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BACKGROUND: Renal cell carcinoma (RCC) is highly resistant to chemotherapy because of a high apoptotic threshold. Recent
evidences suggest that GSK-3b positively regulates human pancreatic cancer and leukaemia cell survival in part through regulation of
nuclear factor (NF-kB)-mediated expression of anti-apoptotic molecules. Our objectives were to determine the expression pattern
of GSK-3b and to assess the anti-cancer effect of GSK-3b inhibition in RCC.
METHODS: Immunohistochemistry and nuclear/cytosolic fractionation were performed to determine the expression pattern of GSK-3b
in human RCCs. We used small molecule inhibitor, RNA interference, western blotting, quantitative RT–PCR, BrDU incorporation
and MTS assays to study the effect of GSK-3b inactivation on renal cancer cell proliferation and survival.
RESULTS: We detected aberrant nuclear accumulation of GSK-3b in RCC cell lines and in 68 out of 74 (91.89%) human RCCs.
We found that pharmacological inhibition of GSK-3 led to a decrease in proliferation and survival of renal cancer cells. We observed
that inhibition of GSK-3 results in decreased expression of NF-kB target genes Bcl-2 and XIAP and a subsequent increase in renal
cancer cell apoptosis. Moreover, we show that GSK-3 inhibitor and Docetaxel synergistically suppress proliferation and survival
of renal cancer cells.
CONCLUSIONS: Our results show nuclear accumulation of GSK-3b as a new marker of human RCC, identify that GSK-3 positively
regulates RCC cell survival and proliferation and suggest inhibition of GSK-3 as a new promising approach in the treatment of human
renal cancer.
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Kidney cancer accounts for approximately 2–3% of all cancers
worldwide. It is the seventh most common cancer and the tenth
most common cause of cancer death in men and the ninth most
common cause of cancer in women. In 2008, an estimated 54 000
adults in the United States have been diagnosed with renal cell
carcinoma (RCC). Approximately 13 000 deaths from RCC have
occurred in 2008 (Cancer.Net by ASCO). The 5-year survival rate
for patients with metastatic RCC is less than 10% because of the
tumours resistance to chemo- and radiotherapy. About one third
of newly diagnosed RCC patients present with metastases and up
to one half of patients develop metastatic disease during follow-up
(Bukowski, 1997). Immunotherapy overall efficacy rate does not
exceed 10– 20% in RCC cases (Bukowski, 2001). Recently,
molecular targeting drugs including multiple kinase inhibitors
Sorafenib and Sunitinib (Motzer and Bukowski, 2006; Ljungberg

et al, 2007) have been suggested as first-line treatment for
metastatic RCC, although the treatment response is not long-
standing and the RCC tumours inevitably progress. Thus, the
identification of novel therapeutic targets in RCC is urgently
needed.

There are diverse factors that contributes to RCC progression
and chemoresistance, including activation of nuclear factor-kB
(NF-kB; Oya et al, 2001, 2003; An et al, 2004). Increased expression
of Bcl-2 and XIAP anti-apoptotic molecules, NF-kB target genes,
has an important function in renal cancer cell survival and
chemoresistance (Bilim et al, 2008) and resistance to immuno-
therapy (Maruyama et al, 2006). Previous studies suggest a positive
role for GSK-3b in the regulation of NF-kB activity (Hoeflich et al,
2000; Ougolkov et al, 2005, 2007). GSK-3 is a pluripotent serine–
threonine kinase with a numerous intracellular target proteins
(Jope and Johnson, 2004). GSK-3 has two isoforms, a and b, which
are coded by two different genes (Jope and Johnson, 2004).
Previously, we showed that inhibition of GSK-3 resulted in
apoptosis induction through decreased expression of NF-kB target
genes Bcl-2 and XIAP in chronic lymphocytic leukaemia (CLL) and
pancreatic cancer cells (Ougolkov et al, 2005, 2007). It has been
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shown that efficient localisation of NF-kB to the promoter of
certain genes requires GSK-3b (Steinbrecher et al, 2005). Recently,
we showed that GSK-3 contributes to the maintenance of active
chromatin at NF-kB target gene Bcl-2 and XIAP promoters,
allowing p65 binding and transcriptional activation in cancer cells
(Ougolkov et al, 2007).

Although our recent studies suggest GSK-3 as an important
factor of NF-kB-mediated cancer cell survival and proliferation in
pancreatic cancer and CLL (Ougolkov et al, 2005, 2007), the role of
GSK-3 in the proliferation, survival and chemoresistance of RCC is
unknown. Here, for the first time, we show that genetic depletion
or pharmacological inhibition of GSK-3 results in decreased renal
cancer cell proliferation and survival. Moreover, we found
abberant GSK-3b nuclear overexpression in RCC cell lines and
most human renal carcinomas. Furthermore, we show a synergistic
anti-cancer effect of GSK-3 inhibitor and Docetaxel in renal cancer
cells. Our results suggest GSK-3 as a novel potential therapeutic
target in the treatment of RCC.

MATERIALS AND METHODS

Patients and immunohistochemistry

The study was approved by the Ethical Committee of Yamagata
University and all patients signed an informed consent form.
Seventy-six surgical specimens from 75 unselected patients
(1 patient with multiple tumours was operated twice) who
underwent surgery (27 open, 49 laparoscopic; 56 radical nephrec-
tomies, 20 nephron sparing surgeries, right 37, left 39) for RCC
from 2003 to 2006 at the Yamagata University Hospital were
included in the study. Patients’ clinical characteristics are
presented in the Table 1. The tumours were fixed in 10% buffered
formalin and embedded in paraffin, and the samples were coded.
Paraffin sections were routinely stained with haematoxylin and
eosin and a pathological diagnosis was made. Pathological staging
was determined according to the UICC TNM classification of
malignant tumours. Pathological diagnosis for 2 tumours was
oncocytoma and the remaining 74 were malignant tumours.
Pathological grades were assigned according to a system developed
by the Japanese Urological Association based on the degree of
atypia of tumour cells.

Monoclonal mouse antibody for GSK-3b from BD Transduc-
tion (San Diego, CA, USA) or rabbit polyclonal antibody for

anti-phospho-glycogen synthase (pGS) (#3891) from Cell Signaling
Technology (Danvers, MA, USA) was used for immunohisto-
chemical analysis. Immunohistochemical staining was performed
as described earlier (Bilim et al, 2008). Two different sections
from each tumour were examined by immunohistochemistry.
For each staining, two 5 mm-thick paraffin sections from different
parts of each tumour representative of the entire tumour were
mounted on silanised glass slides (Dako Japan, Tokyo, Japan).
After deparaffination and rehydratation, epitops were reactivated
by autoclaving sections in 10 mM citric buffer (pH 6.0) for 10 min.
The slides were incubated with the primary antibodies overnight
at 41C in a moist chamber. After washing with PBS, bound
antibody was detected by peroxidase method using Histofine
simple stain MAX-PO MULTY (Nichirei, Tokyo, Japan). The
staining reaction was developed by DAB in the presence of H2O2.
Nuclear counterstaining was performed by haematoxylin. Positive
and negative controls were included in each staining series.
Positive immunohistochemical staining of GSK-3b or pGS in
tumours confirmed by western immunoblotting served as a
positive control. As a negative control, each primary antibody
was replaced by either nonimmune mouse or rabbit immuno-
globulin. The results were observed using Olympus (Tokyo,
Japan) BX50 microscope equipped with Olympus DP12 digital
microscope camera. All slides were evaluated for immunostaining
without any knowledge of the clinical data. There were no inter-
and intra-sample fluctuations in terms of the staining intensity.
GSK-3b nuclear accumulation was defined as positive staining of
410% of cancer cell nuclei throughout the tumour regardless of
cytoplasmic expression as we established earlier for this antibody
(Ougolkov et al, 2006). Positive pGS expression was defined as
positive staining of more than 80% of cancer cells throughout the
tumour.

Cell culture and reagents

Renal cell cancer cell lines ACHN, KRC/Y, Caki1, Caki2, A704, A498
and KH39 were purchased from ATCC (Manassas, VA, USA). KU19-
20 was kindly provided by Dr Mototsugu Oya (Department of
Urology, School of Medicine, Keio University, Tokyo, Japan). The
cells were cultured as described earlier (Bilim et al, 2000). GSK-3
inhibitor AR-A014418 was purchased from Calbiochem (San Diego,
CA, USA). AR-A014418 (thiazole-containing urea compound), a
small molecule inhibitor, inhibits GSK-3 in an ATP-competitive
manner (in vitro IC50¼ 104 nM) and does not significantly inhibit
cdk or other 26 kinases showing high specificity for GSK-3 (Bhat
et al, 2003). Other two GSK-3 inhibitors, SB-216763 (ATP-
competitive, arylindolemaleimide) and TDZD8 (non-ATP-competi-
tive, thiadiazolidinone derivative), were purchased from Cayman
Chemicals (Ann Arbor, MI, USA) and Sigma-Aldrich Japan (Tokyo,
Japan), respectively. SB-216763 inhibits GSK-3 in vitro with an IC50

value of less than 100 nM with no significant inhibition of 24 other
protein kinases (Coghlan et al, 2000). TDZD8, a potent inhibitor of
GSK-3 (IC50¼ 2mM), did not inhibit protein kinases A or C, CK-2 or
CDK1/cyclin B kinases at 4100mM (Martinez et al, 2002). Docetaxel
was from Sigma-Aldrich Japan.

Immunoblotting

Immunoblotting was performed as described earlier (Bilim et al,
2000). HRP-labelled second antibody was detected using a
SuperSignal West Pico Substrate (Pierce, Rockford, IL, USA)
according to the manufacturer’s instructions. b-Actin was used as
a loading control. The images were analysed using UN-SCAN-Itgel
Automated Digitizing System software (version5.1 for Windows,
Silk Scientific Inc., Orem, UT, USA). The following antibodies were
used: anti-Bcl-2 (clone 124, DAKO, Japan), anti-glycogen synthase
(GS) (#3893), anti-pGS (#3891) from Cell Signaling Technology;
anti-GSK-3b (clone 7), anti-PARP (clone 7D3-6), anti-NF-kB (p65)

Table 1 Patients’ characteristics

Median age (range) years 59.5 (28–83)
Male/female 50/25

Histological type
Oncocytoma 2
Malignant tumours

Clear cell 64
Papillary 4
Chromophobe 3
Unclassified RCC 3

pT stage
1a 34
1b 19
2 7
3a (including one adrenal involvement) 10
3b 4

Grade
1 27
2 43
3 4

Abbreviation: RCC¼ renal cell carcinoma.
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(clone 20), anti-XIAP (clone 28) from BD Transduction; anti-GSK-
3a (#07-389) from Upstate Cell Signaling Solutions (Lake Placid,
NY, USA); and anti-b-actin from Abcam Inc. (Cambridge, MA,
USA). Nuclear/cytosolic fractionation was performed by modified
Dignam method as described earlier (Ougolkov et al, 2006).

RNA extraction and real-time RT–PCR

Total cellular RNA was extracted using the SV total RNA Isolation
System (Promega, Madison, WI, USA) and the first-strand DNA
was synthesised using a cDNA Reverse Transcription kit (Applied
Biosystems Japan, Tokyo, Japan) following the manufacturer’s
instructions. Real-time quantitative RT–PCR was performed in the
7300 Real-Time PCR System (Applied Biosystems). We used pre-
designed TaqMan Gene Expression Assays (Applied Biosystems)
targeting human Bcl-2 (Hs00236808_s1), XIAP (Hs00236913_m1)
mRNA and GAPDH (4352934E) mRNA as an endogenous control.
Each experiment was repeated at least three times to confirm
reproducibility with the reaction in triplicate wells for each sample
using a TaqMan Universal PCR Master Mix (Applied Biosystems)
according to the standard protocol. The expression of the target
mRNA was quantified relative to that of the GAPDH mRNA and
untreated controls were used as a reference.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) was performed as
described earlier (Ougolkov et al, 2007). Briefly, ACHN cells were
treated with 50 mM of AR-A014418 or control DMSO for 48 h. After
that the cells were cross-linked with formaldehyde for 15 min at
room temperature and immunoprecipitated using the Chromatin
Immunoprecipitation kit (Upstate Biotechnology, Lake Placid, NY,
USA) according to the manufacturer’s instructions. Anti-NF-kB p65
antibody was from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). One hundred and six bps of the XIAP promoter and 168 bps
of the Bcl-2 promoter were detected in immunoprecipitated
samples by PCR. PCR products were separated on a 2% agarose
gel and visualised under UV light after staining with ethidium
bromide.

RNA interference

Genetic knockdown of GSK-3b and GSK-3a was achieved using
Validated Stealth RNAi DuoPak (Invitrogen Japan, Tokyo, Japan).
Unrelated control siRNA (Invitrogen) was also used. Transfection
was carried out using Lipofectamine 2000 (Invitrogen) according
to manufacturer’s recommendations.

Measurement of cell viability, proliferation and apoptosis

Cell viability was detected with a colorimetric assay, the CellTiter
96 AQueous One Solution Cell Proliferation Assay (Promega,
Madison, WI, USA) using tetrazolium compound according to the
manufacturer’s instructions as described earlier (Bilim et al, 2008).
For estimation of cell proliferation BrdU cell proliferation assay
(Calbiochem) was applied according to the manufacturer’s
instructions as described earlier (Bilim et al, 2008). For detection
of apoptotic morphology, cells were cultured in Lab-Tek Chambers
(Nunc Inc., Naperville, IL, USA), treated with AR-A014418.
Apoptotic morphological changes were detected with Hoechst
33342 (Dojindo Laboratories, Kumamoto, Japan) staining followed
by observation under fluorescence microscope Axiovert 200 (Carl
Zeiss Japan, Tokyo, Japan). PI staining of the fixed cells, as
described elsewhere, was applied for quantification of the late
apoptotic events (sub-G1 fraction). Stained cells were analysed on
FACSCalibur Flow Cytometer (BD).

Statistical analysis

Continuous variables are presented as the mean±s.d. All
continuous variables in this study met the criteria for a normal
distribution and were assumed to be parametric. They were
analysed using a two tailed t-test or one-way ANOVA where
appropriate with the post test for a linear trend. Associations
between immunohistochemical staining and pathological or
clinical characteristics were analysed using Fisher’s exact test.
Two-sided tests were used. Data were analysed using GraphPad
Prism software package for Windows (GraphPad Software Inc.,
San Diego, CA, USA).

RESULTS

GSK-3b is expressed and active in human renal cancer cells

Using western blotting, we detected higher levels of GSK-3b
expression in RCC cell lines compared with normal kidney
(Figure 1A). We also found higher levels of phosphorylation of

N       T        N       T

Patient 1 Patient 2

GSK-3

pGS

�-Actin

GSK-3�

GSK-3�

GSK-3�

H3

SOD

C   Nu

Nu NuCCNu NuCCNuCNuCNuCNuC

C   Nu C    Nu C    Nu

N T N T

Patient 3 Patient 4

AC
H

N

KR
C

/Y

C
ak

i1

C
ak

i2

A7
04

A4
98

�-Actin

pGS
Ki

dn
ey

Total GS

SOD

H3

KH39 KU19-20ACHN Caki1 Caki2 KRC/Y A498

NF�B p65

Kidney

Figure 1 GSK-3b is overexpressed in nuclei of renal cancer cells.
(A) Protein lysates from the indicated RCC cell lines and normal kidney as
a control were separated by SDS–PAGE (50 mg per well), transferred to
PVDF membrane and probed with antibodies against GSK-3b, phospho-
glycogen synthase (pGS) and total glycogen synthase (GS). (B) Cytosolic
(C) and nuclear (Nu) fractions were prepared from RCC cell lines and
normal kidney, separated by SDS–PAGE (50 mg per well), transferred to
PVDF membrane and probed with indicated antibodies. Cu/Zn supeoxide
dismutase (SOD) and histone H3 (H3) were used as cytosolic and nuclear
markers, respectively. (C) Expression of GSK-3b and pGS was detected in
protein extracts from primary tumour (T) and corresponding normal
kidney tissue (N) obtained from kidney cancer patients. (D) Nuclear
(Nu) and cytosolic (C) fractions were prepared from fresh tumour (T) and
corresponding normal kidney tissue (N) sampled from kidney cancer
patients, and analysed as described in (B).
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GS (pGS), a primary GSK-3 substrate, in RCC cell lines compared
with normal kidney suggesting that GSK-3 is active in renal cancer
cells (Figure 1A). Using paired samples of tumour and normal
kidney tissues from renal cancer patients, we found phosphoryla-
tion of GS only in tumour tissues but not in its normal
counterparts suggesting higher activity of GSK-3 in human RCCs
(Figure 1C). Moreover, we found that expression of GSK-3b was
higher in tumour compared with corresponding normal kidney
tissue (Figure 1C). These data indicate that high levels of GSK-3b
expression and activity are features of RCC.

GSK-3b is accumulated in the nucleus of renal cancer cells

GSK-3b has been shown as positive regulator of NF-kB-mediated
survival and proliferation of cancer cells (Ougolkov et al, 2005,
2007; Wilson and Baldwin, 2008). Recently, we have shown
aberrant nuclear accumulation of GSK-3b in pancreatic cancer
and leukaemia cells (Ougolkov et al, 2006, 2007). It has been
suggested that nuclear GSK-3b might contribute to NF-kB-
mediated expression of anti-apoptotic molecules and cancer cell
survival (Ougolkov et al, 2006, 2007). We found that high levels of
GSK-3b expression and activity are features of RCC (Figure 1A and
C). However, the subcellular localisation of GSK-3b in renal cancer
cells is unknown.

Using nuclear/cytoplasmic fractionation, we found aberrant
nuclear expression of GSK-3b in human renal carcinomas but not
in their normal counterparts (Figure 1D). Moreover, the levels of
cytoplasmic GSK-3b in human renal carcinomas were higher than
in normal kidney tissues (Figure 1D). Nuclear accumulation of
GSK-3b and NF-kB p65 was detected in seven RCC lines: KH39,
KU19-20, ACHN, Caki1, Caki2, KRC/Y and A498 (Figure 1B) and
was undetectable in normal kidney (Figure 1B).

Using immunohistochemical staining, we found weak cytoplas-
mic expression of GSK-3b in a fraction of glomerular and tubular
epithelial cells in normal kidney (Figure 2A). It is interesting to
note that oncocytomas, which are benign kidney tumours, showed
only cytoplasmic expression of GSK-3b and no pGS was detected
in these tumours. We found aberrant nuclear accumulation of
GSK-3b in 68 out of 74 (92%) human RCCs (Figure 2B; Table 2).
Sixty-nine (90.79%) tumours were positive for pGS (Figure 2C;
Table 2). Nuclear accumulation of GSK-3b correlated with pGS
positivity (Fisher’s exact test P¼ 0.0017, w2 with Yate’s correction
P¼ 0.0004), which indicates GSK-3b active state. Clear cell RCC
subtype is associated with worse survival in RCCs (Beck et al,
2004). We found that clear cell RCC was significantly associated
with aberrant GSK-3b nuclear accumulation (Fisher’s exact test
P¼ 0.0185, w2 with Yate’s correction P¼ 0.0219) and pGS positivity
(Fisher’s exact test P¼ 0.0008, w2 with Yate’s correction
P¼ 0.0002). GSK-3b nuclear accumulation correlated with neither
stage nor grade in RCCs and it was observed equally frequently in
low and high stages and grades (Table 2). Our results suggest that
aberrant nuclear accumulation of GSK-3b is a feature of renal
cancer cells and GSK-3b activation might be a critical early step of
RCC carcinogenesis.

Pharmacological inhibition and genetic depletion of GSK-3
decrease proliferation and survival of renal cancer cells

Although our recent studies suggest GSK-3 as an important factor
of NF-kB-mediated cancer cell survival and proliferation in
pancreatic cancer and CLL (Ougolkov et al, 2006, 2007), the role
of GSK-3 in the proliferation and survival of RCC is unknown. To
determine whether active GSK-3 is essential for RCC cell survival
and proliferation, first we tested the effect of three chemically
distinct small molecule inhibitors of GSK-3: AR-A014418 (ATP-
competitive) (Bhat et al, 2003), SB-216763 (ATP-competitive)
(Coghlan et al, 2000), and TDZD8 (non-ATP-competitive)
(Martinez et al, 2002) in ACHN renal cancer cells (Figure 3A).

We found that all three distinct GSK-3 inhibitors can decrease
viability of ACHN renal cancer cells (Figure 3A). Subsequently, we
tested the anti-cancer effect of GSK-3 inhibitor AR-A014418 using
six renal cancer cell lines, KH39, KU19-20, Caki1, Caki2, KRC/Y
and A498. AR-A014418 is a potent and specific GSK-3 inhibitor
described earlier (Bhat et al, 2003). We found that inhibition of
GSK-3 decreased renal cancer cell viability in a dose- and time-
dependent manner (Figure 3B). Using BrDU incorporation assay,
we found that pharmacological inhibition of GSK-3 suppresses
proliferation of renal cancer cells (Figure 3C). Using Hoechst

30 �m

30 �m

30 �m

Figure 2 Immunohistochemical analysis of GSK-3b expression in normal
human kidney (A). Immunohistochemical analysis of GSK-3b (B) and pGS
(C) expression in serial sections of renal carcinoma. Insert in (B) shows
higher magnification view.
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staining, we found a dose-dependent induction of apoptosis in
AR-A014418-treated renal cancer cells (Figure 3D). These results
suggest that GSK-3 is a positive regulator of renal cancer cell
proliferation and survival.

To determine whether the inhibitory effect on renal cancer cell
survival by pharmacological inhibition of GSK-3 was specific to
GSK-3b, we depleted GSK-3a or GSK-3b expression in ACHN
cancer cells using siRNA (Figure 3E). We found that depletion of
GSK-3b leads to a significant decrease in renal cancer cell survival
accompanied with apoptotic morphological changes as detected by
Hoechst staining, whereas depletion of GSK-3a does not affect
cancer cells (Figure 3E). These results suggest that GSK-3b is a
selective regulator of survival in renal cancer cells.

Using western blotting, we estimated the level of GSK-3
inhibition by detection of the level of pGS, a primary GSK-3
substrate (Figure 4A). We found that treatment of ACHN
and Caki1 renal cancer cells with different concentrations of
AR-A014418 resulted in a dose- and time-dependent inhibition
of GSK-3 activity, as measured by the levels of pGS (Figure 4A).
We found that inhibition of GSK-3 induces dose- and time-
dependent apoptosis (as measured by PARP cleavage) in ACHN
and Caki1 renal cancer cells (Figure 4A). Consistently, using
Hoechst staining (Figure 3D) and flow cytometry (data not shown),
we found a dose-dependent increase in the number of apoptotic
cells in AR-A014418-treated ACHN and Caki1 renal cancer cells.
These results suggest that inhibition of GSK-3 decreases survival of
renal cancer cells.

Multiple factors contribute to RCC progression, including
activation of NF-kB (Oya et al, 2001, 2003; An et al, 2004).
Increased expression of Bcl-2 and XIAP anti-apoptotic molecules,
NF-kB target genes has an important function in renal cancer cell
survival (Tomita et al, 1996; Maruyama et al, 2006; Bilim et al,
2008). As GSK-3b has a positive role in expression of certain
NF-kB-regulated genes (Hoeflich et al, 2000; Ougolkov et al, 2005,
2007), we investigated whether inhibition of GSK-3 affects NF-kB-
mediated expression of Bcl-2 and XIAP in renal cancer cells. Using
western immunoblotting, we found that inhibition of GSK-3
resulted in a significant decrease in the expression of anti-
apoptotic proteins Bcl-2 and XIAP in ACHN and Caki1 renal
cancer cells (Figure 4A). Using real-time PCR, we found that
inhibition of GSK-3 resulted in a marked reduction in the
expression of NF-kB target genes Bcl-2 and XIAP, suggesting a
downregulation of NF-kB transcriptional activity in renal cancer
cells (Figure 4B and C).

To unveil the potential mechanism of XIAP and Bcl-2
transcriptional suppression by GSK-3 inhibition, we immunopre-
cipitated chromatin with anti-p65 antibody in a ChIP assay.
Accessibility of XIAP and Bcl-2 promoters by NF-kB p65 was
drastically decreased on GSK-3 inhibition (Figure 4D). Consistent
with previous findings in pancreatic cancer and leukaemia cells
(Ougolkov et al, 2006, 2007), we found that pharmacologic
inhibition of GSK-3b resulted in depletion of nuclear GSK-3b
from the renal cancer cells’ nuclei by 24 h of AR-A014418
treatment (Figure 4E). However, nuclear NF-kB p65 levels were
not changed (data not shown). The data are in agreement with the
hypothesis that GSK-3b positively modifies NF-kB transcriptional
activity downstream to the IKK complex.

To determine whether Bcl-2 and XIAP downregulation was a
cause or a consequence of caspase activation and apoptosis,
we treated A498 renal cancer cells with DMSO, AR-A014418,
DEVD-CHO (reversible tetrapeptide inhibitor of caspase-3 and
caspase-7) or a combination of AR-A014418 and DEVD-CHO
(Figure 4F). We found that DEVD-CHO could rescue the apoptotic
effect of GSK-3 inhibition by AR-A014418, whereas DEVD-CHO
did not affect the decrease in Bcl-2 and XIAP protein levels in
AR-A014418-treated cells (Figure 4F). These results suggest that
downregulation of Bcl-2 and XIAP expression in AR-A014418-
treated renal cancer cells occurs upstream of caspase activation.

Taken together, our results suggest that inhibition of GSK-3
suppresses the expression of NF-kB target genes Bcl-2 and XIAP,
resulting in decreased survival of renal cancer cells.

AR-A014418 and Docetaxel synergistically suppress
survival of renal cancer cells

The 5-year survival rate for patients with metastatic RCC is less
than 10% (Motzer et al, 1996) because of the tumours resistance to
chemo- and radiotherapy. Chemotherapeutic effect for RCC is very
limited because kidney cancer is intrinsically chemoresistant.
There are diverse factors that contribute to RCC chemoresistance,
including activation of NF-kB (Oya et al, 2001, 2003; An et al,
2004). Increased expression of Bcl-2 and XIAP anti-apoptotic
molecules, NF-kB target genes, has an important function in renal
cancer cell survival and chemoresistance (Bilim et al, 2008). In this
study, we show that inhibition of GSK-3 suppresses NF-kB-
mediated expression of Bcl-2 and XIAP leading to a decreased
survival of renal cancer cells. To determine whether inhibition of
GSK-3 could be useful in combination with conventional
chemotherapeutic agent in the treatment of RCC, we treated renal
cancer cells with AR-A014418 and Docetaxel, a well-established
chemotherapeutic drug. Docetaxel has a limited cytotoxic effect in
clinical RCC (Hartmann and Bokemeyer, 1999). We found that
inhibition of GSK-3 sensitised ACHN and Caki1 cancer cells to
Docetaxel, leading to a significant decrease in survival of renal
cancer cells (Figure 5). Our results suggest that the combination of
GSK-3 inhibitor with Docetaxel could be a superior treatment for
human RCC.

DISCUSSION

Recent studies show that GSK-3b has an important function in
pathogenesis of human cancer, including leukaemia (Ougolkov
et al, 2007; Wang et al, 2008), pancreatic (Ougolkov et al, 2005,
2006), prostate (Mazor et al, 2004; Sun et al, 2007), colorectal
(Shakoori et al, 2005), ovarian (Cao et al, 2006), thyroid
(Kunnimalaiyaan et al, 2007) and brain (Kotliarova et al, 2008)
carcinomas. However, the role of GSK-3b in kidney cancer remains
unknown.

In this study, we identify GSK-3 as a positive regulator of RCC
cell survival, proliferation and chemoresistance. We found GSK-3b
aberrant nuclear accumulation in most (91.89%) of human renal

Table 2 Results of immunohistochemical study for GSK-3b and pGS

Total
GSK-3b

nuclear
pGS

positive

Histological type
Oncocytoma 2 0 0
Clear cell 64 60a 62b

Other 10 8 7

pT stage (malignant tumours only)
1 53 50 52
2 7 6 7
3 14 12 10

Grade (malignant tumours only)
1 27 26 27
2 43 39 39
3 4 3 3

Total 74 RCCs and 2 oncocytomas 68 69

Abbreviations: pGS¼ phospho-glycogen synthase; RCC¼ renal cell carcinoma.
aFisher’s exact test P¼ 0.0185, w2 with Yate’s correction P¼ 0.0219. bFisher’s exact
test P¼ 0.0008, w2 with Yate’s correction P¼ 0.0002.
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carcinomas, whereas GSK-3b was detectable only in cytoplasm in
normal kidney tissue. Our results suggest nuclear accumulation of
GSK-3b as a potential oncomarker of RCC. Our findings are
supported by previous studies showing nuclear overexpression of
GSK-3b in pancreatic cancer (Ougolkov et al, 2006) and CLL
(Ougolkov et al, 2007). Immunohistochemical detection of GSK-3b

nuclear accumulation could be a useful diagnostic method for
pathological verification of kidney cancer.

It has been suggested that GSK-3b is directed to the nucleus by
releasing of its nuclear localisation signal from cytosolic complexes
(Meares and Jope, 2007). Recently, we have shown that only active
form of GSK-3b is detectable in the nucleus of pancreatic cancer
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Figure 3 Inhibition of GSK-3 suppresses proliferation of renal cancer cells. (A) Relative cell viability was measured by MTS assay in ACHN renal cancer
cell line treated with indicated doses of AR-A014418, SB-216763 or TDZD-8 for 24, 48, 72 and 96 h. (B) Relative cell viability was measured by MTS assay
in RCC cell lines treated with indicated doses of AR-A014418 for 24, 48, 72 and 96 h. (C) ACHN, A498 and KU19-20 renal cancer cells were treated with
diluent (DMSO) or AR-A014418 with indicated doses for 48 h. BrdU colometric assay was performed as described in ‘Materials and Methods’. The results
are presented as OD 490 nm (ANOVA Po0.0001, post test for linear trend Po0.0001). (D) ACHN, Caki1 and KU19-20 renal cancer cells were cultured
in the presence of DMSO or indicated concentrations of AR-A014418 for 96 h, followed by Hoechst 33342 staining. (E) ACHN renal cancer cells were
transfected with control siRNA, GSK-3b or GSK-3a siRNA using Lipofectamine; 48 h after transfection, relative cell viability was measured in transfected
cancer cells by MTS assay as shown in lower panel. Western blot for GSK-3a, GSK-3b and actin as control for loading is presented in the upper panel. Right
panel represents Hoechst 33342 staining of ACHN cells transfected with control siRNA (right-upper) or GSK-3b siRNA (right-lower). Apoptotic cells are
indicated by arrows.
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cells (Ougolkov et al, 2006). Although inactive form of GSK-3b is
able to translocate to the nucleus from cytoplasm, it is rapidly
degraded by proteasomal pathway within the nucleus of the cancer
cell (Ougolkov et al, 2006). Whether GSK-3b kinase activity is
required for its stabilisation in the nucleus of renal cancer cells
remains to be investigated.

Here, we show that inhibition of GSK-3 suppresses proliferation
and survival of renal cancer cells. Our data are in agreement with
other studies showing that inhibition of GSK-3 results in decreased
proliferation and/or survival of CLL (Ougolkov et al, 2007),
pancreatic (Ougolkov et al, 2005), colorectal (Shakoori et al, 2005),
ovarian (Cao et al, 2006), thyroid (Kunnimalaiyaan et al, 2007) and
brain (Kotliarova et al, 2008) cancer cells. We also observed
retardation of tumour growth by GSK-3 pharmacological inhibi-
tion in mice xenograft model using RCC cell lines (manuscript in

preparation). Our work suggests that inhibition of GSK-3 is a
promising new approach to renal cancer therapy.

Multiple factors contribute to RCC progression, including
activation of NF-kB (Oya et al, 2001, 2003; An et al, 2004).
Previous studies suggest a positive role for GSK-3b in the
regulation of NF-kB-mediated cancer cell survival (Ougolkov
et al, 2005, 2007). Previously, we showed that inhibition of GSK-3
resulted in apoptosis induction through decreased expression of
NF-kB target genes Bcl-2 and XIAP in CLL and pancreatic cancer
cells (Ougolkov et al, 2005, 2006, 2007). Increased expression of
Bcl-2 and XIAP anti-apoptotic molecules, NF-kB target genes, has
an important function in renal cancer cell survival (Maruyama et al,
2006; Bilim et al, 2008). In this study, we show that inhibition of
GSK-3 suppresses NF-kB-mediated expression of Bcl-2 and XIAP
leading to a decreased survival of renal cancer cells. Moreover, we
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show that depletion of GSK-3b by siRNA leads to a decrease in
renal cancer cell survival, suggesting that GSK-3b, but not GSK-3a,
is a selective regulator of survival in renal cancer cells.

Our finding of nuclear accumulation of GSK-3b suggests the
possibility that GSK-3b could positively regulate NF-kB-mediated
transcriptional activation of Bcl-2 and XIAP in the nucleus of renal
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cancer cells. We show that pharmacological inhibition of GSK-3
resulted in depletion of its nuclear pool and decreased transcrip-
tion of Bcl-2 and XIAP. Consistent with our recent study
suggesting that GSK-3 may regulate the nuclear activity of NF-kB
in leukaemia cells by affecting the binding of p65/p50 to the
promoters of NF-kB target genes Bcl-2 and XIAP (Ougolkov et al,
2007), we found that GSK-3 positively regulates NF-kB p65 binding
to Bcl-2 and XIAP promoters in human renal cancer cells.

In renal carcinoma, NF-kB activity could be boosted by
chemotherapeutic stress, leading to tumour chemoresistance.
Increased expression of Bcl-2 and XIAP anti-apoptotic molecules,
NF-kB target genes, has an important function in renal cancer cell
survival and chemoresistance. Inactivation of NF-kB can make
renal cancer cells more sensitive to chemotherapy. As GSK-3b is a
positive regulator of NF-kB activity (Ougolkov et al, 2005, 2007),
inhibition of GSK-3 may sensitise renal cancer cells to conven-
tional chemotherapeutic agents. Here, we found that inhibition
of GSK-3 suppresses NF-kB-mediated expression of Bcl-2 and
XIAP leading to a decreased survival of renal cancer cells.
Moreover, we show that inhibition of GSK-3 sensitised kidney
cancer cells to Docetaxel suggesting that GSK-3 might contribute
to renal cancer chemoresistance. Our findings are supported by

another study showing that GSK-3b positively regulates NF-kB-
mediated chemoresistance in acute myeloid leukaemia (De Toni
et al, 2006).

Recently, it has been shown that GSK-3b inhibition enhanced
Sorafenib-induced apoptosis in melanoma cells (Panka et al, 2008).
As this combination potentially could be applied for the treatment of
RCC we performed series of experiments. We also observed
synergistic effect of AR-A014418 and Sorafenib to induce apoptosis
in RCC in vitro and explored the underlying molecular mechanisms
(manuscript in preparation).

Taken together, our work identifies GSK-3b as a novel potential
therapeutic target in RCC and suggests the combination of GSK-3
inhibitors and standard chemotherapy could be a superior
treatment for human RCC.
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