermore, exposure

of cells to TGF, a ligand of EGFR substantially increased the

activation (phosphorylation) of AKT but suppressed by PEITC.

These observations indicate that EGFR is upstream and pivotal to

the activation of AKT in our model. Our results also showed that

ovarian tumor growth suppression by PEITC was associated with

the inhibition of AKT phosphorylation and expression. Our

results thus established AKT as a target of PEITC in ovarian

cancer cells.

It is important to note that oral administration of PEITC has

reasonable bioavailability. Oral administration of 10 mmol PEITC

in rats resulted in approximately 9.260.6 mM PEITC in the

plasma after 0.44 hour of treatment [56]. In another study

performed in healthy human volunteers, consumption of 100 g

watercress by human volunteers resulted in approximately

9286250 nM PEITC in plasma [57]. In yet another study,

consumption of a single hydrolyzed extract of 3-day old broccoli

sprouts (containing approximately 200 mM total isothiocyanate)

resulted in peak concentration of 0.94 to 2.27 mM isothiocyanates

in plasma and serum within 1 hour of broccoli consumption in

humans [58]. These results indicate that the therapeutic concen-

tration of PEITC can be achieved. It is important to note that

PEITC is currently under clinical trials for lung cancer. Outcome

of the clinical trial would further validate the use of PEITC as a

therapeutic agent against various cancers including ovarian

cancer. Several EGFR targeted therapies such as monoclonal

antibodies, small molecule inhibitors or RTK inhibitors failed to

pass phase II clinical trials of ovarian cancer [59], giving rationale

to develop newer therapies.

In conclusion, our results established that PEITC suppresses the

growth of ovarian cancer in vitro and in vivo by inhibiting EGFR

signaling. Our results also provide evidence that PEITC suppress

the phosphorylation of AKT, which is regulated by EGFR. Taken

together, our study provides support for the use of PEITC in pre-

clinical and clinical settings for the management of ovarian cancer.
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