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Abstract

Allopatric gene pools can evolve in different directions through adaptive and nona-
daptive processes and are therefore a source of intraspecific diversity. The connec-
tion of these previously isolated gene pools through human intervention can lead
to intraspecific diversity loss, through extirpation of native populations or hybridiza-
tion. However, the mechanisms leading to these situations are not always explicitly
documented and are thus rarely used to manage intraspecific diversity. In particular,
genotype-by-environment (GxE) interactions can drive postzygotic reproductive iso-
lation mechanisms that may result in a mosaic of diversity patterns, depending on the
local environment. We test this hypothesis using a salmonid species (Salmo trutta)
in the Mediterranean (MED) area, where intensive stocking from non-native Atlantic
(ATL) origins has led to various outcomes of hybridization with the native MED lineage,
going from MED resilience to total extirpation via full hybridization. We investigate
patterns of offspring survival at egg stage in natural environments, based on parental
genotypes in interaction with river temperature, to detect potential GxE interactions.
Our results show a strong influence of maternal GxE interaction on embryonic sur-
vival, mediated by maternal effect through egg size, and a weak influence of paternal
GxE interaction. In particular, when egg size is large and temperature is cold, the sur-
vival rate of offspring originating from MED females is three times higher than that of
ATL females’ offspring. Because river temperatures show contrast at small scale, this
cold adaptation for MED females’ offspring constitutes a potent postzygotic mecha-
nism to explain small-scale spatial heterogeneity in diversity observed in MED areas
where ATL fish have been stocked. It also indicates that management efforts could
be specifically targeted at the environments that actively favor native intraspecific

diversity through eco-evolutionary processes such as postzygotic selection.
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1 | INTRODUCTION

Admixture of previously isolated gene pools, through human in-
tervention, often leads to gene flow and hybridization. Indeed,
many ecological interactions are observed between individuals of
distinct species or populations, such as between wild and domes-
ticated individuals (Ryman et al., 1995; Utter, 2004) that escaped
or were willingly introduced in natural populations (Drinan et al.,
2015; McGinnity et al., 2003; Reed et al., 2015). Based on these
individual interactions, hybridization can have various impacts
(Epifanio & Nielsen, 2001; Genovart, 2009; Todesco et al., 2016). In
some cases, hybridization may increase genetic diversity, possibly
via evolutionary rescue (Stelkens et al., 2014; Todesco et al., 2016).
However, in most cases, hybridization has negative impact on na-
tive population demography and diversity (Rhymer & Simberloff,
1996; Todesco et al., 2016). Indeed, demographic, pathogenic, and
genetic consequences reducing the fitness of native populations are
often observed following admixture (Budy et al., 2013; McGinnity
et al., 2003; Zavorka et al., 2018 but see Stephens et al., 2020). In
the worst case, extinction by hybridization and introgression can
occur (Rhymer & Simberloff, 1996; Seehausen, 2006). The degree
and outcomes of hybridization in natural environments will depend
upon existing reproductive barriers, which may limit gene flow yet
not always fully prevent it (Bettles et al., 2005; Mallet, 2005).

Notably, following the admixture of two gene pools, postzygotic
barriers can lead to different outcomes regarding hybrid fitness and
hence population diversity. On the one hand, hybrid fitness can be
reduced compared to “native” genotypes due to outbreeding de-
pression. This mechanism is sometimes expected to act as a puri-
fying force that could favor the conservation of native—possibly
adaptive—genetic variation (Broadhurst et al., 2008; Hansen et al.,
2009; Kronenberger et al., 2018; Ruzzante et al., 2004). Commonly
applied management practices, such as the implementation of ge-
netic refuge, native individual translocation or restocking (Caudron
et al.,, 2006, 2011, Caudron, Champigneulle, et al., 2012; Grobler
et al., 2011), or any practices involving admixture, often rely on this
assumption. However, outbreeding depression may also be associ-
ated with the genetic swamping of adapted genes (Allendorf et al.,
2001; Rutherford et al.,, 2019), which could counter-effect these
management practices. An alternative conservation measure might
be to remove “non-native individuals” (Bohling, 2016; Caudron &
Champigneulle, 2011; Guay et al., 2014; Munoz-Fuentes et al., 2007),
but this can only be viable when hybridization is restricted in space
or not frequent (Genovart, 2009). On the other hand, gene flow can
help to build new genetic linkages that are equally or more adaptive
than “native” ones (“admixture effect”, Zalapa et al., 2009). A pos-
sible consequence is the general increase of fitness in the receiv-
ing populations (i.e., “genetic rescue,” Fitzpatrick et al., 2019), at the
detriment of pure “native” genetic variation. Management options to
conserve such native variation, in that case, are limited (Genovart,
2009). When pure native populations still exist, one solution might
be to isolate them to prevent any further gene flow (Bohling, 2016;
Guay et al.,, 2014).
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Mounting evidence indicates that these management practices
generally fail at conserving native diversity after admixture had al-
ready occurred (Gil et al., 2016; Mufoz-Fuentes et al., 2007; Vincenzi
et al., 2012). This is possibly due to the lack of knowledge regard-
ing reproductive isolation mechanisms (Bajec et al., 2015; Berrebi,
Poteaux, et al., 2000; lacolina et al., 2019; Taillebois et al., 2020),
which could help to build more efficient and evolutionary-inspired
management strategies. Identification of both pre- and postzygotic
reproductive barriers should thus be a prerequisite to any manage-
ment decisions to avoid counter-productive results. Indeed, since
admixed populations had previously evolved separately in different
environments, they may have diverged genetically and phenotypi-
cally, possibly due to local adaptation. Fitness variation in relation to
some environmental factors can thus be expected: Some genotypes
may achieve better fitness in some environments than other geno-
types. Information on the environmental factors that may contribute
to reproductive isolation will help in understanding and predicting
the outcomes of hybridization in specific environments. This could
then be used to implement new management practices (Epifanio &
Nielsen, 2001; Genovart, 2009; Todesco et al., 2016) to either avoid
admixture (if applied soon enough), lesser the extent of introgres-
sion, and favor “native” genes conservation when admixture has al-
ready occurred (Caudron, Champigneulle, et al., 2012), or to favor
diversity when it enhances the adaptive potential of the population
(Chan et al., 2019).

It is therefore paramount to investigate and assess the strength
and direction of such genotype-by-environment (GxE) interactions
to (i) maximize beneficial genetic and phenotypic variation as it rep-
resents a resilience mechanism against environmental change (Cook
& Sgro, 2018; Jump et al., 2009; Lépez-Pujol et al., 2012; Violle et al.,
2012) and to (ii) develop eco-evolutionary-based approaches allow-
ing to target specific operations of conservation where they will be
the most effective (Caudron, Vigier, et al., 2012; Chan et al., 2019;
Genovart, 2009; Todesco et al., 2016).

Salmonids embody the above-mentioned situation since they
evolved mostly in allopatry during the Pleistocene glaciations, where
geographical reproductive isolation allowed potential divergent evo-
lution to operate (Bernatchez, 2001). Among them, Salmo trutta L.
(Brown trout) holds at least five genetically and phenotypically dis-
tinct lineages (Bernatchez, 2001) that evolved in allopatry for 0.5
to 2 million years during the glacial era, where separated popula-
tions colonized different areas across Europe (Garcia-Marin et al.,
1999), although hybridization may have occurred at some points
(Hashemzadeh Segherloo et al., 2021). However, since the discovery
of artificial reproduction at the end of the 19th century, Salmo trutta
became the most introduced fish species in the world (Lowe et al.,
2000). As one of the consequences, the distinct lineages have been
forced back in sympatry. The Atlantic (ATL) lineage, in particular, has
been intensively used for fish farming and intensive river stocking
to sustain recreational fishing (Beaudou et al., 1994; Berrebi, Povz,
et al., 2000; Caudron & Champigneulle, 2007; Krieg & Guyomard,
1985; Largiadér et al., 1996; Launey et al., 2002; Presa et al., 1994).
In the Mediterranean area, where the Mediterranean (MED) lineage
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has evolved, the resulting situation displays a mosaic of outcomes,
from total extirpation of the MED lineage to various degrees of hy-
bridization (HYB), with some rare patches of pure MED gene pools
remaining (Caudron, Champigneulle, et al., 2012). The reason for this
spatial heterogeneity and diverse levels of intraspecific diversity
cannot be solely explained by management practices (i.e., intensity
of restocking using ATL lineages, Gil et al., 2016). However, up until
now, no postzygotic isolation mechanism has been studied in natural
populations presenting contrasted environments.

In the present study, we investigated patterns of offspring sur-
vival at egg stage in Salmo trutta, based on parental genotypes—using
markers related to original MED and ATL lineages—in interaction with
river temperature to detect potential GxE interactions. Selection can
indeed act very strongly during early stages of development in salmo-
nid species, notably as a function of temperature (Huuskonen et al.,
2003; Ojanguren & Brafa, 2003; Régnier et al., 2013), a factor that
can show contrast at small scales (Brown & Hannah, 2008; Daigle
et al., 2016). Offspring from ATL lineage are expected to be adapted
to relatively warm temperatures (8-10°C) for prehatching survival
as already demonstrated (Jungwirth & Winkler, 1984; Ojanguren &
Brana, 2003; Régnier et al., 2013), a thermal range often encoun-
tered in their distribution area. For the MED lineage, which evolved
experiencing a wider range of contrasting temperatures (Daigle
et al., 2016), we hypothesize that their offspring should at least out-
perform ATL offspring in cold water rate (4-6°C), since ATL offspring
display very low survival at such temperatures (Ojanguren & Brafa,
2003; Régnier et al., 2013). To assess the real importance of tem-

perature on postzygotic selection, our experiment was performed

directly in natural environments where substantial temperature
contrasts are observed during winter (Burt et al., 2011). In that way,
other uncontrolled known and unknown factors can interactively af-
fect survival, and any significant effect of temperature variation on
offspring survival can therefore be deemed as an important driver of
natural evolution (Anderson et al., 2014; Genovart, 2009). Based on
our results and interpretation of GxE interactions, we propose new
evolutionary-based guidelines for management strategies, to either
enhance native diversity conservation or maintain adaptive potential

in spatially variable environments.

2 | MATERIALS AND METHODS

2.1 | Genitors sampling and study sites

The present experiment was performed in the Haute-Savoie region,
France, part of the Rhone river basin, originally occupied by the
MED lineage of Salmo trutta. In this region, a century of ATL Salmo
trutta introduction has generally led to the presence of ATL individu-
als located upstream, HYB individuals located in the intermediate
parts of the rivers, and MED individuals located downstream in the
confluence areas (Caudron et al., 2009). Adult Salmo trutta were
sampled from the Overan Creek, a four-kilometer long tributary
of the Borne River (46.55'57.68N";6°24'07.40E", Figure 1a,b) that
harbors sufficient genetic variation required for the present study.
We focused our sampling on this single river to avoid confounding

effects of local adaptation (see Drinan et al., 2012), although local
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FIGURE 1 Map of France with the delimitation between the Atlantic (ATL) and the Mediterranean (MED) basin as well as a focus on
the Haute-Savoie region (a) where river locations for adult Salmo trutta sampling and egg incubation are indicated (b) and topography of
the Dranse d’Abondance system with our three thermally contrasted rivers (c). Mean water temperatures are indicated and in brackets are
minimum and maximum recorded water temperatures over the study period
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adaptation at such scale is not usually found (Stelkens et al., 2012).
To account for differences in maturation dates among individuals,
adult mature fish were captured on five different occasions, spread
between December 8, 2013, and January 15, 2014—throughout
reproduction period—using electric fishing. Availability of gametes
was assessed by palpation, so to ensure successful fertilization and
realization of the protocol. It was paramount to limit the captivity
duration of genitors to a few days so to prevent any mortality and to
safely proceed to successful fertilization of the desired progenies. As
a consequence, progenies were obtained before knowing the exact
genotypes of genitors. Adults were thus selected on robe criteria,
which can be used to some extent as proxies of genetic lineages
characterization (Data S1).

In fine, we selected 23 fecund males and 9 fecund females, hop-
ing to obtain a substantial genetic contrast in origins for our fertil-
ization protocol (individual characteristics for parents are provided
online: https://doi.org/10.15454/KBONL3). The selected individuals
were placed in oxygenated water and transported to the experimen-
tal fish farming installation in Thonon-les-Bains (INRAE, E74 300-4).
A few days before fertilization, fish were kept unfed in oxygenated
tanks and received two treatments against saprolegniasis.

Three neighboring rivers were then selected in Haute-Savoie, to
later deposit eggs during their incubation period, in order to repre-
sent a thermal contrast to test for GxE interactions (Figure 1b,c): the
Dranse River (46°16'52.94N";6°42'39.55E", slope = 4%, altitude at
source = 1500 m) and two of its tributary streams, the Chevenne
Creek (46.17'54.04N";6°47'22.09E", slope = 10%, altitude at
source = 1250 m), and the Serve Creek (46.16'49.60N";6°42'40.83E",
altitude at source = 840 m). They had respectively low (4.04°C), in-
termediate (5.2°C), and high (7.6°C) mean water temperatures (aver-
aged over December 1, 2013 to March 30, 2014).

2.2 | Fertilization protocol

Three fecund females were selected per expected genotypes (ATL,
HYB, MED) based on robe criteria, and their eggs were collected
for experimental fertilization. Females, however, produced eggs
of variable sizes (Data S2). Therefore, in each clutch, 30 eggs were
photographed and measured to estimate mean egg size in order to
control for maternal investment via egg-size effects. Each female's
clutch was then divided into four batches: Three batches were des-
tined to be placed in the three rivers previously selected for their
contrasted thermal regimes, and the last batch was left in the fish
farming installation (Thonon-les-Bains, INRAE, E74 300-4) to simply
control for fertilization success. Each batch was again divided into
three sub-batches in order to be fertilized by semen from either ex-
pected MED, expected HYB, or expected ATL males (also selected
on robe criteria). A total of 81 egg sub-batches were available for our
field experiment, 27 per thermal environment, representing the nine
possible crosses between MED, HYB, and ATL males and females
expected genotypes (Data S3). Because one male's semen was not
always sufficient to fertilize all the sub-batches for all the females
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in all conditions, several males with the same robe criteria could be
used for different sub-batches. However, males’ semen was never
mixed together, so to keep track of the parental design: each sub-
batch represented a full-sib family, allowing us to disentangle paren-
tal effects from the desired genotypic effects.

2.3 | Experimental design

Following fertilization, each sub-batch (between 20 and 44 fertilized
eggs) was placed in an incubation box (12 cm long, 5 cm diameter),
which protects eggs from predation, filled with gravel (5-20 mm
diameter) matching river substratum. Incubation boxes were then
transported to eachriver site. Eggs were slowly brought to river tem-
perature and incubation boxes were then buried in the river substra-
tum, to mimic nest-building behavior, at depth matching the natural
range of variation observed in Salmo trutta (Gauthey et al. (2015);
depth ranging between 5 and 15 cm, average = 10 cm depending on
substratum availability), still within fertilization day. Pine sticks were
placed in the substratum near incubation boxes to monitor for pos-
sible under-gravel anoxia events (Marmonier et al., 2004) that could
have affected egg survival during incubation (Bloomer et al., 2019;
Roussel, 2007; Winnicki, 1967).

A total of 81 incubation boxes (Data S3) were thus placed in situ
between December 9, 2013, and January 16, 2014, and removed
at approximately 400 degree-days—that is daily accumulated tem-
perature required for eggs to hatch (Killeen et al., 1999). On-site
temperature loggers were used to record hourly temperatures and
forecast the embryogenic development until hatching stage (about
400 degree-days). Incubation boxes were dug out of the rivers from
beginning of February to end of March 2014 as burial happened
at different dates (due to genitors’ availability for fertilization) and
development time varies according to thermal regimes. For each
recovered box, the number of surviving vesicled-fry was counted
and occurrence of saprolegnia noted. Egg sub-batches, left at the
fish farming installation, indicated that fertilization rates were high
(ranging between 85% and 100%).

2.4 | Genotypic studies

To assess parental genotype, genitors pelvic fins were clipped and
analyzed at six diagnostic markers (four single nucleotide poly-
morphism loci: OMM1144, OMM1105, OMM1154 and OMM117,
unpublished data and two microsatellites: str541 and str591,
Gharbi et al., 2006) perfectly differentiating ATL and MED line-
ages in Salmo trutta (Guyomard & Caudron, 2008, unpublished
data). Offspring genotype was not assessed. A genotypic score
was attributed to each parent and determined based on the al-
lele number of each lineage on all loci. An individual presenting
12 MED alleles was given a genotypic score of 1, deemed as a
pure MED genotype, whereas an individual with 12 ATL alleles
was given a genotypic score of 0, hence deemed as a pure ATL
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genotype. All other intermediate scores were referred to as HYB
genotypes. Although genotypic scores were obtained posterior to
fertilization, they were indeed strongly correlated to robe criteria,
ensuring that our fertilization protocol allowed us to cross parents
of the desired genotypic scores (Data S4).

2.5 | Statistical analyses

We analyzed offspring survival probability p (ratio of the surviving
fry number conditional on the initial egg number placed in each in-
cubation box) as a function of parental GxE interactions using mixed-
effects logistic regression. To do so, we tested for linear effects
of maternal (MG) and paternal (PG) genotypes—that is genotypic
score—in interaction with a linear effect of average temperature
during the incubation period (T") for the incubation box I. Since riv-
ers presented contrasted temperatures, the required time to reach
400 degree-days varied significantly among incubation boxes.
Therefore, we decided to control for the number of days spent in
the incubation box before hatching (Days). We also considered egg
size (E), as well as the occurrence of saprolegnia (S), to respectively
control for maternal investment and disease-related effects on off-
spring survival. We tested for other targeted interactions of inter-
est between both parental genotype and temperature, and between
egg size, maternal genotype, and temperature. Pseudo-replication
related to the identity of males («;) and females (/ij) was treated using
random effects. We also included a random effect for the three riv-
ers (y,) to effectively disentangle pure temperature effects from
other unknown environmental factors.

3 | RESULTS

Out of 81 incubation boxes placed in natural rivers, 16 could not be
recovered because they were scoured at high flow (a natural phenom-
enon). Among the 65 recovered boxes, some parent contributions
could not be represented in some rivers, either due to nest scour-
ing or to the lack of gametes and possibly reducing overall available
genetic variation for selection. Despite this, nearly all possibilities of
parental genotypic score combinations were present in all three riv-
ers (except for crosses involving HYB females, Data S5). Pine sticks
visual analysis revealed no anoxia event, but footprints of saproleg-
nia contamination were observed in 32 of the recovered boxes. The
parameter estimates indicated that the occurrence of saprolegnia
had a significant negative effect on survival probability (Table 1). The
number of days before hatching also had a significant effect, wherein
longer durations were correlated with better survival.

Most of the factors of interest and most of their interactions
(Table 1) were significantly different from zero, pointing at com-
plex patterns of variation in offspring survival probability. It is
noteworthy that the only nonsignificant interactions were those
including both maternal and paternal genotypes. All other interac-
tions including maternal genotype and temperature were signifi-
cant, indicating that GxE interactions occurred. Figure 2 describes
the predicted distribution of survival probability of offspring, as a
function of parental genotypes, temperature, and egg size, allow-
ing us to envision the shape and strength of the GxE interactions.
In general, offspring survival was higher at warm temperatures
than at cold temperatures. For the largest eggs (5.25 mm), at cold
(4.5°C) temperature, the survival probability for offspring of MED

logit (pjjis) =6+MG;+e#PG+¢+ T +nxDays;+0+E+x=S (Basicfactor effects)
+A%MG;# PG+ p* T MG+ v T % PG +&+E;+ T) + px E;x MG; (Interactions)

+oxE T «MGj+ ¢ T+ MG; + PG; (Three - way interactions)

+a;+p;+y, (Random effects)

withé,e,¢,1,0,x, A, u, v, &, p, o, pthe model parameters to be estimated.

Statistical inference was conducted in the Bayesian frame-
work using Markov chain Monte Carlo (MCMC) techniques as
implemented in JAGS software (Plummer, 2003). We used non-
informative normal prior distributions for the fixed effects (0.0,
0.0001) and noninformative gamma prior distributions (0.001,
0.001) for precision parameters of the random effects. The model
code and data are available online (https://doi.org/10.15454/
KBONL3). To approximate the joint posterior distributions of all
unknown quantities of the model—that is parameters—one MCMC
with 10,000 iterations was used after a 5000 iterations burn-in
period and after checking its convergence on three chains by ap-
plying the Gelman-Rubin test (Gelman & Rubin, 1992). We also
calculated the percentages of the posterior distribution above and
below zero for each parameter and considered a parameter to be
significantly different from zero when one of these percentages
was below 5%.

females was at least three times higher than that of offspring of
ATL females, but this difference nearly disappeared for the small-
est eggs (3.75 mm). At intermediate temperature (6°C), offspring
from MED females still had a slightly higher survival probability
than offspring from ATL females, whatever the egg size. At warm
temperature (7.5°C), the relationship between maternal genotype
and survival disappeared, as well as the effect of egg size. The
paternal genotype effect, though weak, was mainly expressed at
high and intermediate temperatures, favoring offspring sired by
ATL males, hinting at another potential GXE interaction. The addi-
tion of the female and male GxE interactions implied that offspring
survival was often the highest for hybrid descendants sired by ATL
males and MED females, whereas other hybrids (different crosses)
displayed intermediate survival in most cases.

The distribution of random effects indicated no strong ad-
ditional female effects on offspring survival, whereas one male
(ID = 12) had a particularly negative effect on offspring survival.
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TABLE 1 Parameter estimates of the mixed-effects logistic regression model. Posteriors mean, 95% credible interval, and percentage
above or below zero (Percentage/0) are provided for the controlled and tested effects, as well as interactions

Effects Parameter

Controlled for Days
Saprolegnia (S)
Tested Egg size (E)
Temperature (T°)
Maternal genotype (MG)
Paternal genotype (PG)
T° x« MG

T° « PG

MG « PG

E « MG

ExTe

E « T° « MG

T° % MG * PG

Interactions

Three-way interactions

Median 95% credible interval Percentage/0
0.082 [0.033; 0.132] 0.24"
-0.570 [-0.860; -0.278] o
-3.35 [-4.669; -1.768] 0"
-0.749 [-1.38; -0.066] 1.6
-15.85 [-26.08; -5.02] 0.14"
1.179 [-0.565; 2.977] 9.9
2.574 [0.759; 4.215] 0.28"
-0.271 [-0.563; 0.016] 3.279'
-0.393 [-3.367; 2.295] 39.75
4.325 [1.772; 6.785] 0.02"
0.494 [0.256; 0.705] 0"
-0.676 [-1.054; -0.251] 0.02""
0.0543 [-0.399; 0.550] 59.31

Note: Values significance for the last entry were positively represented by * symbols.

Additionally, random effects for rivers showed that offspring
placed in the Serve Creek had lower survival than those placed in
the Chevenne Creek and the Dranse River, unconditional on water
temperature (Data S6).

4 | DISCUSSION

This study expands our knowledge of GxE interactions and repro-
ductive isolation mechanisms between genetically distinct lineages
brought in sympatry, by showing that fitness variation in hybrid
zones following admixture can be strongly related to genetic origins
and can be extremely spatially variable. Of particular interest is the
fact that our experiment was performed in natural environments
using wild genitors, an approach that allows us to measure the effect
of the factor of interest (here, water temperature) without removing
all other natural sources of variation.

4.1 | Evidence of gene-by-environment
interactions

As hypothesized, temperature contrasts between rivers substan-
tially affected offspring survival in our experiment. Offspring gener-
ally had higher survival at the highest temperature studied, which
falls within the range of optimal temperatures for the survival of
Salmo trutta during prehatching stage (Jungwirth & Winkler, 1984;
Ojanguren & Braiia, 2003). Ojanguren and Brana, (2003) reported
an average 70% decrease in ATL offspring survival (at egg stage) for

a decrease of temperature from 7.5 to 4.5°C, very much in line with
our findings for ATL females. In particular, for the ATL lineage, off-
spring from larger eggs performed worse than those from smaller
eggs at low temperatures, confirming previous experimental results
in captivity (Régnier et al., 2013). However, for the same egg size,
offspring from MED females had a three times higher survival prob-
ability than offspring from ATL females at cold temperatures. This
constitutes a major selective advantage in cold environments for
carriers of MED maternal genes. It is also noteworthy that, generally,
egg size is positively correlated to female body size in salmonids, as
is fecundity (Lobon-Cervia et al., 1997): Large females lay large and
numerous eggs and therefore can massively contribute to popula-
tion growth. To our knowledge, there is no documented difference
between lineages regarding this size-dependent allocation strategy.
Thus, the present GxE interaction, mediated by maternal investment,
we here uncovered may fundamentally alter the genetic structure of
populations through boosted population growth by strongly favor-
ing MED maternal ascendency in cold environments.

Focusing on the effects of paternal genotype now, we also found
a GxE interaction involving temperature contrast. Genes from ATL
males tended to slightly improve offspring survival, but more so at
warm temperatures. The strength of this effect however was much
lesser than the above-mentioned female GxE interaction, a somewhat
logical outcome since maternal effects are often stronger than pater-
nal effects during earlier phases of development (Burton et al., 2006;
Burton et al., 2020; Huuskonen et al., 2003; Régnier, Labonne, et al.,
2012). The fact that we did not find any significant interactive effect
between paternal and maternal genotypes seems to preclude any
assumption regarding possible benefits of increased heterozygosity

FIGURE 2 Predictions of offspring survival probability at low (4.5°C), medium (6°C), and high (7.5°C) temperatures as a function of
maternal genotypic score, for ATL (0), HYB (0.5), and MED (1) paternal genotypes. Values for the smallest (3.5 cm) and largest (5.25 cm) eggs
found in our sample are represented separately to account for egg size variation. Solid lines are posterior means, while dotted lines are 95%
credible intervals. Predictions were performed using male ID 23, female ID 9, and the Dranse River as random effects. Saprolegnia effect

was discarded from the predictions
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(Dahl et al., 2006; Edmands, 2007; Fraser et al., 2008; Meldgaard
et al., 2007; Weatherhead, 1999; Wells et al., 2019), such as higher
diversity at functional loci like MHC (Jacob et al., 2010; Landry et al.,
2001; Turner et al., 2009 but see Labonne et al., 2016; Tentelier
et al., 2017). Therefore, ATL males may carry good genes—for some
environments—that MED males do not have. One possible specula-
tion to explain this is to turn to the SEX locus in salmonids (Yano et al.,
2012, 2013), which is only present in males: Some beneficial genes

could be segregated with this locus only in the ATL lineage.

4.2 | Potential consequences on diversity and
reproductive isolation

It is noteworthy that even if our experiment was realized on a small
spatial scale, we may have found footprints of adaptation to tem-
perature wherein some genotypes performed better in cold envi-
ronments than others; where other studies (also focusing on the
embryonic stage) involving a single lineage failed to do so (Clark
et al., 2013; Stelkens et al., 2012). While evidence for adaptation
to cold conditions in high altitudes was demonstrated at the spe-
cies level, for Salmo trutta (Jungwirth & Winkler, 1984) or Salvelinus
alpinus (Arctic char, Huuskonen et al., 2003), lineage-related adapta-
tion to temperature is to our knowledge not documented. Low tem-
peratures are often reached in alpine systems, such as the Dranse
d’Abondance, where the MED lineage evolved since the postglacial
period (Bernatchez, 2001). This potential lineage-related adaptation
to cold conditions indicates in our case that despite several genera-
tions in sympatry, gene flow has not erased the link between the set
of 6 diagnostic markers that were previously designed on the two
separate lineages and genes under potential selection (de Lafontaine
et al.,, 2015; Fitzpatrick et al., 2020; Lamaze et al., 2012). Of particu-
lar interest is the fact that robe criteria were well correlated to our
genotypic score, whereas recent results indicate that such approach
may still miss a large part of the recent genetic admixture (Saint-Pé
et al., 2019). This indicates that additional investigations of lineage
differences regarding adaptation to cold (MED) or warm (ATL) tem-
peratures could produce even more insightful data to further our un-
derstanding of intraspecific diversity dynamics in hybrid zones and
to understand how thermal environment could control for postzy-
gotic reproductive isolation (Leitwein et al., 2016). Given the recent
progress in the taxonomic status of Brown trout (Hashemzadeh
Segherloo et al., 2021), it is also likely that such hybridization events,
through their consequences on fitness variation, are central to the
evolution of the whole species (or species complex).

Temperature variation range itself is very heterogeneous at dif-
ferent spatial and temporal scales in mountain hydrosystems (Brown
& Hannah, 2008; Daigle et al., 2016). It was also the case on our field
study sites, wherein the three rivers were connected, within a few
kilometers, but presented contrasted thermal regimes. These tem-
perature contrasts cannot be summarized by the altitude gradient:
Geothermal influence, as well as distance to source or exposition
to wind and light, can also strongly condition water temperature
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dynamics. This, in conjunction with temperature-based GxE inter-
actions, could explain some of the hybridization patterns that are
observed in the Haute-Savoie region and elsewhere. For instance,
some pure MED populations appear to have much greater fitness
than some pure ATL populations in some river stretches, whereas in
other stretches, they are extremely vulnerable to introgression and
have been extirpated (Gil et al., 2016). Likewise, Largiadér and Scholl
(1996) failed to find frequent hybrids in the Doubs population and
concluded to potent reproductive barriers at work there: This could
be related to cold temperature adaptation.

Our findings may also explain the predominance of native
maternal ascendance in hybrid zones. In the Chevenne creek for
instance—one of the three rivers tested here—mitochondrial lin-
eages exclusively point at the MED lineage (Gil et al., 2016). Such
predominance of the native maternal ascendance is also found
in other areas (Poteaux et al., 1998) and in other hybrid zones in
Salmo trutta for a different lineage (Pujolar, Lucarda, et al., 2011;
Pujolar, Vincenzi, et al., 2011) or in other species (Bonnet et al.,,
2017; Schwartz et al., 2004; Taillebois et al., 2020). When com-
bined with our results, this indicates that maternal effects (genetic
and nongenetic) may have a preponderant role in the dynamics of
hybridization, notably because they are especially present during
the first stages of life (Burton et al., 2006; Burton et al., 2020;
Giesing et al., 2011; Régnier, Bolliet, et al., 2012; Régnier, Labonne,
et al., 2012; Shu et al., 2016). Cold adaptation, in particular, is
partly mediated through physiological mechanisms, which often
involve mitochondrial functions that are hence linked to maternal
ascendancy (White et al., 2012) and can differ between lineages
(Kavanagh et al., 2010). Additionally, in the present experiment,
females did not choose their spawning habitat, whereas it can also
further improve offspring fitness (Armstrong et al., 2003; DeVries,
1997; Gauthey et al., 2015; Ried| & Peter, 2013), possibly reinforc-
ing GXE interactions effects.

Finally, it is also important to consider to what extent our ex-
perimental protocol can be compared to mating patterns occurring
in wild populations with regard to genotypic variation (Maan &
Seehausen, 2011). Gil et al. (2015) found that female sexual pref-
erence in MED/ATL hybrid zones is generally aimed at dissimilar
males with respect to lineage-related robe criteria. This implies
that homogamous mating—with respect to lineage—may not be
very frequent. However, the fact that we found pure ATL or MED
genotypes among our genitors from the Overan River also evi-
dences the possibility of some homogamous mating. It is therefore
likely that most of the combinations envisioned in our protocol can
also occur in wild populations, although some of them might be

more frequent.

4.3 | Implications for intraspecific
diversity management

The effects of human-induced environmental perturbation on
evolutionary processes often result in the erosion of reproductive
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isolation between previously separated lineages (Grabenstein &
Taylor, 2018). Elucidating the evolutionary mechanisms controlling
this erosion, however, can help to formulate sound management
decisions. Based on the present results, we advise allocating man-
agement effort where they can bring the higher overall benefit. For
managers interested in protecting “native” MED genetic variation,
some environments should be particularly targeted for conserva-
tion actions: For instance, cold environments may naturally and
very efficiently select for native genotypes in our example—or at
least may help to preserve the native MED female lineage. This
opens a path for managers to target sanctuaries based on thermal
monitoring. It suggests that baseline information on climatic pa-
rameters and spatial projection related to the local effects of cli-
mate change should be performed by managers. Using such spatial
mapping of the factor of interest (here, water temperature) at small
scale and considering the spatial distribution of available genetic
variation (Razgour et al., 2019) may considerably help to forecast
the evolution of intraspecific dynamics. Management strategies
aimed at conserving native diversity, such as selective removal of
non-native phenotypes or genotypes, introduction of native geno-
types, could therefore be targeted at the right environments and
become much more efficient. In short, knowledge of GxE interac-
tions opens a path for a cost-effective approach to native diversity
conservation.

On the contrary, in environments where hybrids already occur,
with intermediate-to-high temperatures, it might be counter-
productive to attempt to eradicate hybrids, since they might have
an equal or better fitness than native MED individuals and also be-
cause reducing their frequency might, in fact, increase their mating
success through heterogamous sexual preference (Gil et al., 2015)
reinforced by negative frequency dependence (i.e., preference for
rare phenotype, Hughes et al., 1999; Kokko et al., 2007). The inter-
play between heterogamous mating preferences with regard to lin-
eages and postzygotic GxE interactions is however likely to generate
ample genetic variation in hybrid zones. Such variation should also
be accounted for by managers interested in the general resilience
of the whole species (Chan et al., 2019; Lopez-Pujol et al., 2012). In
fact, with specific attention devoted to connectivity and dispersal
rate (Labonne et al., 2008; Razgour et al., 2019), it should be possi-
ble to elaborate eco-evolutionary management plans accounting for
small-scale contrasts in environments. For instance, hybridization
could be used as a management tool to perform assisted and con-
trolled gene flow in order to increase evolutionary responsiveness
of endangered species facing global changes (Drury & Lirman, 2021;
Stelkens et al., 2014).

For many other taxa, contemporary patterns of diversity within
and between species are often the result of allopatric evolution
(Harrison, 2012), driven by either adaptive or nonadaptive processes
(Hendry & Gonzalez, 2008; Mayr, 1970). As a result, reproductive
isolation could have potentially evolved between isolated popula-
tions using different routes, often involving eco-evolutionary mech-
anisms (Schluter, 2000). In that case, genotype-by-environment
interactions may lead to fitness variations among individuals and

dictate the evolutionary outcome of hybridization. This has been
observed at intra- and interspecific level (Campbell & Waser, 2001;
Fraser et al., 2008; Genovart, 2009; Janes & Hamilton, 2017) with
studies pointing toward effects of environmental factors, such as
temperature (Drury & Lirman, 2021; Krehenwinkel & Tautz, 2013),
pH (Fraser et al., 2008), or eutrophication (Vonlanthen et al., 2012)
on the fitness of hybrids complex. A growing number of studies are
highlighting the need to identify environmental and ecological fac-
tors involved in hybridization dynamics (Genovart, 2009; Lindtke
et al., 2014; Schwartz et al., 2004), specifically when a combination
of environmental factors will influence the maintenance of repro-
ductive barriers between and within species (Janes & Hamilton,
2017). As in our case study, spatial—or even temporal—variations of
such factors could be the key to building future management strat-
egies of intraspecific diversity for admixtured gene pools. Indeed,
they will be able to address simultaneously several objectives, such
as conserving native diversity in some areas (Bohling, 2016; Janes &
Hamilton, 2017) and maximizing evolutionary potential as a whole
in others, in order to cope with future environmental variation
(Nuismer & Gandon, 2008).
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