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Abstract

Background: Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness.

Methods: We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology

of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern

neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease,

Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts,

brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias.

Conclusions: Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern

theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional

architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of

more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.
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Introduction

Movement disorders, particularly those associated with basal

ganglia disease, have a high rate of comorbid neuropsychiatric

illness.1 An early recognition of this fact can be found in

Huntington’s classic description of hereditary chorea, in which he

noted ‘‘a tendency to insanity and suicide’’ to be one of the ‘‘marked

peculiarities’’ of the disease.2 Following his lead, McHugh described

a triadic syndrome of ‘‘dyskinesia, dementia, and depression’’ in

basal ganglia disorders, drawing on examples from Huntington

disease (HD) and Parkinson disease in particular.3 Citing the seminal

work of Alexander et al,4 McHugh went on to propose that damage

to anatomically parallel but functionally distinct neural loops within

the basal ganglia was responsible for the diverse manifestations of his

syndrome. While aspects of McHugh’s remain pertinent today,

our understanding of the biology of neuropsychiatric illness in move-

ment disorders has advanced considerably in recent decades.5–12

This has been facilitated in part by developments in structural

and functional neuroimaging techniques, especially in the field of

magnetic resonance imaging (MRI) and positron emission tomo-

graphy (PET).

This paper draws on neuroimaging research specifically in relation

to hyperkinetic movement disorders, which, in their diversity, offer the
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opportunity to refine and extend McHugh’s ideas. We argue that what

unifies these disorders in terms of their common relationship to a range

of cognitive, emotional, and behavioral symptoms lies in altered

structure and function in subcortical loops and circuits with which

basal ganglia structures are often, but not always, associated. The core

neuropsychiatric syndromes of some of these disorders, such as HD

and the neuroacanthocytoses for instance, are very likely to involve

dysfunctional cortico-striatal circuits (Figure 1);11,13 other disorders,

such as dentatorubropallidoluysian atrophy (DRPLA) and the

spinocerebellar ataxias (SCAs), may involve additional dysfunction

within cortico-spinal and cortico-cerebellar circuits (Figure 2).10,12,14

Our revised model synthesizes McHugh’s observations with modern

pathophysiologic theories of cortico-subcortical circuits7–12 and finds

support in a number of studies correlating structural and functional

neuroimaging with the variable neuropsychiatric comorbidity of the

hyperkinetic disorders. We argue that our approach provides novel

explanations as to why certain psychiatric syndromes are more

common in certain diseases, and may in fact offer a framework within

which to hypothesize about the frequent comorbidity of psychiatric

symptoms in other neurological disorders.

Huntington disease

HD (Online Mendelian Inheritance in Man 613004) is an inherited

autosomal dominant condition defined by a pathological trinucleotide

repeat affecting the huntingtin (HTT) gene on the short arm of

chromosome 4. Its prevalence is estimated to fall between 4.1 and 7.5

per 100,000.15 The clinical onset of the disease is generally accepted as

the manifestation of motor symptoms. This commonly occurs in the

fourth or fifth decade, with an inverse correlation between age of onset

and number of pathological trinucleotide repeats on the largest

expanded allele.16

Neurosychiatric symptoms have long been associated with HD.2

Depression appears to be the most common psychiatric comorbidity,

with estimates of prevalence ranging from 33% to 69% of patients.17

This stands in contrast to the estimated lifetime prevalence of

depression in the general population of about 16.5%.18 While one

study found the rate of suicide to be up to eight times higher than that

of the general population in HD patients over the age of 50,19 a more

recent finding is that depressive symptoms decline with illness stage,20

a discrepancy that may be due to supervening of depressive symptoms

by cognitive impairment in the later stages of the illness. Mania and

psychosis are less common in HD, with estimates of prevalence

ranging from 3–12% and 5–10%, respectively,21 which still stands in

contrast to the estimated lifetime prevalence of up to 1% and 3%,

respectively, in the general population.22,23 Patients with an earlier age

of HD onset are at greater risk of psychosis.24 Formal cases of obsessive

compulsive disorder (OCD) have rarely been reported, against a

background prevalence of around 1.6% in the general population.18

Nevertheless, in one large study nearly one-quarter of patients

presenting to a specialist clinic for the first time demonstrated obsessive

or compulsive symptoms.25 Obsessive and compulsive symptoms have

also been associated with increasing stage of illness26 and greater

executive dysfunction.27

The classic neuroimaging finding in HD is atrophy of the caudate

and putamen with concomitant alterations in the ratios of frontal horn

to intercaudate distance and intercaudate to inner table distance.28,29

This gives the frontal horns of the lateral ventricles a characteristically

rounded or box-like appearance. T2-weighted MRI signal may also be

Figure 1. Prototypical frontal cortico-striatal circuit. Bidirectional arrows:

pathways with both afferent and efferent connections. Dotted lines: notional

connections. Solid lines: literal connections. Th: Thalamus. SN: Substantia nigra.

GP: Globus pallidus. Striatum: caudate nucleus and putamen.

Figure 2. Prototypical cortico-cerebellar circuit. Bidirectional arrows:

pathways with both afferent and efferent connections. Dotted lines: notional

connections. Solid lines: literal connections. Th: Thalamus. IO: Inferior olive.
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increased throughout the caudate, putamen, and globus pallidus due to

gliosis and iron deposition.30

Several studies have used diffusion tensor imaging (DTI) to

investigate changes in white matter connectivity in both patients

and presymptomatic carriers of HD. Most studies have demonstrated

disruption of multiple cortical and subcortical white matter tracts in

patients and carriers alike, with robust correlations with stage of illness

and selective cognitive and motor impairments.31–33 The origin of the

changes lies in neuronal destruction in specific regions of the caudate

and putamen.34,35

HD patients with depression have also been shown to exhibit

hypometabolism in orbitofrontal and inferior prefrontal cortex on

fluorodeoxyglucose (FDG)-PET compared with HD patients without

depression.36 These changes are associated with subcortical but not

cortical gray matter volume loss, suggesting that cortical functional

changes may arise secondary to subcortical structural changes.

We conclude that disruption to cortico-striatal circuits plays an

important role, not just in the motor manifestations of HD but also in

the cognitive and behavioral manifestations of the illness.13,37

Neuroacanthocytoses

The neuroacanthocytoses are a group of disorders characterized by

neuropsychiatric symptoms associated with spiculated red blood cells

in the peripheral circulation. While genetically diverse, the neuroa-

canthocytoses include such disorders as chorea acanthocytosis (ChAc),

McLeod syndrome (MLS), and Huntington disease-like 2 (HDL2),

each of which will be considered below.

Chorea acanthocytosis

ChAc (OMIM 200150) is a rare autosomal recessive disorder caused

by mutations in the VPS13A gene on chromosome 9q coding for the

membrane protein chorein.38,39 As in HD, ChAc causes neuronal

pathology that is most evident in the caudate and putamen, but can also

be seen the ventrolateral substantia nigra and globus pallidus.40 The

clinical onset of the disease is usually between the ages of 25 and 45 years.

The majority of ChAc patients experience neuropsychiatric

symptoms40,41 and these may precede overt neurological illness by

more than a decade.42,43 The most common psychiatric problem in

ChAc is OCD, which affects more than 50% of patients.43,44 A similar

proportion of ChAc patients develop a dysexecutive cognitive

syndrome, ultimately leading to a frontal-subcortical dementia with

associated impairments in memory and speed of processing.40,43,45

Schizophrenia-like psychosis is relatively uncommon, but a small

number of cases have been reported.46

Neuroimaging findings in ChAc typically include progressive and

marked atrophy of the caudate and putamen with a predilection for the

caudate head.47 On MRI there may be increased T2-signal in the

dorsal striatum48 and some researchers have observed cerebellar

atrophy49–51 and white matter changes involving the corpus

callosum.50 We note the cerebellar and changes with special interest,

given the potential role of cortico-cerebellar dysfunction in executive

cognitive impairment,10 which features prominently in this disease.

In a study of two 33-year-old monozygotic twins, accentuated right

hemispheric changes on MRI, FDG-PET and [(123)I]beta-(2beta-

carbomethoxy-3beta-(4-iodophenyl)tropane) Single Photon Emission

Computed Tomography correlated with more severe hyperkinetic

movements on the left.52 In twin 1, who was initially misdiagnosed

with schizophrenia, a significant difference in binding to presynaptic

dopamine transporters with marked reduction on the right was also

observed. The researchers proposed loss of caudate neurons may thus

predispose to psychosis due to the deleterious effect on both up- and

downstream information processing within adjacent frontostriatal and

striatolimbic pathways previously implicated in schizophrenia.53 A

similar mechanism may account for the prevalence of OCD in ChAc

given the established link between obsessive-compulsive and dysex-

ecutive symptoms and impairments in the lateral orbitofrontal loop

primarily centered on the caudate.54

McLeod syndrome

MLS (OMIM 300842) is an X-linked genetic disorder characterized

by weakly expressed or absent Kell red blood cell antigens,

acanthocytosis, and elevated creatine kinase levels. It is caused by

mutations in the XK gene and mainly affects males, although female

carriers can show mild symptoms.55 Clinical onset is usually between

the ages of 25 and 60 years, and up to 80% of patients demonstrate

neuropsychiatric comorbidity at some stage of their illness.56,57 Like

ChAc, the neuronal loss associated with MLS predominantly affects

the caudate and putamen,40,58,59 and neuropsychiatric symptoms not

uncommonly predate the neurological manifestations of the illness.56,60

Executive dysfunction is common in MLS and has also been

described in female carriers.57 A high prevalence of OCD-like

syndromes has been reported by a number of authors.61–64 Psychotic

disorders may be just as frequent, with cases of schizophrenia-like

illnesses being reported in which typical psychotic symptoms have

preceded the onset of chorea.56,63,65

Marked caudate atrophy and increased T2 signal in the lateral

putamen are common MRI findings in MLS.57,61,66,67 Reduced

striatal D2 binding has been reported in PET studies67,68 along with

hypometabolism of the basal ganglia and frontal lobes66 and altered N-

acetylaspartate to creatine/choline ratios in the frontal and medial

temporal cortex and thalamus.69 The absence of cortical neuronal loss

on limited neuropathological studies59 is reminiscent of HD, and again

suggests that functional cortical abnormalities are secondary to striatal

neuron loss, presumably via the loss of mediating cortico-striatal

pathways.

Huntington disease-like 2

HDL2 (OMIM 606438) is an autosomal dominant disease caused

by a CTG expansion in the junctophilin-3 gene (JPH3) on chromo-

some 16q24.3.70,71 It is only found in patients of black African

ancestry.70

Only a small number of HDL2 cases with comorbid neuropsychia-

tric illness have been reported in the literature, but they are notable for
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the heterogeneity of associated symptoms, including depression,

anxiety, and psychosis, in addition to a frontal-dysexecutive syndrome

leading to dementia.72–75 While neuropsychiatric comorbidity appears

to be the rule rather than the exception in HDL2, it may differ from

the other neuroacanthocytoses in that neuropsychiatric symptoms

seem to be reported only after the onset of neurological illness.

In common with the other neuroacanthocytoses, neuroimaging

reveals significant atrophy of both the caudate and the putamen,

and to a lesser extent the substantia nigra and pallidum.71,76 The

association of deep structural brain changes with such a broad range

psychiatric symptomatology again illustrates the critical role of cortico-

striatal circuits in the behavioral manifestations of the illness.

Wilson disease

Wilson disease (WD—OMIM 277900) is an autosomal recessive

disorder characterized by a mutation in the ATP7B gene coding for a

copper transport protein, leading to copper deposition in multiple

organ systems. In the central nervous system (CNS), it particularly

affects the putamen and pallidum.77 While the initial presentation of

WD may be hepatic, neurological, or psychiatric, about half of all

patients have neuropsychiatric symptoms at a given time.78

Affective disorders appear to be the most common neuropsychiatric

illnesses in WD79–81 and often meet the criteria for bipolar disorder.82

Personality changes characterized by irritability and aggression are

also very common.81 While neurologically asymptomatic patients

rarely show cognitive deficits,83 those with neurological disease often

display a range of difficulties, including impairments of executive

function, memory, and visuospatial processing.78,84,85 Psychosis is

relatively uncommon81,86 although cases of delusional disorder have

been reported.87,88 OCD has only been reported only once in

association with WD,89 which is surprising given the high rate of OCD

in other basal ganglia disorders, but may be hypothesized to reflect

some sparing of the caudate relative to illness such as HD and ChAc.

About half of patients with WD demonstrate basal ganglia

hypodensity on computed tomography (CT)90 and virtually all show

abnormalities on MRI.91 Characteristic features may include T2

hyperintensities within the lenticular nuclei, ventrolateral thalamus,

and hypothalamus, probably due to the paramagnetic effect of copper

and iron deposition within these structures.92 T2 hyperintensities in

the tegmentum often spare the red nuclei and medial margins of the

parts reticulta and superior colliculi, giving rise to the so-called ‘‘face of

the giant panda’’ sign.93

FDG-PET typically shows hypometabolism in the lenticular

nuclei,94 and in one study 19 of 25 patients examined by 99mTc-

ethyl-cysteinate dimer (ECD) SPECT exhibited diffuse or focal

hypoperfusion affecting the superior frontal, prefrontal, parietal, and

occipital cortices, the temporal gyri, caudate, and putamen.95 The fact

that the primary pathology associated with this disease is to be found in

the basal ganglia once again suggests that proximal damage to

components of cortico-subcortical circuits may have profound effects

on distal brain function, such as cognition and emotion.

Neurodegeneration with brain iron accumulation

Neurodegeneration with brain iron accumulation (NBIA) encom-

passes a group of genetically diverse disorders characterized by

neuronal death secondary to brain iron deposition. In the adult

population, NBIA includes pantothotenate kinase-associated neurode-

generation, aceruloplasminaemia, and neuroferritinopathy.

Pantothenate kinase-associated neurodegeneration

Pantothotenate kinase-associated neurodegeneration (PKAN—

OMIM 234200) is a rare autosomal recessive disorder caused by

mutations in the PANK2 gene. There are two main phenotypes. In its

classic form, PKAN is characterized by a severe and rapidly

progressive hyperkinetic movement disorder with an onset in the first

decade leading to complete loss of ambulation. A second, atypical form

exists that is characterized by a less severe and less rapidly progressive

movement disorder with an onset in the second to third decade.96 Both

phenotypes are associated with additional neurological symptoms

including dysarthria, dystonia, and cortico-spinal abnormalities.96

Cognitive decline is common in PKAN and tends to affect earlier-

onset patients more severely.97 It is not uncommon for cognitive

symptoms to predate motor signs98 and a pattern of impaired attention

and executive function is characteristic.99 Up to half of all patients

experience psychiatric problems, which include behavioral distur-

bances,96 OCD,100,101 tic disorders,102 psychosis,103 and depression.104

The neuroradiological hallmark of PKAN is the so-called ‘‘eye

of the tiger sign’’, which is characterized by bilateral areas of

hyperintensity within a region of hypointensity in the medial globus

pallidus on T2-weighted MRI.105 The low signal intensity is said to

result from excessive iron accumulation,106 with the central high signal

being attributed to gliosis and cavitation resulting in increased water

content.107 It is important to note that the sign is not specific to PKAN:

it can also been seen in other neurodegenerative disorders such as

cortico-basal ganglionic degeneration,108 progressive supranuclear

palsy,109 and neuroferritinopathy.107,110

In terms of functional imaging, a 99mTc-ECD SPECT study has

described regional hypoperfusion of the bilateral frontoparietal lobes,

lenticular nuclei, and ventriculus quartus in two siblings with adult-

onset disease and an identical PANK2 mutation.111 The cortical

metabolic findings are of particular interest given that PKAN is

classically defined by its subcortical pathology, which again suggests

that diaschesis via cortico-subcortical circuits plays an important role

in the genesis of clinical neuropsychiatric symptoms.

Aceruloplasminemia

Aceruloplasminemia (AC—OMIM 604290) is a rare autosomal

recessive disorder characterized by mutation in the ceruloplasmin (CP)

gene leading to iron deposition in multiple tissues due to impaired

ceruloplasmin ferroxidase activity.112,113 The major sites of CNS iron

deposition include the basal ganglia, cerebellar dentate nuclei, red

nucleus, thalamus, and hippocampus.114 AC occurs in just 1:2 million

non-consanguineous births and usually presents in the fifth or sixth

decade.115
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About half of all patients with AC present with cognitive

impairment116 and most progress to develop a subcortical dementia

characterized by executive dysfunction and cognitive slowing asso-

ciated with frontal hypometabolism.114,117,118 Only one case of major

psychiatric illness associated with AC has been reported, in the form of

a typical schizophreniform psychosis.118

MRI typically demonstrates marked T2 hypointensity correspond-

ing to regions of pathological iron deposition including those noted

above119–121 and can be used to quantify iron accumulation in vivo.122

Subtle hyperintensities of posterior white matter tracts have also been

reported, and subtle superficial cerebral and cerebellar cortical

hypointensities may be detectable when sequences sensitive to the

magnetic susceptibility effects of iron are used.121

Given the characteristic distribution of iron deposition in AC, the

primarily dysexecutive cognitive syndrome associated with the illness

may be the result of impairment to both cortico-striatal and cortico-

cerebellar circuits at the subcortical level.117

Neuroferritinopathy

Neuroferritinopathy (NF—OMIM 606159) is a rare autosomal

dominant disorder characterized by mutations in the ferritin light

chain (FTL1) gene. Patients commonly present in the fourth to sixth

decade with features of chorea (50%), dystonia (42.5%), or

Parkinsonism (7.5%).123 As with the other NBIA syndromes, the

globus pallidus is a common focus of iron deposition.124

In the small number of cases described, dementia and psychosis

have been the most common neuropsychiatric comorbidities. While

patients are generally said to have intact cognition until late in the

disorder,125 disinhibition and emotional lability may be the early

symptoms of a dysexecutive cognitive syndrome typically leading to a

frontosubcortical dementia.126,127 In one pedigree, akinetic mutism

was an additional late manifestation.128 Psychosis has also been

associated with NF: ataxia, rigidity-bradykinesia and neuroleptic-

responsive psychosis was reported in an adolescent patient with a

family history of schizophrenia,129 while another patient who

presented with severe generalized dystonia at the age of 22 years later

developed delusional jealousy.130

MRI typically demonstrates iron deposition and cavitation in the

basal ganglia with a characteristic loss of T2 signal. The red nucleus

and substantia nigra appear to be the first structures affected, with

subsequent involvement of the dentate nucleus, putamen, globus

pallidus, thalamus, caudate nucleus, and prefrontal cortex.126

Increasing R2* (the inverse of T2*) signal appears to correlate with

increasing severity of dystonia, and may be a clinically useful method

of tracking disease progression.131 Although functional imaging studies

are yet to be conducted, the anatomical distribution of injuries on

structural MRI would be expected to result in abnormalities in cotico-

striatal and cortico-cerebellar circuits, potentially correlating with the

predisposition of NF patients to psychosis and dementia.

Dentatorubropallidoluysian atrophy

Dentatorubropallidoluysian atrophy (DRPLA—OMIM 125370) is a

rare genetic disorder caused by a triplet repeat expansion of the

atrophin gene (ATN-1) on chromosome 12p13.31.132 It is most

prevalent in Asian pedigrees, and a review of cases within the Japanese

literature found psychosis to be the most common psychiatric

comorbidity, affecting about 10% of patients.133

Serial neuroimaging findings were reported in a Caucasian man

who was first scanned at the age of 38 years with a history of seizures,

tremor, ataxia, and dysarthria.134 Interval imaging showed progressive

atrophy of cerebellum and brainstem, with GRE and SWI sequences

demonstrating marked susceptibility effect throughout the cerebellar

hemispheres, vermis, and dentate nuclei. T2-weighted signal abnorm-

alities have also been documented in both the subcortical white matter

and brainstem white matter tracts in DRPLA.135,136 A neuroradiolo-

gical–pathological study of a father and son demonstrated signal

intensity changes in white matter were due to a marked loss of

myelinated fibers, while gray matter changes were largely due to a loss

of neuropil.137 Given the strong evidence that alterations to myelinated

fibers underpin psychotic symptoms in schizophrenia,138–140 it is not

surprising that psychosis is a common psychiatric comorbidity in this

group. It is difficult to explain why the degenerative changes of the

cerebellum and brainstem have not been associated with cognitive

symptoms, except to hypothesize that the potential link may not yet

have been investigated.

Spinocerebellar ataxias

The SCAs are a large family of autosomal dominant neurodegen-

erative disorders associated with subcortical dementia syndromes,141–144

depression, and personality change.145

Neuroimaging studies have mainly focused on SCAs 1 (OMIM

164400), 2 (OMIM 183090), 3 (OMIM 109150), 6 (OMIM 183086),

and 17 (OMIM 607136), and typically reveal one of three patterns of

atrophy: spinal atrophy (SA), olivopontocerebellar atrophy (OPCA),

and cortico-cerebellar atrophy (CCA).146 OPCA is typical of SCA 1, 2,

and 3 and is characterized by diffuse T2 and proton density signal

changes in the pons, middle cerebellar peduncle, and cerebellum in

association with atrophy of the cerebellum, brainstem, and cervical

spinal cord.147 CCA is associated with SCA 6 and 7, and MRI

typically shows atrophy of the cerebellar folia without signal change,

while the brainstem and spinal cord volume is preserved.148 A finding

that is believed to be specific to SCA3 is linear T2-hyperintensity along

the medial margin of the globus pallidus interna, and may be due to

degeneration of the lenticular fasiculus.149

In MRI studies using diffusion-weighted and diffusion tensor

imaging, both diffusivity and fractional anisotropy (FA) in the

brainstem and cerebellum was found to be decreased relative to

controls in SCA 1 and 2.150,151 Decreased FA may be more robustly

correlated with clinical severity in SCA 1 than measures of atrophy

using conventional MRI.152

One voxel-based morphometry study of SCA2 patients correlated

patterns of executive dysfunction with atrophy of the posterior

cerebellum, and coordinative dysfunction with atrophy of the anterior

cerebellum.153 Another study demonstrated a similar dissociation of

cognitive and motor functions in SCA17, as well as an inverse
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relationship between CAG repeat length and the rate of disease

progression.154

Both symptomatic and presymptomatic SCA-17 subjects imaged with

MRI and PET demonstrated atrophy of the cerebellum and caudate

nucleus and decreased glucose metabolism in the striatum, cuneus,

cingulum, and parietal lobes. In addition, PET was closely correlated

with both motor and cognitive performance as assessed by the Scale for

the Assessment and Rating of Ataxia, Unified Parkinsons Disease Rating

Scale, and Mini-Mental State Examination.11 C-raclopride PET

showed postsynaptic dopaminergic dysfunction within the putamen

and caudate nucleus that correlated with impairment of motor

performance.155

Taken together, the neuroimaging findings in a range of SCAs

would appear to support the hypothesis that the cortical dysfunction

associated with these disorders once again arises from a syndrome of

cortico-subcortical and cortico-cerebellar disconnection. That damage

to the cerebellum should so robustly translate into impairments of

higher cortical functions14,156 suggests that disrupted cortico-cerebellar

circuitry, in addition to the disrupted cortico-striatal and thalamo-

cortical circuitry, plays an important role in the genesis of

neuropsychiatric symptoms in these conditions.

Metachromatic leukodystrophy

Metachromatic leukodystrophy (MLD—OMIM 250100) is a severe

neurodegenerative metabolic disorder, also classified as a lysosomal

storage disorder. It is caused by deficient activity of arylsulfatase A

(ARSA) leading to accumulation of glycosphingolipid sulfatide and

progressive demyelination in the central and peripheral nervous

system.157 MLD is both genetically and phenotypically heterogeneous,

with a variable age of onset.158

Some MLD mutations are associated with predominant motor

presentations, others with cognitive and psychiatric features. Adult

homozygotes for p.P426L tended to present with gait disturbances

followed by choreoathetotic movements, dysphagia, dysarthria,

tremor, and nystagmus, whereas carriers of the less common p.I179S

mutation present primarily with psychosis.159 The cognitive changes of

MLD may resemble those of a generalized Alzheimer’s dementia, with

features that include amnesia, visuospatial dysfunction, attentional

deficits, and slowed processing speed.160–162

MLD is typically associated with the distinctive imaging findings of

diffuse periventricular and subcortical white matter hyperintensities

sparing subcortical U-fibers on T2-weighted MRI.163 The pattern of

white matter involvement is also characteristic with linear or punctuate

high signal radiating in the demyelinated white matter, sparing the

perivascular white matter, resembling ‘‘tigroid’’ or ‘‘leopard-skin’’.164

An increase in white matter myo-inositol on magnetic resonance

spectroscopy (MRS) supports demyelination in the pathophysiology of

MLD.165 A large case review has previously hypothesized that the

heavy burden of white matter disease in MLD, which particularly

affects the subfrontal white matter, may account for the unusually high

prevalence of psychosis in this disorder via disruptions to both

frontotemporal cortico-cortical and cortico-striatal circuitry.166

Niemann–Pick disease type C

Niemann–Pick disease type C (NPC—OMIM C1 257220, C2

607625) is a progressive neurodegenerative disorder caused by

disrupted intracellular sterol trafficking. Most cases are associated

with disruption of the NPC1 gene on 18q11,167 but around 5% are

associated with disruption of the NPC2 gene on 14q24.2.168 The

clinical manifestations of the disease are highly heterogeneous and may

appear any time between birth and late adulthood,169 although adult

patients typically present with ataxia, dystonia, chorea, vertical gaze

palsy, impaired cognition, and psychiatric illness.170

Psychosis is the most common psychiatric presenting complaint

among adult NPC patients.169,171 Presentations of depression, bipolar

affective syndromes and OCD have also been reported.172,173 While

up to 38% of NPC patients will first present with a psychiatric

syndrome, psychiatric sequelae—other than those associated with

dementia—in patients who first present with neurological symptoms is

regarded as rare.169

In one study of six adult NPC patients, VBM demonstrated gray

matter reductions particularly affecting the hippocampus, thalamus,

superior cerebellum, and striatum, regions where ganglioside accu-

mulation is greatest.170 On DTI, widespread reductions in fractional

anisotropy in major white matter tracts were also observed, with

subanalyses suggesting pathological contributions from both impaired

myelination and altered axonal structure. Other volumetric studies of

NPC patients have demonstrated reduced callosal area and thick-

ness174 and increased pontine-to-midbrain ratio175 in correlation with

duration of illness, symptom score, and aspects of saccadic dysfunction;

and reduced left hippocampal volume in correlation with symptom

score and cognitive dysfunction.176 An FDG-PET study of two

monozygotic children over a 2-year period demonstrated diffuse

cortical hypometabolism initially in the medial frontal cortex that

progressed to severe bilateral hypometabolism of frontal, parietal, and

temporal cortices.177

These structural and functional imaging studies in NPC provide a

compelling model of disrupted cortico-cortical connectivity due to

diffuse and extensive white matter changes, and cortico-subcortical

and cortico-cerebellar disconnectivity secondary to direct gray matter

disruption in these key relay zones.

Discussion

While hyperkinetic movement disorders are heterogeneous in terms

of both their neuropathology and neuropsychiatric comorbidity,

observations from neuroimaging studies suggest they share some

common neural circuit bases in association with complex forms of

cognitive, emotional, and behavioral dysfunction. By synthesizing a

modern model comprising cortico-striatal-pallido-thalamic and cor-

tico-cerebellar circuits7–12 with that of McHugh, we argue that

damage to certain strategic components of these circuits provides

unifying explanation for the apparently disparate functional manifesta-

tions of these disorders. The argument proceeds as follows:

Firstly, several neuropsychiatric syndromes are especially prevalent

across hyperkinetic movement disorders: executive dysfunction and
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subcortical dementia, affective disorders including OCD, and

psychotic disorders including schizophrenia-like syndromes. Many of

these neuropsychiatric disorders have been independently associated

with particular patterns of cortical dysfunction and dysfunction

ascribed to particular cortico-subcortical circuits. For instance, it

appears that early damage to the striatum strongly predisposes to

OCD.54 The caudate in particular is recognized as a point of origin for

the lateral orbitofrontal loop, and OCD may arise as a consequence of

alterations to the normal neurodevelopment of this circuit.43 Cortico-

striatal and striato-limbic circuits are similarly implicated in the

pathophysiology of psychosis,178 and cortico-cerebellar circuits in the

cognitive abnormalities associated with schizophrenia.156,179

Secondly, almost all of the hyperkinetic movement disorders are

associated with neuron loss in the basal ganglia, and some are also

associated with neuron loss in subthalamic and cerebellar nuclei.

These nuclei can be conceptualized as connective hubs or crossroads4

for both higher and lower brain functions, and within particular

cortico-subcortical circuits.

Thirdly, the limited functional imaging studies that exist in this area

points towards a dissociation between changes in cortical volume and

changes in cortical function,36 suggesting that the cortical abnormal-

ities associated with these disorders may, in some circumstances, arise

secondarily to the loss of populations of subcortical neurons.

Alterations to cortico-subcortical (Figure 1) and cortico-cerebellar

(Figure 2) circuitry constitute a mechanism for diaschisis that is

consistent with the manifestations of neuropsychiatric dysfunction

observed.

While certain psychiatric syndromes may be more or less common

in the hyperkinetic disorders, their heterogeneity also serves to provide

some evidence of the involvement of cortico-subcortical circuitry:

although the main circuits may be functionally distinct and subserve

different motor, cognitive, and emotional behaviors,4 they are not

anatomically separate; rather, they are parallel loops connected by

white matter tracts converging at certain strategic hubs, such as the

striatum, pallidum, thalamus, and cerebellum.7–12 Consequently, these

circuits interact in the striatum and other hubs to modulate each

other’s output,180 leading to symptoms across a broad range of

domains. The strategic vulnerability of cortico-subcortical circuitry

at multiple sites in the network may be a key factor in the

pathophysiology of these disorders.181

In the case of the hyperkinetic disorders with pathology more

strongly rooted in the basal ganglia (such as HD and the

neuroacanthocytoses), there is persuasive clinical and neuroimaging

evidence of remote functional pathology detectable at the level of both

white matter tracts and cortex. On the other hand, disorders associated

with primary white matter pathology, such as MLD, clearly exert a

strong functional influence on their proximal gray matter connections.

This paper also extends the model of cortico-subcortical dysfunction to

include nuclei in the cerebellum and brainstem, with similar

observations to be made for subthalamic diseases such as DRPLA

and the SCAs. Finally, those diseases in which cortico-subcortical loops

are affected very selectively (such as HD or MLD) appear to

demonstrate more robust associations to severe neuropsychiatric

illness than those that are affected more diffusely (such as WD and

NBIA).

McHugh proposed a triadic model of basal ganglia disorders

characterized by symptoms of dyskinesia, dementia, and depression.

His original hypothesis was that these disparate syndromes could be

accommodated by virtue of shared anatomical pathology affecting

functionally distinct subcortical loops. Our argument is that McHugh’s

acknowledgement of depression must be extended to include a broader

range of psychiatric syndromes associated with the cognitive-emotional

domains subserved by such circuits, and that his understanding of

dyskinesia must be extended to include a broader range of motoric

dysfunction

We would also like to suggest that a neurodevelopmental model may

help scaffold an understanding of the relative preponderance of these

conditions at different stages of illness. For instance, it is generally the

case that disorders known to be associated with departures from a

normal neurodevelopmental trajectory tend to present with early

neuropsychiatric illness such as OCD and schizophreniform psychosis.

The disruption to crucial late neurodevelopmental processes by young-

onset neurodegenerative disorders may thus result in neuropsychiatric

syndromes that would otherwise tend to present in adolescence or

early adulthood.182 In contrast, disorders that are associated with

degeneration of the mature brain, and which result in cognitive decline

or frank dementia, tend to be those which present later. One possible

exception to this principle is the early appearance of executive

dysfunction, which may be detectable in carriers and presymptomatic

individuals long before the onset of clinical disease. Executive function

may be a particularly cognitive vulnerable faculty given its phylogen-

etically more recent origin; this may also, however, reflect the rich

interconnectedness between frontal cortex and subcortical gray matter,

with disorders that either diffusely affect connecting structures or

specifically impact basal ganglia structures showing a predilection for

impairments in executive function.

In conclusion, we suggest that an expanded version of McHugh’s

model incorporating modern models of cortico-subcortical circuitry7–12

can be extended beyond diseases of the basal ganglia to encompass a

wide range of neurodegenerative disorders affecting cortico-subcortical

loops. Damage to any part of these complex information-processing

systems—including cortical grey mater, subcortical white matter, or

subcortical gray matter nuclei—can have variable and often profound

consequences for the function of more remote neural structures,

creating a diverse but nonetheless rational pattern of clinical

symptomatology.
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