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Abstract Background/purpose: Periodontitis is a chronic infectious disease. The oxidative
stress environment can cause or exacerbate the inflammation in periodontitis. Nicotinamide
adenine dinucleotide phosphate oxidase (NOX) may be the most important source of reactive
oxygen species (ROS) in periodontal tissues. The pathological mechanism of periodontitis may
be related to the increased ROS caused by enhanced NOX activity. The purpose was to inves-
tigate the effect of tumor necrosis factor (TNF-a) on inflammatory cytokines and ROS, and the
role of NOX-2 in human gingival fibroblasts (HGFs).
Materials and methods: HGFs were cultured and divided into the normal control group (NC
group) and the inflammatory model group (TNF-a group) induced by 10 ng/ml TNF-a. There-
after, NOX-2 siRNA was used to knock down NOX-2 gene expression. Quantitative real-time
PCR was applied to detect IL-6, MCP-1, and NOX-2 mRNA levels. The levels of IL-6 and MCP-
1 protein were examined by ELISA. The level of NOX-2 was evaluated by Western blot. ROS
expression was measured by the fluorescence microplate.
Results: The mRNA and protein expression levels of IL-6, MCP-1, and NOX-2 were significantly
increased, and the expression of ROS was significantly elevated in response to 10 ng/ml TNF-a.
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Compared with the si-NC group, the mRNA and protein expression levels of IL-6 and MCP-1
were significantly down-regulated and ROS expression was significantly decreased in the si-
NOX2 group stimulated by 10 ng/ml TNF-a.
Conclusion: TNF-a promotes the expression of NOX-2 in human gingival fibroblasts and en-
hances the expression of inflammatory factors and ROS in human gingival fibroblasts through
the upregulation of NOX-2 partly.
ª 2023 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Periodontitis is a chronic infectious disease caused by pla-
que microorganisms. The interaction between the plaque
microorganisms and the host determines the development
and process of the disease, leading to the inflammatory
destruction of periodontal tissue.1 The main clinical mani-
festations of periodontitis include gingival redness,
attachment loss, formation of the periodontal pocket,
alveolar bone resorption, and tooth loosening and
displacement. It is the leading cause of tooth loss in
adults.2 In recent years, increasing evidence has shown that
the oxidative stress environment can cause or exacerbate
the inflammatory response of periodontitis.3

Reactive oxygen species (ROS) are considered a “double-
edged sword” that exerts its effects by fighting against
microorganisms. Under physiological conditions, ROS resist
and kill invading pathogenic microorganisms.4 ROS play an
important role in cell signaling, gene regulation, and anti-
microbial defense.5 However, excessive ROS production
can lead to increased oxidant load with unchanged or
reduced antioxidant capacity, resulting in a state of
oxidative stress in the tissues. It can cause pathological
changes that damage the periodontal supporting tissues of
the host and eventually lead to tooth loss with the
destruction of periodontal tissue structure.6,7 There has
been a longstanding interest in the relationship between
ROS and periodontitis.8,9

Nicotinamide adenine dinucleotide phosphate oxidase
(NOX) may be the most important source of ROS in peri-
odontal tissues.10 NOX is the terminal component of the
respiratory chain and plays a role in electron transfer,
obtaining a single electron from the cytoplasmic nicotin-
amide adenine dinucleotide phosphate (NADPH), trans-
ferring it through the plasma membrane to external oxygen
molecules, and leading to the production of ROS.11 It has
been suggested that the pathological mechanism of peri-
odontitis may be related to the increased production of ROS
caused by enhanced NOX activity. Therefore, it is crucial to
inhibit NOX activity and adequately regulate the production
of ROS in periodontitis.

Seven isoforms of NOX proteins exist in human organs,
namely NOX 1e5, DUOX-1, and DUOX-2.12 The NOX protein
family is a multimeric complex (excluding NOX-5) that in-
cludes transmembrane subunits (such as NOX-2, p22phox)
and cytoplasmic subunits (such as p47phox, NOXO1, p67phox,
NOXA1 p40phox, Rac).10 In the resting state, the cytoplasmic
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and transmembrane subunits are separated. In the acti-
vated state, the cytoplasmic subunits undergo phosphory-
lation and translocation to the transmembrane subunits,
forming a polymeric complex that functions.13 NOX-2 is
expressed in the gingival tissue of chronic periodontitis.14

For example, in NOX-2, p47phox, p40phox, and p67phox exist
as a complex in the cytoplasm in the resting state. In the
activated state, the p47phox subunit is phosphorylated and
then this complex as a whole moves toward the plasma
membrane and binds to Cytb558 on the membrane, forming
a NOX polymer complex.15

Gingival fibroblasts (GFs) have the ability to proliferate
and self-renew rapidly.16 The maintenance of normal
physiological functions such as proliferation and differen-
tiation of GFs is an important mechanism for self-healing
after periodontal tissue injury.17 In this study, we investi-
gated the effects of TNF-a on inflammatory cytokines and
ROS in human gingival fibroblasts and the role of NOX-2
through in vitro experiments.
Materials and methods

Primary cell culture

Human gingival fibroblasts (HGFs) were extracted from
healthy gingival tissues. Gingival tissues were obtained
from healthy periodontal individuals requiring crown
lengthening surgery in the Department of Periodontology,
Peking University School and Hospital of Stomatology, Bei-
jing, China. The Biomedical Ethics Committee of Peking
University School and Hospital of Stomatology approved this
study (IRB00001052-08010), and informed consent forms
were signed prior to the surgery. Gingival tissues were
immediately immersed in Dulbecco Modified Eagle Medium
(DMEM; Gibco, Grand Island, NY, USA) supplemented with
penicillin (200 U/ml)estreptomycin (200 U/ml) (Gibco).
After removal of the epithelium, collected gingival speci-
mens were minced into small pieces (0.5e1 mm3 in size),
and then plated onto a cell culture dish in DMEM medium
containing 10% Foetal Bovine Serum (FBS; Gibco) and
penicillin (100 U/ml)estreptomycin (100 U/ml). The cells
were incubated at 37 �C in a 5% CO2, 95% humidified at-
mosphere. The following experiments were conducted with
3e6 passages of HGFs. HGFs were divided into two groups:
the normal control group (NC group) and the inflammatory
cell group (TNF-a group). TNF-a (PeproTech, Cranbury, NJ,
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USA) was added to the TNF-a group when the cell density
reached 80%e90% (final concentration of 10 ng/ml). Cells
were continued to be cultured for 48 h, and samples were
collected.

Small interfering RNA transfection

NOX-2-specific small interfering RNA (siRNA) and non-
targeting control siRNA were synthesized by RiboBio
(Guangzhou, China). 1 � 106 HGFs were seeded into 6-well
plates (Corning Inc., Rochester, NY, USA) for 24 h, and the
siRNAs were transfected into HGFs grown to 70% using
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) ac-
cording to the manufacturer’s instructions. The sequence
of NOX2 siRNA was 50-CCGGAGGTCTTACTTTGAA-30.

Quantitative real-time polymerase chain reaction

Cells were collected and Trizol reagent (Ambion, Austin, TX,
USA) was added to extract total RNA from cells. Total RNA
content was detected by spectrophotometer. RNA was
reversely transcribed into cDNA using reverse transcription
kit (TOYOBO, Osaka, Japan) and cDNA was used as the tem-
plate for real-time fluorescence quantitative PCR detection
(TOYOBO). Using GAPDH as internal reference, mRNA rela-
tive expression levels of IL-6, MCP-1, and NOX family
(including NOX-1, NOX-2, NOX-3, NOX-4, and NOX-5) were
calculated by the 2�

OOCt method. The primers were syn-
thesized by Sangon Biotech (Shanghai, China) as follows: 50-
CGACAGTCAGCCGCATCTT-30 (forward primer) and 50-CCAA-
TACGACCAAATCCGTTG-30 (reverse primer) for the human
GAPDH gene, 50-GTGAGGAACAAGCCAGAGC-30 (forward
primer) and 50-TACATTTGCCGAAGAGCC-30 (reverse primer)
for the human IL-6 gene, 50-CAGCCAGATGCAATCAATGCC-30

(forward primer) and 50-TGGAATCCTGAACCCACTTCT-30

(reverse primer) for the human MCP-1 gene, 50-GGAAT-
TAGGCAAAGTGGGTTTT-30 (forward primer) and 50-CAGTG
GCCTTGTCAAAGTTTAA-30 (reverse primer) for the human
NOX-1 gene, 50- AAGATGCGTGGAAACTACCTAA-30 (forward
primer) and 50-CAGTGGCCTTGTCAAAGTTTAA-30 (reverse
primer) for the human NOX-2 gene, 50-AACATCACCTTCTG-
TAGAGACC-30 (forward primer) and 50-CTTCTTGTTG
AAATCGCCAGAA-30 (reverse primer) for the human NOX-3
gene, 50-TCACAGCCTCTACATATGCAAT-30 (forward primer)
and 50-CAGCAGCATGTAGAAGACAAAG-30 (reverse primer) for
the human NOX-4 gene, 50-TGAGCAGAAAGACACTATCTGG-30

(forward primer) and 50-CTGATGCCTTGAAGGACTCATA-30

(reverse primer) for the human NOX-5 gene.

Western blot analysis

Cells were collected and added with RIPA lysate (Solarbio,
Beijing, China) and PIC protease inhibitor (Solarbio). Ul-
trasonic cracking and centrifugal collection of supernatant.
The BCA protein detection kit (Thermo Fisher Scientific,
Waltham, MA, USA) measured the protein concentration of
the sample. The samples were separated by gel electro-
phoresis with sodium dodecyl sulfate polyacrylamide (SDS-
PAGE; Dakewe Biotech, Shenzhen, China), after which the
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proteins were transferred to polyvinylidene fluoride (PVDF)
membranes (Thermo Fisher Scientific). 5% skim milk (BD,
Franklin Lakes, NJ, USA) was enclosed for 1 h and the
membrane was hybridized with NOX-2 monoclonal antibody
(Abcam, Cambridge, UK) or GAPDH monoclonal antibody
(Cell Signaling Technology, Beverly, MA, USA). TBST was
washed and incubated with horseradish peroxidase labeled
secondary antibodies (Cell Signaling Technology). ECL re-
agent (Solarbio) was used for chemiluminescence. The
protein band strength was quantitatively analyzed by Image
J software, and the GAPDH protein strength was used as an
internal reference for standardized analysis.

Enzyme-linked immunosorbent assay

Cell supernatant of cultured HGFs was collected, centri-
fuged, and stored at �80 �C. Content of IL-6 and MCP-1 in
supernatant was detected by Enzyme-linked immunosor-
bent assay (ELISA) according to the instructions of the
human IL-6 and MCP-1 ELISA kit (Meimian, Jiangsu, China).

Reactive oxygen species ROS

ROS levels were detected using a chemiluminescent probe,
DCFH-DA reagent (Beyotime Biotechnology, Shanghai,
China). Cells were stimulated with 10 ng/ml TNF-a for 24
and 48 h. Then serum-free DMEM medium containing DCFH-
DA was added (volume ratio 1:1000) and cells were incu-
bated at 37 �C for 20 min. After trypsin digestion, cells were
collected by centrifugation after suspension, washed with
PBS 2e3 times, and cell precipitates were collected for
fluorescence detection. The collected cells were made into
cell suspension with PBS. The excitation wavelength was
488 nm while the emission wavelength was 525 nm.

Statistical analysis

Excel 2019, SPSS 25.0, and Prism 8.0 statistical analysis
software were used to analyze the experimental data. Each
experiment was repeated more than 3 times. The unpaired
T test was used to compare the difference between the
experimental and control groups. *P < 0.05 was considered
statistically significant.

Results

TNF-a promoted expression of IL-6 and MCP-1 in
human gingival fibroblasts

We firstly constructed an inflammatory cell model using
TNF-a of 10 ng/ml. RT-qPCR was used to detect mRNA
expression level of IL-6 and MCP-1 and our results showed
that the expression level of IL-6 and MCP-1 in TNF-a group
was significantly increased (Fig. 1A and B). Concentrations
of IL-6 and MCP-1 in supernatant were detected by ELISA
and the results demonstrated that TNF-a significantly up-
regulated expression of IL-6 and MCP-1 protein in the su-
pernatant (Fig. 1C and D).



Figure 1 Gene and protein expression levels in HGFs. (A) The relative mRNA expression of IL-6 was detected by RT-qPCR. (B) The
relative mRNA expression of MCP-1 was detected by RT-qPCR. (C) Concentration of IL-6 in supernatant was measured by ELISA. (D)
Concentration of MCP-1 in supernatant was measured by ELISA. *: P < 0.05; **: P < 0.01.
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Expression of ROS was upregulated in human
gingival fibroblasts with TNF-a stimulation

In order to elucidate the association between TNF-a and
oxidative stress, we determined ROS levels in HGFs with
TNF-a stimulation. Our results found that intracellular ROS
levels markedly increased after incubation with 10 ng/ml
TNF-a in HGFs for 48 h (Fig. 2A and B).
TNF-apromoted the expression of NOX-2 in human
gingival fibroblasts

To determine the role of NOX in HGFs, we examined the
mRNA expression of the five NOX familymembers in response
to 10 ng/ml TNF-a. Among these NOX family mRNA, NOX-2
expression was significantly increased (Fig. 3B) and NOX-4
expression was significantly decreased (Fig. 3D) in the TNF-
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a group of HGFs, while incubation of HGF with TNF-a had no
significant effect on the mRNA expression of NOX-1, NOX-3,
and NOX-5 (Fig. 3A, C, and E). The results of Western blot
analysis demonstrated that the protein expression of NOX-2
was also significantly elevated in TNF-a group compared
with the NC group in HGFs (Fig. 3F and G).
NOX-2 gene silencing reduced the expression level
of IL-6 and MCP-1

NOX-2 siRNA (si-NOX2) and negative control siRNA (si-NC)
were transfected with HGFs, followed by stimulation with
10 ng/ml TNF-a for 48 h. The mRNA expression level of IL-6
and MCP-1 was detected by RT-qPCR, and the protein level
of IL-6 and MCP-1 in the cell culture supernatant were
measured by ELISA. After knockdown of NOX-2, the mRNA
expression levels (Fig. 4A and B) and protein secretion



Figure 2 Production level of ROS in HGFs. (A) The intracellular ROS (green) with or without 10 ng/ml TNF-a stimulation for 48 h.
Bar Z 100 mm. (B) The intracellular ROS levels that HGFs produced as measured by fluorescence microplate. **: P < 0.01. Ab-
breviations: ROS, reactive oxygen species.

Journal of Dental Sciences 19 (2024) 211e219
levels (Fig. 4C and D) of IL-6 and MCP-1 were significantly
down-regulated in response of TNF-a.

NOX-2 gene silencing decreases the expression of
ROS

The results of fluorescence microplate revealed that NOX-2
downregulation significantly decreased the level of ROS
production in the si-NOX2 group compared with the si-NC
group (Fig. 5A and B).

Discussion

Periodontitis is a chronic infectious disease with progressive
loss of periodontal tissues caused by plaque microorgan-
isms, eventually leading to tooth loosening and abscission.2

In 2010, periodontitis was the sixth most common disease
worldwide, with a prevalence of approximately 10.8%,
affecting 743 million people worldwide.18 TNF-a is an
important pro-inflammatory cytokine that plays an impor-
tant role in the attachment loss of periodontal tissues and
the progression of periodontal diseases.19 10 ng/ml TNF-a is
often used to induce inflammatory cell models.16,20

Therefore, in this study, 10 ng/ml TNF-a was used to
induce an inflammation model of human gingival
fibroblasts.

IL-6 is an inflammatory cytokine involved in bone
resorption.21 MCP-1 is a chemokine secreted by various cell
types involved in a variety of biological functions such as
recruitment of inflammatory cells, wound healing, inhibi-
tion of stem cells, and maintenance of effector immune
responses.22,23 Changes in IL-6 and MCP-1 levels can reflect
the severity of periodontal inflammation.24 Therefore, this
study investigated the expression levels of inflammatory
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cytokines IL-6 and MCP-1 in inflammatory models of human
gingival fibroblasts. The results showed that the expression
levels of genes and proteins of IL-6 and MCP-1 were
significantly increased after 10 ng/ml TNF-a stimulation in
human gingival fibroblasts. This proves that TNF-a upregu-
lates the expression levels of IL-6 and MCP-1 in human
gingival fibroblasts.25

In recent years, many studies have shown that the
oxidative stress environment is an important factor in the
occurrence and progression of a large variety of chronic
inflammatory diseases, such as periodontitis,5 type 2 dia-
betes,26 atherosclerosis,27 rheumatoid arthritis,28 and in-
flammatory lung disease.29 A large number of case-control
and longitudinal studies comparing the levels of different
antioxidant markers in the saliva of healthy and periodon-
titis subjects have shown that the levels of oxidative stress
biomarkers (such as 8-OHdG and MDA) in saliva of peri-
odontitis patients are significantly increased compared with
healthy individuals.30e32 After non-surgical treatment for
periodontitis, the levels of antioxidants in saliva of peri-
odontitis patients were significantly increased and were
associated with the improvement of periodontal clinical
index after treatment.33 These results indicate a direct
correlation between increased oxidative stress or ROS
levels and the development of periodontitis or clinical
improvement of periodontitis after treatment.30,33

As considered a “double-edged sword”, ROS play an
important role in combating microorganisms under physio-
logical conditions, while cause cytotoxicity to host cells
when overactivated.34 The relationship between ROS and
periodontitis has long been a concern.8,9 In recent years,
NOX has been considered to be the main source of ROS in
periodontal tissues. In this study, the 10 ng/ml TNF-a
induced inflammation cell model showed that TNF-a can
promote the production of ROS.35 Similarly, compared with



Figure 3 Gene and protein expression levels of the NOX family in HGFs. (AeE) The relative mRNA expression of NOX-1, NOX-2,
NOX-3, NOX-4, NOX-5 was detected by RT-qPCR. (F) The protein expression of NOX-2 and GAPDH in HGFs. (G) The relative protein
level of NOX-2 compared with GAPDH in HGFs. *: P < 0.05; **: P < 0.01; ns: not significant.

M. Xu, C. Zhang, Y. Han et al.
the control group, the expression levels of the NOX-2 gene
and protein in the inflammatory cell model group were
significantly increased. This proves that TNF-a can upre-
gulate the expression level of NOX-2 in human gingival fi-
broblasts. Lin et al. reported that TNF-a significantly
promoted the activation of NOX and the production of ROS
(including O2� and H2O2), using TNF-a to induce human
alveolar epithelial cells.36 This is consistent with our
findings.

ROS in periodontal tissue is believed to be mainly pro-
duced by NOX.35 At present, there is limited research on
the impact of NOX-2 on inflammatory cytokines IL-6 and
MCP-1. Some studies have shown that in the mouse model
of periodontitis induced by Aggregatibacter actino-
mycetemcomitans (Aa), NOX-2 gene knockout mice have
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significantly reduced alveolar bone volume, increased in-
flammatory cell infiltration and the number of osteoclasts
in periodontal tissues compared with the wild-type control
group.37 It has been reported that the level of IL-6 protein
in central nervous system tissue was lower in NOX-2
knockout mice with experimental autoimmune encephalo-
myelitis.38 In experimental atrial fibrillation mice, mRNA
expressions of IL-6 and MCP-1 in atrial tissue of NOX-2
overexpressed mice showed no difference compared with
wild-type control group.39 These results suggest that NOX-2
may play an important role in tissue inflammation. There-
fore, this study investigated the regulatory mechanism of
TNF-a in cellular inflammatory response after NOX-2 gene
silencing in human gingival fibroblasts. The results showed
that after TNF-a stimulation of human gingival fibroblasts,



Figure 4 Changes in IL-6, MCP-1 expression level in HGFs after knockdown of NOX-2. (A) The relative mRNA expression of IL-6 was
detected by RT-qPCR. (B) The relative mRNA expression of MCP-1 was detected by RT-qPCR. (C) Concentration of IL-6 in super-
natant was measured by ELISA. (D) Concentration of MCP-1 in supernatant was measured by ELISA. *: P < 0.05; **: P < 0.01. si-NC:
negative control siRNA group; si-NOX2: NOX-2 siRNA group.

Figure 5 Changes in ROS expression level in HGFs after knockdown of NOX-2. (A) The intracellular ROS levels with 10 ng/ml TNF-a
stimulation for 48 h. Bar Z 100 mm. (B) The intracellular ROS levels that HGFs produced as measured by fluorescence microplate.
**: P < 0.01. Abbreviations: ROS, reactive oxygen species.
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the expressions of IL-6 and MCP-1 genes and proteins were
significantly down-regulated in the NOX-2 gene silencing
group, while the production of ROS was significantly
decreased.

In conclusion, TNF-a can significantly improve the
expression levels of IL-6 and MCP-1, promote the expres-
sions of NOX-2 and ROS, and reverse the increase in the
expression levels of IL-6 and MCP-1 after NOX-2 gene
silencing in human gingival fibroblasts. These results sug-
gest that TNF-a increases the expression of IL-6, MCP-1, and
ROS in HGFs by upregulating the expression of NOX-2 partly.
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