
A Method for Extracting the Free Energy Surface and Conformational
Dynamics of Fast-Folding Proteins from Single Molecule Photon
Trajectories
Ravishankar Ramanathan† and Victor Muñoz*,†,‡
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ABSTRACT: Single molecule fluorescence spectroscopy holds the promise of providing direct
measurements of protein folding free energy landscapes and conformational motions. However,
fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in
analyzing the small packets of photons per millisecond that are typically recorded from individual
biomolecules. Such limitation impairs the ability to accurately determine conformational
distributions and resolve sub-millisecond processes. Here we develop an analytical procedure
for extracting the conformational distribution and dynamics of fast-folding proteins directly from
time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our
procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo
with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional
free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of
the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state
downhill folding, as a function of relevant experimental variables such as photon count rate,
amount of input data, and background noise. The tests demonstrate that the analysis can
accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-
megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments.
Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast
protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond
conformational dynamics.

■ INTRODUCTION

Methodological advances in single molecule experimental
techniques have led to an increasing number of applications
targeted at the study and characterization of biomolecules.
These developments have marked the beginning of a new era in
molecular biophysics in which researchers are increasingly able
to investigate important biological processes on individual
molecules, thus obtaining direct statistical and dynamic
information that is not accessible to bulk methods.1,2 Among
these techniques, single molecule Förster resonance energy
transfer spectroscopy (sm-FRET) has the additional advantage
of producing outputs that are directly comparable to standard
bulk experiments, thus allowing for mutual cross-checks.3 In the
study of protein folding, sm-FRET bears the unique promise of
providing direct access to the complex free energy landscape
and conformational motions of a protein as it folds into its
native 3D structure.4,5 Such information is key for probing the
underlying folding mechanism and for comparison with the
wealth of structural information provided by molecular
dynamics simulations. It is thus not surprising that sm-FRET
has quickly become an essential tool for investigating multiple
phenomena related to protein folding that are not accessible to
conventional methods, such as the experimental demonstration
of two-state folding,6 the dimensional analysis of unfolded
states7 and intrinsically disordered proteins,8 the single

molecule characterization of one-state downhill folding,9 and
the study of folding transition-path times.10,11 The accumu-
lation of experimental studies in this area of biophysics has been
accompanied by a parallel effort to develop powerful theoretical
methods for analyzing and interpreting these new data
quantitatively.12

The most popular sm-FRET experiment to study protein
folding has been to label a protein with donor and acceptor
dyes in structurally suitable positions, and collect photons
emitted by both fluorophores while the molecule is freely
diffusing through the femtoliter illumination volume of a
confocal microscope (two-color FRET on free diffusing
molecules).4 sm-FRET experiments have also been performed
on protein molecules immobilized on a surface (two-color
FRET on immobilized molecules), which have the advantage of
permitting the study of an individual molecule for times much
longer than the relatively short (<1 ms) observation times of
free diffusion experiments.4 In both types of measurements, the
experimental output are sequences of photons for which the
color (donor or acceptor) and arrival time to the detector are
recorded with picosecond resolution. These data are commonly
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termed photon arrival trajectories. The major limitation in
resolution for these experiments comes from the fact that
observed photons are typically interspersed in intervals of
several microseconds due to the inherently low detection
efficiency of the confocal setup (about 1−2%) and the
moderate excitation and emission rates of organic fluoro-
phores.13 The standard analysis involves time binning in
intervals ranging from 0.1 to 1 ms to produce histograms of
averaged photon counts (photon counting histograms), which
are then converted onto FRET efficiency histograms (FEHs).
In these cases, FRET efficiency is simply defined as the ratio of
acceptor photon counts to the total counts in each bin.14 The
number of peaks in the FEH and their mean FRET values
reveal molecular subpopulations and their overall structural
properties as obtained from interdye distances, whereas the
interchange kinetics can be obtained from their dwell time
distributions.15

However, the shape of the FEH is affected by multiple factors
and potential artifacts that make their quantitative analysis
extremely challenging.16,17 For instance, FRET efficiency values
obtained from time bins are strongly affected by shot noise,
which results from the stochastic nature of photon emission
and the necessarily limited statistics afforded within a given
time bin. Shot noise broadens the FEH and effectively limits
the time resolution of the experiment. This is so because a
minimally accurate determination of FRET efficiency requires
large numbers of photons (at least 50),16 which takes long
times to collect. The intrinsic conformational dynamics of the
molecular process under study can also induce severe FEH
distortions when the time scales for such dynamics are
comparable to the binning times used in the analysis.17 In
such a case, the probability that the molecule transitions
between states or species during the measurement is significant,
producing a dynamically averaged FEH in a phenomenon
equivalent to NMR line broadening. FEHs obtained in real
experiments are further distorted by the appearance of
photochemical artifacts arising from transient blinking and
bleaching of the fluorophores.18 Moreover, free diffusion
experiments introduce further complexity in FEH analysis,
since both burst time and collection efficiency vary from event
to event depending on the specific translational diffusive path
taken by each molecule through the confocal volume.19

Accordingly, significant efforts have been made during the
last years to improve the quantitative analysis of FEH using
either empirical approaches15,20−22 or theory.16,17,23 Parallel
efforts have been undertaken to improve the time resolution of
the sm-FRET technique, which is primarily limited by the
number of photons emitted by the fluorophores and how
efficiently they can be detected.24 A major factor limiting
emission rates of organic fluorophores comes from the same
transient blinking and bleaching that distort experimental FEH.
These dark states become highly prevalent at the high
illumination conditions required to maximize fluorophore
excitation, and thus restrict the photon outputs to values well
below the theoretical limit. However, recent developments
using purposely designed cocktails for dye photoprotection
under high illumination have shown up to 40-fold increases in
photon output of organic fluorophores.25 The novel photo-
protection methods together with instrumentation improve-
ments that increase detection efficiency26 have made it possible
to reach single molecule photon detection rates of up to ∼1000
ms−1.25

All those recent developments notwithstanding, the intrinsic
limitations of FEH make it difficult to extract accurate
population distributions and biomolecular conformational
dynamics from time binned sm-FRET data. The need for
FEH alternatives is particularly pressing for fast protein folding
in which the biomolecule navigates topographically complex
energy landscapes by sampling different conformations in
microsecond time scales. In particular, there is now a growing
catalogue of single domain proteins identified as capable of
folding to completion in just a few microseconds.27 Fast-folding
proteins are particularly attractive targets for sm-FRET
experiments because their folding free energy surface is
expected to be downhill or nearly downhill.28 For downhill
folding proteins, the subensembles of partially unfolded
conformations that are typically too unstable to be
experimentally detected (including the transition state
ensemble) become significantly populated, permitting in
principle the direct analysis of their structural properties and
interconversion dynamics.9 Moreover, the microsecond folding
kinetics of these proteins facilitate observing multiple folding−
unfolding events during the relatively short (<1 ms)
observation times of free diffusion sm-FRET experiments,
which are less intrusive than the current procedures for
immobilizing protein molecules on a surface. Along these lines,
recent free diffusion sm-FRET studies with the best currently
attainable photon count rates could resolve the conformational
kinetics of the ultrafast-folder protein BBL (which was slowed
down to ∼1/(200 μs) by performing the experiments at low
temperature) but also showed that the shortest possible time
bins still produced FEH with large contributions from dynamic
averaging and photochemical artifacts.9

One alternative to FEH is to directly analyze the time
stamped photon trajectories using methods based on maximum
likelihood analysis. Many such methods have been in fact
developed and successfully applied for characterizing various
biological processes.29−36 Some of these methods use hidden
Markov models (HMMs),33,37,38 which still involve binning or
converting the photon trajectories into FRET efficiency
trajectories, and thus still suffer from inherent drawbacks
related to low time resolution and statistical inaccuracies in
converting sparse photon trajectories into FRET efficiency
trajectories. The application of the HMM methods to free
diffusion experiments is also nontrivial because the molecular
transitions are mixed with the fluctuations in photon emission
rates that arise from the stochastic nature of the diffusing
trajectories.39 Such complexity tends to be ignored by simply
making the assumption that photon emission rates are
independent of the translational diffusion of the molecule.19

To circumvent some of these problems, Gopich and Szabo
developed a rigorous maximum likelihood analysis of photon
trajectories (GS-MLA) that does not require binning, and
which should be equally applicable for immobilized and free
diffusion two-color sm-FRET experiments.40 The GS-MLA
method involves analyzing each trajectory photon by photon to
compute the likelihood that the observed photon trajectory is
explained by a given set of rate equations. An algorithm is then
applied for data fitting to find out which rate coefficients
maximize the overall likelihood for a given data set. For simple
kinetic models such as a two-state process, the likelihood
analysis provides an exact solution. This method has been
successfully applied for extracting folding and unfolding rate
coefficients from experimental single molecule measurements
for the protein domains α3D

34 and villin subdomain.41 An even
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more exciting development was the application of this method
for estimating the upper bounds for folding transition path
times.10,11 The main limitation of the analysis, however, is that
it is model dependent; that is, a given kinetic model must be
chosen a priori, and thus, the accuracy of the results depends on
how closely the molecular process under examination adheres
to the kinetic model selected for the analysis. So far, the
application of GS-MLA has been circumscribed to extracting
elementary rate coefficients from chemical kinetic models such
as the two-state and three-state models.24,40

In this work, we extend the GS-MLA of photon trajectories
to more complex kinetic models with the ultimate goal of
applying it to the analysis of the conformational dynamics and
general topographic features of fast-folding free energy
landscapes. The idea is to employ a kinetic model that captures
most of the physics of protein folding yet is simple enough to
permit its direct implementation with the GS-MLA. This
implies that the dynamics and shape of the free energy surface
must be defined by a minimal number of parameters (ideally
similar to the those required for a two-state model). The model
must also be able to accommodate a variety of scenarios
ranging from highly activated two-state folding all the way
down to the one-state downhill folding scenario. To this end,
we decided to use a simple mean-field statistical mechanical
model of protein folding that was developed in our lab and
which we have widely used for the quantitative analysis of
protein folding experiments.42 The model, which is grounded
on energy landscape theory,43 describes folding as diffusion on
a one-dimensional free energy surface (1D-FES) that represents
the projection of the hyper-dimensional energy landscape of the
protein into a single order parameter. In spite of its simplicity,
the 1D-FES model has proven to be an extremely powerful tool
for the quantitative analysis of protein folding experiments. Its
successes include explaining the systematic deviations from
conventional two-state behavior that are observed in fast-
folding proteins,42 accounting for size-scaling of protein folding
rates,44 unfolding rates and protein stability,45 the estimation of
thermodynamic folding free energy barriers from the analysis of
differential scanning calorimetry (DSC) experiments,46 and the
accurate prediction of protein folding and unfolding rates using
size and structural class as the only input information.47 The
1D-FES model has also been used before for the interpretation
of sm-FRET data.9

We thus combine GS-MLA with a conveniently discretized
version of the 1D-FES model (101 microstates) in which the
overall shape and dimensions of the free energy surface are
defined by only two thermodynamic parameters,47 and the
diffusive kinetics are described using a rate matrix formalism
and a constant expression for the diffusion coefficient.42 As a
first step, we use the 1D-FES model to perform a series of
simulations of the output of sm-FRET experiments on fast-
folding proteins under different scenarios (i.e., two-state
folding, folding over a marginal free energy barrier, and one-
state downhill folding). The results from these simulations
highlight the limitations of the FEH analysis and provide a
synthetic data set that allows us to investigate the performance
of the GS-MLA on data for which the answer is known a priori.
We then investigate the performance of the GS-MLA in
retrieving the original model parameters from the synthetically
generated sm-FRET trajectories as a function of typical
experimental variables such as the total number of collected
photons, the interphoton time, and the level of background
noise.

■ THEORETICAL MODEL AND CALCULATIONS
In this section, we provide the general implementation of GS-
MLA in combination with a kinetic treatment based on
diffusion on a one-dimensional potential of mean force for the
direct analysis of single molecule photon arrival trajectories. We
also describe the characteristics of the specific 1D-FES model
that we use to represent the kinetics of protein folding and the
stochastic kinetic methods for generating single molecular
trajectories and photon arrival trajectories that will serve to test
the method’s performance.

Conformational Dynamics as Diffusion on a Free
Energy Surface.We describe the kinetics of protein folding as
diffusion on a potential of mean force defined as a function of a
single reaction coordinate, r (i.e., V(r)). By discretizing the
potential of mean force into a set of defined species, it becomes
possible to effectively describe the diffusive kinetics of the
system with the rate matrix48
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where ki,i+1 = (1/2)D((pi/pi+1) + 1) and ki,i−1 = (1/2)D((pi/
pi−1) + 1) are the diffusive rates for converting species i into the
next and the previous species along the reaction coordinate,
respectively. D is the intramolecular diffusion coefficient that
determines the time scale of the dynamics, and pi is the
probability of microstate i, which is defined as
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in which n is the number of discrete species at fixed intervals
over r. K can be diagonalized to obtain the Eigen spectrum
from which the relaxation rate is directly obtained. Here we
apply this treatment to protein folding kinetics in which the
potential of mean force is a one-dimensional free energy surface
as a function of the order parameter nativeness (see below).
However, it is important to emphasize that the method is
directly applicable to any other molecular process that can be
described in terms of diffusion on a 1D potential of mean force
V(r).

Maximum Likelihood Method for Analyzing Photon
Trajectories. For a photon trajectory with N photons from a
freely diffusing molecule (or a trajectory from an immobilized
molecule), the likelihood that it arises from the conformational
dynamics and set of interdye distances determined by the rate
matrix K is given by

∏ τ=
=

L F c K F c p1 [ ( ) exp( )] ( )t
T

j

N

j j
2

1 eq
(3)

F(acceptor) = E and F(donor) = I − E, where I is the identity
matrix and E is a diagonal matrix of FRET efficiencies for the
microstates (εi). peq is a vector defining the equilibrium
probabilities; τj is the interphoton arrival time between the j −
1th and jth photon; c1 is the color of the first photon in the
trajectory (i.e., whether it is an acceptor or donor); and cj is the
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color of the jth photon. After N successive matrix-vector
multiplications, a final multiplication by the identity column
vector (1T) sums the product over all conformational states to
yield the likelihood Lt. For multiple bursts (different photon
trajectories), the total likelihood is obtained from ln L =
∑t ln Lt, which avoids computer precision overflow due to the
extremely small numbers involved in the likelihoods of each
photon trajectory. The most likely parameters defining the
potential of mean force and the conformational dynamics (D)
are those that maximize the total likelihood. The rate matrix K
can be used in diagonalized form to speed up calculations, as
described in ref 40.
1D Free Energy Surface Model for Protein Folding.

For all the calculations discussed in this work, we used a simple
1D-FES model of protein folding that has been described in
detail before.42,47 Briefly, this model calculates a one-dimen-
sional free energy surface as a function of a single order
parameter termed nativeness (n), which represents the average
probability that any protein residue resides in its native dihedral
angle values (thus n ranges from 1 for the native state to 0 for
the completely unfolded state). The model has terms for
entropic and enthalpic contributions that scale linearly with the
number of residues (N) in the protein, and which are defined as
functions of the order parameter as follows
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where N is the number of residues in the protein and ΔSres is
the entropy cost of fixing a residue in its native conformation.
For all calculations, ΔSres was set to a constant value of 16.5 J
mol−1 K−1 that corresponds to the average empirical estimate
obtained from a collection of DSC data,49 as it was done
before.47 We define the stabilization enthalpy (ΔHtotal(n)) as
the sum of two Markov processes, one that corresponds to the
formation and breakage of stabilizing local interactions
(interactions between residues separated in the chain by four
or fewer residues) and another one that corresponds to the
formation and breakage of nonlocal interactions.47 x is the
characteristic Markov constant for breaking native interactions,
and the quotient [(1 − x(1−n))/(1 − x)] gives the fraction of
the native stabilization energy that remains at any given value of
n. As before,47 the rate for local interactions is set to a high
value (xlocal = 3.5), resulting in a shallow increase in energy

from the native state. The rate for nonlocal interactions is set to
a low value (xnon-loc = 0.002), resulting in a steep increase in
energy as n decreases from the native state (as the protein
unfolds). The balance between enthalpy and entropy renders
the free energy as a function of n (ΔG(n)). The resulting free
energy surface exhibits two minima at values of nativeness near
1 (native state) and between 0.2 and 0.5 (unfolded state)
separated by a barrier that arises from the incomplete
compensation between the decreasing entropy and stabilization
enthalpy functions. Therefore, the barrier height is ultimately
determined by the curvature of the stabilization enthalpy, which
is defined by the ratio between the contributions from the local
and nonlocal enthalpy terms (i.e., the lower the ratio the higher
the barrier). The values for the curvature of the local and
nonlocal stabilization enthalpy functions employed in this work
correspond to the average values obtained previously from
fitting the kinetics of an experimental data set of 52 proteins.47

Therefore, the shape of the 1D free energy surface of a given
protein is entirely defined by the magnitudes of ΔHlocal,res and
ΔHnonlocal,res, which vary from protein to protein, thus
encompassing all possible folding scenarios.

Simulating Folding Scenarios with the 1D-FES Model.
For the calculations described in this work, we chose specific
parameters for the 1D-FES model that define three potentially
feasible scenarios for a fast-folding protein: (1) two-state-like
folding scenario in which the native and unfolded states are
separated by a significant barrier of ∼4 RT; (2) marginal barrier
scenario in which the two states are separated by a minimal
barrier that amounts to only 1 RT at the denaturation
midpoint; (3) one-state downhill scenario in which the 1D-
FES only has one minimum that shifts from native to unfolded
values as the denaturation stress (e.g., temperature) increases.
The specific parameters used for simulating the three scenarios
are given in Table 1. Folding kinetics were described as
diffusion on the 1D-FES using ΔG(n) as defined in eq 6 to
replace the potential of mean force from eq 2. Practically, for
the calculations presented here, we defined 101 microstates at
even intervals of n between 0 and 1. For the sake of
comparison, the simulations performed in this work were all
carried out choosing D values for the three scenarios scaled to
result on the same overall relaxation kinetics with τ ≈ 200 μs
regardless of the shape of the free energy surface (see Table 1).

Stochastic Simulations of Conformational Transitions
and Photon Emissions. Using the rate matrix (eq 1) defined
by introducing the 1D-FES model into eq 2, we performed
stochastic kinetic simulations of the conformational dynamics
of an individual molecule as it diffuses on the 1D-FES. In
addition, we implemented in the simulations the possibility of
the molecule emitting donor or acceptor photons according to
the FRET efficiency of each of the 101 microstates included in
the rate matrix. To perform these stochastic kinetic simulations,
we employed a procedure similar to the original Gillespie

Table 1. Results from the Analysis of the Three Folding Scenarios Using the Combination of the 1FES Model and MLA
Procedure Described in the Theoretical Model and Calculations Sectiona

ΔHloc,res (kJ/mol) ΔHnonloc,res (kJ/mol) log(D)

scenarios real recovered real recovered real recovered

two-state 2.70 2.69 ± 0.019 3.81 3.81 ± 0.012 7.00 6.99 ± 0.030
marginal barrier 3.72 3.72 ± 0.034 3.36 3.35 ± 0.014 6.31 6.32 ± 0.025
one-state downhill 5.42 5.49 ± 0.120 2.31 2.26 ± 0.080 5.51 5.49 ± 0.016

aRecovered parameters were obtained after applying the MLA procedure to packets of 100 000 photons from trajectories simulated at a count rate of
800 ms−1. The reported errors are the standard deviation from the set of parameters obtained for 50 different trials.
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algorithm.50 In particular, we defined four possible events that
can take place in the molecule after a given time step Δt:

- emission of one acceptor photon (with time probability
defined by count rate nAi)

- emission of one donor photon (with time probability
defined by count rate nDi)

- transition from i to i + 1 (with time probability defined
by ki,i+1)

- transition from i to i − 1 (with time probability defined
by ki,i−1)

For the molecule in state i, the photon emission rates are
Poissonian and specified by the count rates (nAi or nDi). The
time intervals (Δt) between successive events are generated by
randomly drawing values from an exponential distribution,
exp(1/kT), in which kT is the sum of the rates for all possible
events that can occur at any given time: kT = nAi + nDi + ki,i+1 +
ki,i−1. The particular events taking place at those times are
randomly picked according to the probabilities given by [nAi,
nDi, ki,i+1, ki,i−1]/kT. The elementary rate constants for the
transitions are taken from the rate matrix, and the initial state is
chosen randomly according to the equilibrium probability
vector p0. Acceptor and donor count rates for each state i are
obtained by multiplying the total count rate (which here we set
to 800 photons per millisecond) by the FRET efficiency of the
species (εi). For the purpose of fitting experimental data, εi can
be defined using a linear mapping with nativeness according to
the expression εi = R0

6/(R0
6 + r(n)6), where r(n) = ru − n(i)Δr.

Here R0 is the known Forster radius for the given FRET dye
pairs, ru is the end to end distance in the fully unfolded state,
and Δr defines the decrease in end to end distance as a function
of nativeness. This mapping requires two additional parameters
(R0 is a constant that depends on the donor and acceptor pair),
which in practice can be set a priori based on the FRET
efficiencies observed in FEH at extreme concentrations of
denaturant. For simplicity, in the simulations we performed
here we assumed that the FRET efficiency of a given species is
identical to its nativeness (εi = ni). The output from the
simulations is a state trajectory containing the changes in
microstate of the molecule plus the strips of donor and
acceptor photons emitted stochastically as a function of the
given count rates (photon trajectories). Varying the number of
steps in the simulations, we could easily obtain state and
photon trajectories of different duration. In particular, we
calculated very long trajectories that were chopped into small
fragments of 1000 photons (∼1.25 ms) for analysis. To
simulate FEH from free diffusion experiments, we produce a
distribution of photon bursts by generating random fragments
of the state trajectory according to an exponential distribution
with a characteristic time of 1 ms (i.e., the mean diffusion time
across the confocal volume).
Maximum Likelihood Analysis of Simulated Photon

Arrival Trajectories. In terms of the number of parameters,
the 1D-FES is not significantly more complex than previous
implementations of the GS-MLA that used simple two- or
three-state chemical models.34 This is so because the shape of
the 1D-FES is completely specified by two parameters (local
and nonlocal enthalpies per residue) and the conformational
dynamics by just one (the intramolecular diffusion coefficient
D). However, from a numerical standpoint, calculations with
the 101 × 101 rate equation of the 1D-FES model are much
more involved than previous implementations using 2 × 2 or 3
× 3 rate matrices. To speed up calculations, we diagonalized the

rate matrix once for each set of parameters explored during the
fitting procedure and then performed the likelihood calcu-
lations with eq 3 implemented with the diagonalized rate
matrix. In adition, we devised a two-step procedure for
parameter search during data fitting in which we first defined
an extensive grid in parameter space to identify the overall
region where the global minimum is located. Once the area for
the global minimum was identified, we fine-tuned the
parameters using an intensive optimization with the simplex
algorithm (as implemented in the fminsearch function in Matlab
(Mathworks Inc., USA) starting from the grid point that
rendered the maximum likelihood value).

■ RESULTS AND DISCUSSION
Stochastic Kinetic Simulations of sm-FRET Experi-

ments on Fast-Folding Proteins. To sample the range of
mechanistic scenarios available to fast-folding proteins, we
chose three particular examples that correspond to (1) two-
state-like folding (i.e., folding over a free energy barrier >4 RT
at the denaturation midpoint); (2) marginal downhill folding
(i.e., crossing a minimal free energy barrier of ∼1 RT at the
denaturation midpoint); and (3) one-state (global) downhill
folding (i.e., free energy surface with a single minimum at the
denaturation midpoint). Using the 1D-FES model and
choosing a protein domain of 50 residues as a model, we
could generate these three basic folding scenarios with
moderate differences in the two basic parameters that define
the FES shape (ΔHloc,res and ΔHnonloc,res) (see Table 1). We
then set D for each folding scenario so that the folding
dynamics is the same for all of them and corresponds to an
overall relaxation rate of 1/(200 μs). The resulting 1D-FES and
probability distributions at the denaturation midpoint are
shown in Figure 1.

The three combined scenarios nicely reproduce the gradual
shift in the position of the native and unfolded ensembles as a
function of the height of the folding free energy barrier that has
been observed experimentally.42 This trend results in the
progressive merging of both minima with an unfolded state
with increasing residual structure as the barrier becomes smaller
and a native state that simultaneously becomes more
unstructured (Figure 1). We then performed stochastic kinetic
simulations of the three scenarios to generate single molecule
conformational state trajectories and photon trajectories as
described in the Theoretical Model and Calculations section.
For these simulations, we used a photon count rate of 800

Figure 1. 1D free energy profiles and probability distributions for the
three folding scenarios.
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ms−1, which is close to the maximum limit currently attainable
from sm-FRET experiments using organic fluorophores,25 and
did not consider the effects of photochemical artifacts.
Therefore, the simulated photon trajectories that we generate
represent an experimental scenario that is nearly optimal given
current technical limitations. The left column of Figure 2 shows
the stochastically generated equilibrium conformational dis-
tributions with a total simulation time of 20 s for each scenario.
These conformational distributions have excellent agreement
with the analytical probability distributions from the model
(Figure 1), indicating that 20 s is sufficient sampling time for
these systems. The central column in Figure 2 shows a 25 ms
fragment of conformational state trajectory for illustration of
the differences in single molecule behavior produced by the
three scenarios. The differences in single molecule behavior
among the three scenarios are highly noticeable even though
the simulations have been performed keeping the overall
relaxation rate constant. In these conformational state
trajectories, the two-state-like scenario produces the typical
pattern of switching between a native state with low structural
fluctuations (i.e., state values close to 100, or n ∼ 1) and an
unfolded state in which the structural excursions are of higher
amplitude (i.e., state values close to 40, or n ∼ 0.4). The
trajectory for the marginal barrier scenario produces a similar
switching pattern to a first approximation, even though the free
energy barrier is in this case minimal (i.e., equivalent to thermal
energy). Close inspection of the trajectory (green in Figure 2),
however, reveals events in which the molecule visits the barrier
top from either one of the two FES minima, then stays at the
top for a significant fraction of time (for this scenario, the
population of the barrier top is significant, see Figure 1), and
then returns back to the originating minimum (e.g., event
occurring at 0.205 s in the green state trajectory of Figure 2).
This is an interesting observation because such single molecule
behavior, which in this case is characteristic of a highly
populated transition state ensemble, could be easily confused

with the formation of a folding intermediate. In contrast, the
one-state downhill folding scenario produces notoriously
distinct state trajectories that closely resemble the Brownian
dynamics on a harmonic well. Finally, the right column of
Figure 2 shows examples of short photon trajectories for the
three scenarios.
The photon trajectories simulated for the three folding

scenarios give us the opportunity to evaluate the limitations of
binning photon data for the analysis of fast-folding proteins
with microsecond conformational dynamics. The results from
such an analysis are summarized in Figure 3, which shows the
simulated FEH calculated with different binning times for the
three scenarios employing a collection of photon trajectories
(50 000 per scenario) with exponentially distributed times to
mimic the output of typical free diffusion experiments. The very
high photon count rates (800 ms−1) and the moderately fast-
folding rate (1/(200 μs)) that we have used in these
simulations allow us to assess the top performance that is
currently feasible for binning methods. For example, calculating
the FEH from these data using a conventional binning time of 1
ms allows greatly reducing shot noise because under these
conditions the photon threshold can be raised up to 450
photons. However, the obtained FEH are highly distorted even
in the absence of photochemical artifacts (not included in this
analysis) because the binning time is long relative to the
molecular relaxation, which results in high contributions from
dynamic averaging. Thus, all of the FEHs become essentially
unimodal and featureless, so that determining whether the
underlying scenario is truly one-state or has two states
separated by a barrier becomes impossible (bottom of Figure
3). Decreasing the binning time to times equivalent to the
molecular relaxation still affords the use of fairly high photon
thresholds (i.e., 125) to minimize shot noise, and results in
FEHs that now show two peaks for the two-state and marginal
barrier scenarios and a unimodal distribution for the one-state
downhill folding case (middle of Figure 3). However, the 0.2

Figure 2. Stochastic kinetic simulations of the three fast-folding scenarios. The left column shows the conformational distributions obtained after
sampling for 20 s. The central column shows examples of 25 ms state trajectories in which the y axis represents the index for each species in the
model (i.e., species 1 corresponds to n = 0 and species 101 to n = 1). The right column shows examples of short photon trajectories.
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ms FEHs are still plagued by large contributions from dynamic
averaging that make it extremely challenging to distinguish
between the two-state and marginal barrier scenarios. Finally,
calculating the FEH with the shortest possible binning times
that still afford reasonable photon thresholds, which in this case
implies using a binning time of 50 μs (4-fold shorter than the
molecular relaxation) and a photon threshold of 40, produces
clearly bimodal distributions for the two-state and marginal
barrier scenarios, and a distinctly unimodal distribution for one-
state downhill. In this limiting case, dynamic averaging is
minimized at the expense of shot noise. Such a trade-off seems
to be sufficient to identify the one-state downhill scenario, as it
has been reported experimentally for the fast-folder protein
BBL.9 However, distinguishing between the two-state and
marginal barrier scenarios remains challenging because the FEH
resulting from the marginal barrier case is very similar to that of
a two-state scenario with some degree of dynamic averaging.
Moreover, in real experiments, such small differences in FEH
would be easily masked by the presence of even low levels of
photobleaching and blinking.
We can thus conclude that with the inherent technical

limitations of current sm-FRET experiments it is not possible
to resolve the shape of folding free energy landscapes or the
height of the free energy barrier for fast-folding proteins using
conventional photon binning approaches.
Maximum Likelihood Analysis of Simulated Photon

Trajectories. In parallel, we used the simulated data for the
three folding scenarios described above to assess the perform-
ance of MLA methods in extracting mechanistic information
from complex sm-FRET data. Particularly, the goal is to
determine whether the GS-MLA procedure could accurately
retrieve the original free energy surface and diffusion coefficient
for our three folding scenarios utilizing data limited in time
resolution (count rate) and in total photon numbers. This is of
course possible in this case because as input we use synthetic

data for which the model parameters are known a priori. The
results from this analysis are shown in Table 1. To better assess
performance and accuracy of the procedure, we performed the
GS-MLA analysis combined with the 1D-FES model 50
different times for each folding scenario, using a different
packet of 100 000 photons (a different input set of 125 1 ms
long trajectories) for each run. We obtained optimal model
parameters by carrying out an automatic optimization protocol
in two steps. The first step consisted of performing a coarse-
grained analysis of the global parameter space by calculating the
ML over a multidimensional parameter grid. In the second step,
we picked the parameters corresponding to the grid point with
the highest likelihood and performed further local optimization
using a simplex algorithm. Overall, we observed that such an
optimization protocol was able to retrieve the original
parameters for the 1D-FES model with high accuracy and
reproducibility (see Table 1). This was the case for the three
folding scenarios in general. Interestingly, the presence of a free
energy barrier separating the native and unfolded states, no
matter how small (i.e., 1RT for the marginal barrier scenario),
seemed to increase the accuracy and reliability of the
parameters that define the free energy surface (ΔHlocal,res and
ΔHnonlocal,res). Beyond the general accuracy of the method in
retrieving the parameter values for the folding scenarios
containing a barrier, it is noteworthy that the small
discrepancies in retrieved parameters do not alter the FES
shape and the height of the resulting free energy barrier in any
significant way (e.g., the error in barrier height is less than 0.15
kJ/mol). Presumably, the excellent performance stems from the
linear mapping that exists between changes in the two
parameters defining the FES and the height of the resulting
barrier when there is actually one. The accuracy of the retrieved
parameters for the one-state downhill case is somewhat poorer
although still high (see Table 1). Moreover, such parameter
differences do not affect the overall FES shape, which is
systematically concave with a single minimum, and thus
consistent with one-state downhill folding. Further inspection
of the results indicated that the larger spread in retrieved
parameters that we observed for this scenario results from the
more complex mapping between parameters and FES shape
that emerges once the free energy barrier vanishes (i.e., multiple
combinations of parameters produce very similar concave FES).
Interestingly, the GS-MLA procedure proves to be equally
powerful in obtaining direct dynamical information from the
photon trajectories. Such a statement is demonstrated by the
very low error in the retrieved values of the diffusion coefficient
for the three scenarios (see Table 1). The GS-MLA approach
is, therefore, capable of simultaneously extracting the static
conformational distribution and the overall dynamics for the
three scenarios even though the time scales are significantly
different (i.e., the global relaxation rate is set to be identical by
compensating free energy barrier differences among scenarios
via changes in the diffusion coefficient). The implication is that
the GS-MLA procedure is able to resolve the details and time
scales of the underlying state trajectories from apparently
featureless stochastic strips of photons (e.g., see the right
column of Figure 2). Such performance is remarkable given the
highly demanding nature of this test. The GS-MLA procedure
has been previously utilized in conjunction with simple two- or
three-state chemical models in which the molecular behavior is
reduced to discrete transitions described by global rate
coefficients. Here, however, the intrinsic complexity of the
state trajectories is much higher because the molecule visits

Figure 3. Sample (100 μs) FRET efficiency histograms (FEHs)
obtained with binning times of 50, 200, and 1000 μs and photon
thresholds of 40, 120, and 450, respectively. FEHs were calculated
using simulated data corresponding to 50 000 bursts assuming that the
average residence time of the molecule on the confocal volume was
250 μs.
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about a hundred different microstates with widely different
populations. Moreover, whereas the interphoton time in our
simulations is much shorter than the overall folding relaxation,
during the ∼1.25 μs average interval between photons (count
rate of 800 ms−1), the molecules typically undertake multiple
transitions between microstates; e.g., for the two-state scenario,
10 transitions between next neighbors occur in only 1 μs.
Summarizing, in our simulations, the GS-MLA procedure

seems to pick up dynamic processes that are even faster than
the interphoton time. From a practical standpoint, this
characteristic of the GS-MLA may prove useful for increasing
the effective time resolution of sm-FRET experiments. We
should not forget that the performance tests described in this
section have simulated idealized experimental conditions. In
real experiments, however, there are many different factors that
affect the quality and accuracy of sm-FRET data. For example,
the number of single molecule bursts that is available and their
time duration could be limited; sustainable count rates are
oftentimes lower than 800 ms−1; and recorded photon
trajectories come inevitably with contributions from back-
ground counts from both the donor and acceptor channels. In
the next sections, we investigate the sensitivity of the GS-MLA
combined with the 1D-FES model to each of these
experimental factors as a means to characterize the applicability
limits of the method over a broad range of conditions.
Dependence of MLA Performance on Sample Size.

Like for any other statistical inference procedure, the results
produced by MLA depend heavily on the amount of input data.
The sample size determines how closely the observed data
reproduces the parent distribution. When implemented with a
two- or three-state model, the MLA is only required to count
two or three species and their transition frequencies, a task that
does not require large numbers of photons. Using the 1D-FES
model is much more challenging because this model includes
over 100 microstates that exchange with their neighbors in time
scales much shorter than the global relaxation process. It is thus
key to determine what amounts of input data does the MLA
require for accurately capturing the FES shape and conforma-
tional dynamics. We tested this question by performing the
MLA procedure with input data varying from a maximum of
100 000 photons (as used in the previous section) down to
5000, the latter corresponding to only 6.25 ms of state
trajectory time at a count rate of 800 ms−1. The global results
from this exercise are summarized in Figure 4, which plots the
deviations in the probability and diffusion coefficient retrieved
by the MLA relative to the input simulated data for the three
folding scenarios. Figure 4 shows an almost invariant MLA
performance for retrieving the probability distribution and
conformational dynamics as long as the sample includes 20 000
photons or more (25 ms of molecular trajectory, which is
equivalent to the trajectories shown in Figure 2). When the
input data decreases from the 20 000 photons threshold, MLA
performance degrades considerably, producing noticeable
differences between the retrieved FES and D and the actual
input data. These differences, however, do not seem to be
caused by worsened MLA performance but by poor overall
statistical sampling. This factor is best appreciated in Figure 5,
which shows the probability distribution retrieved by MLA
from various statistical samples in comparison with the parent
distribution (calculated with the original parameters) and also
with the histogram of the actual input data. Figure 5 confirms
the excellent MLA performance when it is fed with 100 000
photons worth of data (or 125 ms of molecular trajectory). As

input photons decrease, the retrieved distribution progressively
diverges from the parent distribution. For 10 000 photons, the
differences between the two distributions are already quite
apparent (left in Figure 5).
Poor sampling makes the input data differ significantly from

the parent conformational distribution (see differences between
black and red lines in Figure 4), and thus, the MLA computes
the 1D-FES that most closely reproduces the limited input data
rather than the parent distribution. It is interesting that such
deviations caused by poor sampling do not seem to significantly
affect the estimated free energy barrier height or the
identification of the proper folding scenario, but rather, they
randomly distort the ratio between the native and unfolded
ensembles. For example, the populations of species with high
nativeness are overestimated for the two- and one-state
scenarios and underestimated for the marginal barrier case.
Therefore, we can conclude that conformational sampling is the
main factor limiting the ability to determine an accurate 1D-
FES using limited data. The analysis performed with 10 000
photons, which after all corresponds to only 12.5 ms of the
simulated molecular trajectory, provides good local sampling
(i.e., neighboring microspecies interconvert very quickly), but it
is hardly sufficient to guarantee complete sampling given that
the overall folding relaxation takes ∼200 μs. On the other hand,
the MLA performance does not seem to be negatively impacted
by the large number of molecular species that we use for

Figure 4. Performance of MLA as a function of sample size. Panel A
shows the difference between the probability distribution recovered by
MLA and the normalized input data from stochastic simulations in
percentage. Panel B shows the root-mean-square deviation between
the log(D) recovered by MLA and the original log(D) used in the
stochastic simulations. The color code is the same as that in previous
figures: blue, two-state; green, marginal barrier; red, one-state
downhill.
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defining the 1D-FES (101). The results summarized in Figures
4 and 5 indicate that the method does in fact perform quite well
with inputs of only 50−100 photons per species included in the
molecular model. Such performance is possibly highly
enhanced relative to what would be expected from chemical
models because the 1D-FES model is entirely defined by three
global parameters, whereas linear chemical models require at
least two new parameters for each additional species. In general,
the combination of the 1D-FES model and GS-MLA procedure
appears to provide an extremely robust tool for the analysis of
limited photon trajectory data.
Testing for Dynamic Effects by Altering the Photon

Count Rate. The tests performed in the previous sections use
count rates that correspond to what is maximally achievable
with current sm-FRET experiments. Another major factor in
determining the performance of the GS-MLA is the sensitivity
of the procedure to the interphoton time relative to the
conformational dynamics of the system under study. This is a
critical parameter to determine whether the resolution of the
procedure is determined by the local dynamics time scale or by
the global relaxation. Although in this work we are mostly
interested in the analysis of fast-folding experiments, such
dynamic information is extremely useful in general, as it sheds
light onto the absolute limits in time resolution for MLA based
on photon trajectories as opposed to conventional photon
binning. The analysis of dynamic performance is also
complementary to that described in the previous section, as
we can investigate the change in MLA performance as the time

intervals between photons increase while the total number of
input photons (or alternatively the total simulation time) is
kept constant. Moreover, it is also a key test for identifying the
minimal count rates that still resolve the dynamics of the
process under study so that experimentalists can decide to
lower the illumination intensity to trade noncritical time
resolution for improved photochemical stability of the dyes.
For these tests, we varied the photon count rate from 800

down to only 10 ms−1 (equivalent to conditions of very high
photostability) while we kept the total number of photons used
for MLA fixed. One potential caveat in this analysis is how to
correct for statistical sampling effects from the viewpoint of the
duration of the molecular trajectory. As count rates decrease, it
obviously takes a much longer time to measure the same total
number of photons, which makes the molecular trajectory
concomitantly longer. To minimize this problem, we carried
the test setting the number of photons to 100 000, which, as we
know from our previous tests (see above), affords a sufficient
molecular trajectory to minimize sampling problems at the
maximal count rate of 800 ms−1. The longer molecular
simulations required to test for lower count rates will thus
not show significant statistical improvements given that
adequate sampling is already guaranteed for all conditions.
The parameter that is most relevant for testing the dependence
on the interphoton time is the intramolecular diffusion
coefficient, which defines the overall time scale of motion
along the 1D-FES, and thus the rate of conformational
exchange. In these tests, we are more interested in the relative

Figure 5. Dependence of the MLA performance on the amount of input data. The recovered probabilities, the parent distribution, and the
normalized counts of the input simulations are shown for different amounts of data (number of photons) and each of the three scenarios.
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time resolution, which is easily generalizable for any other
experimental condition and/or molecular system, than the
absolute time resolution. Therefore, as a relevant dynamic
parameter, we use the relative interphoton time defined as the
average time interval between photons (set by the count rate)
divided by the global relaxation time of the process under study
(here set to 200 μs for the three scenarios). Figure 6 shows the

results from such tests by plotting the same two parameters
used above (percentage difference in probability and RMSD of
log(D)) as indicators of overall performance. The test results
are quite remarkable because they show that MLA performance
is virtually insensitive to the photon count rate over a broad
range that reaches a minimum of only 10 photons per
relaxation, which in this case is equivalent to measuring only
one photon every 20 μs or a count rate of 50 ms−1. Figure 6
indicates that the MLA of photon trajectories affords a 20-fold
increase in time resolution relative to conventional photon
binning approaches (see Figure 3), which practically means that
a count rate of 800 ms−1 may be sufficient to resolve dynamics
processes that take place in just 10 μs using sm-FRET
experiments. Here the results that are most informative are for
the one-state downhill scenario because in this case the
conformational dynamics are entirely diffusive and do not
involve barrier crossing events. Along these lines, our results
indicate that the MLA procedure can pick up the correct

underlying molecular dynamics even if there is enough time for
the system to undergo an average of three local transitions
during the time interval between detecting two photons (we set
D to ∼300 000 s−1 for one-state downhill; see Table 1). Past
this limit, one must be cautious because the performance
appears to degrade rather quickly when fewer than 10 photons
are detected per relaxation time (Figure 6).
Nevertheless, this is an extremely important finding, since the

GS-MLA method combined with a free energy surface model
emerges as a simple way to effectively increase the time
resolution of sm-FRET methods by over an order of
magnitude. Practically, this means that the approach offers a
solution for resolving both the conformational dynamics and
folding free energy landscape of most fast-folding proteins
identified to date. Our results are also consistent with the
findings from the statistical analysis of folding transition paths
from photon trajectories using chemical models.10,51 Moreover,
the GS-MLA approach is in principle generalizable. For
instance, our procedure can be extended to any other molecular
process involving microsecond dynamics (e.g., protein binding,
protein catalysis, molecular motors, RNA folding) by simply
replacing the underlying free energy surface model by a detailed
model suited for the particular problem at hand.

Effects of Background Noise. All of the tests described in
previous sections have been performed with idealized simulated
data that did not include any contributions from experimental
noise. True experimental data, however, contains several noise
sources. Beyond photochemical artifacts, which can be
somewhat controlled through the illumination intensity and
addition of photoprotecting agents,25 real sm-FRET data
inevitably contains certain levels of background counts detected
in both donor and acceptor channels. Background noise impairs
the ability to convert experimentally determined FRET
efficiency values into molecular distances, and can thus heavily
distort the FEH, impeding its quantitative analysis. Gopich and
Szabo have argued that one of the intrinsic advantages of MLA
of photon trajectories relative to conventional photon binning
is a high intrinsic resilience to the FRET efficiency distortions
caused by background counts.40 To test empirically the
practical implications of such assertion, we performed the
MLA on the three simulated folding scenarios under conditions
of varying background noise. Figure 7 illustrates the effects of
background noise on measured FEH using the marginal barrier
scenario as an example. In this case, we simulated a rather high
level of background noise (10% of the total number of recorded
photons) equal for both channels. The effect of the background
noise is manifested by the compression of the FRET efficiency
dynamic range, resulting in a FEH in which the native and
unfolded peaks are closer together and there is an apparent
increase in the population of any species with intermediate
FRET values (see black FEH in Figure 7). The effects of
uneven background noise levels in both channels are in essence
the same, the only difference being that the compression factor
is accompanied by an offset in the experimentally determined
FRET efficiencies. Figure 7 demonstrates that dealing
appropriately with background noise is key for identifying
and quantifying the population levels of rare/unstable
intermediates (e.g., the species at the top of the folding free
energy barrier). To account for background noise in the MLA
of photon trajectories, it is necessary to implement the method
with a procedure for converting measured FRET efficiencies
with background noise onto true molecular FRET efficiencies.
This can be achieved using the following formula

Figure 6. MLA performance as a function of photon count rate. (A)
Percentage difference between the recovered probability and the
normalized counts in the input simulations versus the ratio between
the average interphoton arrival time and the molecular relaxation time
(τ = 200 μs). (B) RMSD of log(D) retrieved from the MLA versus the
ratio between the average interphoton arrival time and the molecular
relaxation time. Color code for the three scenarios as above.
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where ⟨nt⟩ is the total count rate (i.e., the total number of
detected photons per ms), bD and bA are the background rates
in the donor and acceptor channels, and εi

calc is a vector
containing the true molecular FRET efficiencies for all the
species defined in the 1D-FES model. The total count rate and
donor and acceptor background rates are easily measured in the
experimental setup, so they can be empirically determined and
fixed in advance. εi

calc values are obtained directly by fitting
during the MLA procedure. In our case, the nativeness values
from the 1D-FES are converted onto εi

calc using the simple
mapping described in previous sections. In dealing with real
experimental data, εi

calc values can be estimated directly from
the measured FEH and the 1D-FES model applying the same
formula in reverse.
The MLA implemented with this simple procedure was able

to successfully analyze the input photon trajectory data
containing 10% background noise and retrieve a probability
distribution that is reasonably close to both the input data and
the parent distribution (inset of Figure 7). The comparison
shown in the inset of Figure 7 highlights that the retrieved
distribution overestimates the population of the native
ensemble at the expense of the populations of the unfolded
and free energy barrier ensembles. The deviations in population
are not insignificant, but when converted into free energies,
such discrepancies are still well below thermal energy and do
not compromise the proper identification of the folding
scenario or even a rather accurate estimate of the barrier
height (the estimated barrier is off by only ∼0.3 RT).
Moreover, 10% is a very high level of background noise.
With recent instrument developments, the level of background
noise in sm-FRET experiments is often below 5%.24

Interestingly, MLA performance seems to be much better for
more realistic background noise levels, as Figure 8 illustrates. In
this figure, it can be observed that there is an abrupt
deterioration in MLA performance at background noise levels

above 10%, but the procedure is rather insensitive for levels
below 7.5%. In contrast with the effects of sample size and
count rate, background noise seems to affect one-state downhill
to a lesser extent than it affects the barrier limited scenarios.
This is probably so because the compression of the FRET
dynamic range caused by background noise is less critical for
determining a unimodal distribution. The scenario that is most
affected for the determination of the probability distribution is
the marginal barrier one, in which the region of intermediate
FRET values has a small but still significant population. For the
two-state scenario, the background noise effects tend to
concentrate on the dynamic term (D), whose deviations reflect
errors in the population of the species at the barrier top, which,
although they might be small in absolute terms (i.e., below 1%),
become very significant when converted into free energies.
Summarizing, our analysis confirms that the MLA of photon

trajectories is indeed an excellent tool for the quantitative
analysis of real sm-FRET including reasonable levels of
background noise. The effects on the probability distribution
and folding scenario ascription are minimal. However, Figure 8
indicates that an accurate determination of the dynamic term
and the free energy barrier height for a two-state folding
scenario requires that the background noise level is kept below
7.5%. We also observed a similar performance when we
introduced asymmetric levels of background noise in both
channels.

Figure 7. Effect of background photons on the FEH. A FEH for the
marginal barrier scenario computed using the same procedure
described in Figure 3, a photon threshold of 120, and a binning
time of 0.2 ms is used here for illustration of the effects of background
noise. (green) Histogram without background noise; (black) histo-
gram obtained after adding 10% of random background photons to
both the donor and acceptor channels. The inset shows the probability
distribution recovered from the data with 10% background noise (red)
relative to the input simulated data (black) and the parent probability
distribution (green).

Figure 8. MLA performance under different amounts of background
photons on both channels. (A) Percentage difference between the
probabilities recovered by the procedure and the normalized input
data versus the photon background level. (B) RMSD of log(D)
retrieved from the MLA versus the photon background level. The
photon background level is defined as the percentage of the total
number of photons.
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■ CONCLUSIONS
Our analysis demonstrates that the maximum likelihood
analysis of time-stamped sm-FRET photon trajectories
developed by Gopich and Szabo40 can be efficiently
implemented with complex kinetic models that include an
arbitrarily high number of species, provided that the number of
parameters required to define the model is small. These results
thus extend the applicability of the GS-MLA method beyond
simple two- and three-state kinetic models. The application of
this analytical procedure in conjunction with a model that
describes protein folding as diffusion on a one-dimensional free
energy landscape highlights the strengths of the method, which
appears to only require limited amounts of input photon data
and, most importantly, reasonably low photon count rates (i.e.,
detecting a total of only 10 photons during the molecular
relaxation time) to retrieve accurate representations of the
folding landscape and dynamics of the protein under study.
Moreover, the procedure is indeed highly resilient to the
presence of the moderately high levels of background noise that
always accompany experimentally measured sm-FRET data.
The important implication is that the combination of the 1D-
FES model and MLA procedure effectively extends the time
resolution of current sm-FRET experiments, providing a
powerful tool for the quantitative analysis of single molecule
data from ultrafast-folding proteins. Remarkably, the perform-
ance of the method seems sufficient to unambiguously
distinguish between folding scenarios (two-sate, marginal
barrier, and one-state downhill) and even to determine the
height of the folding free energy barrier and the intramolecular
diffusion coefficient from simulated photon trajectory data that
recapitulate current sm-FRET experiments. Our results also
offer useful guidelines for the design of sm-FRET experiments
(i.e., count rate, sample size, and background noise levels) that
are optimized for the analysis of specific fast-folding processes.
Finally, although we focused here on the analysis of ultrafast
protein folding, our main conclusions go beyond this particular
application, since the GS-MLA should be in fact applicable to
any other complex and/or fast biomolecular process that can be
represented as diffusion on a low-dimensional free energy
landscape, such as, for example, RNA folding, protein−protein
and protein−DNA interactions, and molecular motors.
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