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Viability, task switching, and fall 
avoidance of the simplest dynamic 
walker
Navendu S. Patil1,2*, Jonathan B. Dingwell1 & Joseph P. Cusumano2

Walking humans display great versatility when achieving task goals, like avoiding obstacles or 
walking alongside others, but the relevance of this to fall avoidance remains unknown. We recently 
demonstrated a functional connection between the motor regulation needed to achieve task goals 
(e.g., maintaining walking speed) and a simple walker’s ability to reject large disturbances. Here, 
for the same model, we identify the viability kernel—the largest state-space region where the 
walker can step forever via at least one sequence of push-off inputs per state. We further find that 
only a few basins of attraction of the speed-regulated walker’s steady-state gaits can fully cover 
the viability kernel. This highlights a potentially important role of task-level motor regulation in fall 
avoidance. Therefore, we posit an adaptive hierarchical control/regulation strategy that switches 
between different task-level regulators to avoid falls. Our task switching controller only requires a 
target value of the regulated observable—a “task switch”—at every walking step, each chosen from 
a small, predetermined collection. Because humans have typically already learned to perform such 
goal-directed tasks during nominal walking conditions, this suggests that the “information cost” of 
biologically implementing such controllers for the nervous system, including cognitive demands in 
humans, could be quite low.

When human infants learn to walk, they essentially learn, albeit after extensive practice, to be “viable,” i.e., to 
take steps without  falling1. Older adults frequently fall while walking, and the related injuries are a serious pub-
lic health  issue2,3. Thus, quantifying individuals’ fall risk is critical to minimizing fall incidence. However, the 
risk of a fall in humans likely depends on multiple biomechanical, neurological, cognitive, and environmental 
 factors4. Taking one walking step after another while remaining upright is not entirely automatic, as even healthy 
humans need to actively cope with physiological motor noise and environmental disturbances. Here, we focus 
on the walker’s ability to reject large external disturbances (as might occur, e.g., while avoiding an unanticipated 
obstacle or from a “shove”), which is central to avoiding falls.

When walking is viewed as a behavior of a dynamical system, falling is a loss of stability. For a nominal motion 
of a dynamical system to be stable, disturbances to it cannot grow over time: while local stability precludes the 
growth of small disturbances, global stability characterizes the decay of large disturbances so that, in both cases, 
perturbed trajectories either remain near or approach a nominal motion of the system under its dynamics. 
Typically, disturbance-free, nominally periodic walking motions are modeled as limit cycles, thus facilitating 
their stability analyses. However, the ability to avoid falls per se does not require a walker to be constrained to 
pre-determined nominal motions, let alone a limit cycle. Indeed, a walker can, at least in principle, remain viable 
by staying upright and taking an arbitrary sequence of steps, without closely tracking or approaching any given 
limit cycle. Consequently, the aforementioned stability analyses, when applied to walking, can not fully capture 
the walker’s ability to avoid falls.

Viability of an actuated dynamical system (e.g., a walker with actuation) characterizes the system’s ability to 
avoid failure (e.g., falls during walking) forever by choosing appropriate sequence(s) of inputs within its actuator 
 limits5. The set of all viable states in the system’s state space—the viable region—in which its viability is guaran-
teed, provides a measure of the system’s maximum possible ability to avoid failure. This is because for every state 
in the viable region, there exists at least one input that can keep the next system state in the viable region, too. 
Indeed, the walker can keep taking steps one by one without falling, provided no external disturbance pushes 
the walker’s state outside the viable region before actuation kicks in. Therefore, the bigger the viable region in 
a walker’s state space, the better is the walker’s ability to avoid falls, as it can reject a larger range of external 
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 disturbances6–8. Thus, viability generalizes stability by dispensing with the requirement of remaining near or 
approaching a specific nominal motion. When employing a specific control strategy, i.e., a specific function of state 
feedback, global stability does characterize the walker’s ability to avoid falls. However, viability, being agnostic 
to any specific controller, permits arbitrary sequences of inputs that avoid falls, including those constructed by 
switching between distinct control strategies. Evidently, the walker’s ability to avoid falls, after an unexpected 
external disturbance, using any given strategy is, in general, inferior compared to when it is allowed to employ 
combinations of multiple such strategies. Thus, viability characterizes the walker’s ability to avoid falls better than 
global stability does. Furthermore, the absolute performance of different specific control strategies in avoiding 
falls (i.e., their global stability) is upper bounded by, and can only be meaningfully assessed with respect to, the 
walker’s viability.

Typically, humans walk not just to stay upright and move forward, but also to perform one or more goal-
directed tasks, i.e., to achieve task goals, like walking around an obstacle in their path or walking next to another 
person. Often, such task goals amount to achieving target values of one or more gait observables (i.e., empirically 
measurable variables), like speed or direction. Moreover, humans, in general, can perform any given walking 
task via multiple gait patterns, each specified by a set of gait  parameters9,10. Such task-level redundancies also 
interact with biomechanical redundancies at the level of muscles and  joints11. This non-uniqueness of solutions 
to a given motor task makes the problem of biological movement control mathematically ill-posed. The notion 
of  viability5 is well-suited to handle the non-uniqueness of solutions to a given walking task as it does not target 
a specific gait pattern (like that of a limit cycle), but only to avoid falls. However, by itself, viability does not take 
into account goal-directedness in walking. Indeed, the walker could, at least in principle, step randomly (i.e., 
with no “intent”) forever within the viable region.

Task-level motor regulation allows the walker to achieve specific task goals by targeting relevant task-level 
observables from each walking step to the next. In many cases, a task goal can a priori be represented as a goal 
equivalent manifold (GEM)—a surface in the suitable space of task-level observables such that each of its points 
correspond to zero task-level  error12. The GEM framework belongs to a class of “task manifold” approaches, 
including those that are primarily data-driven, to analyze movement  variability13. Task-level regulation rapidly 
corrects deviations in stepping observables that interfere with achieving a specific goal (i.e., those perpendicular 
to the GEM), while allowing task-irrelevant deviations (i.e., those tangent to the GEM) to  persist9,14. Thus, regula-
tion, too, can permit walking at several limit cycles, as long as they do not violate the specific task requirements, 
especially while viability concerns are not paramount. However, by itself, task-level regulation does not aim to 
guarantee stability of the walker’s limit cycle, let alone maximize its global stability.

The paradigm of “limit cycle walking”15,16 has shown that continuous-time active control of walking trajec-
tories between step transitions is not required to achieve stable limit cycles. Similar nominal limb trajectories, 
across a variety of human movements, have also been predicted within the optimal control framework consistent 
with the “minimum intervention principle”17. Many optimality-based approaches, like trajectory optimization, 
naturally seek walking solutions in the form of a single limit cycle having a specific set of gait parameters such 
as step length and step time, often known a priori. However, such solutions are excessively restrictive as they 
constrain walking motion around a single trajectory. In contrast, humans have necessarily learned to walk at 
many such limit cycles, both stably and efficiently, to remain versatile. Moreover, at least in principle, humans 
could remain viable using control strategies that quickly switch between multiple limit cycles. For tasks that have 
multiple uncertain goals with similar costs, humans deliberately select intermediate movements to maximize task 
 success18. In walking, however, fall avoidance decidedly supersedes achieving other task goals, which themselves 
often have different  priorities10. This makes the choice of an optimal strategy far less obvious.

In this vein, our work is motivated by the following fundamental questions: How does the nervous system 
manage redundancies while achieving task goals in a given walking context? Furthermore, how might this func-
tional organization help minimize fall incidence? In response, we posit that humans achieve stable and efficient 
walking gaits via a hierarchical schema, consisting of what we will here distinguish as control versus regulation 
of movement. Specifically, we use “control” to refer to the processes required for a walker to remain viable while 
taking individual steps. Conversely, we use “regulation” to refer to the step-to-step processes needed to carry 
out specific goal-directed tasks. Evidently, the walker must remain viable at all times, including while carrying 
out specific walking tasks. Thus, control and regulation, while functionally distinct, are hierarchical by design.

Our recent  work19 highlights a possible answer as to why humans might prefer one equally workable task-level 
regulation strategy over another from the perspective of fall avoidance. We studied this question by integrating 
the simplest mechanical template20 of walking on level ground with motor regulation templates, i.e., empirically 
motivated models of how humans manipulate task-level observables on a step-to-step  basis10,14. In experiments, 
humans walking on a treadmill tightly regulate speed at successive strides, while allowing absolute position to 
drift for many  strides9,14. We thus simulated a push-off powered compass  walker21 that additionally regulated 
step-to-step speed or absolute position on a treadmill. We characterized global stability of the walker’s limit 
cycles (i.e., steady-state periodic gaits) by the size and shape of their basins of attraction in the state space, and 
found that task-level regulation, despite not being designed to do so, makes walking more robust to external 
disturbances: it yields superior local disturbance rejection and improved global stability, both by increasing the 
size of basins of attraction and by regularizing their geometric  structure19. Furthermore, while both step-to-step 
speed and position regulation provide workable strategies for treadmill walking, we found that speed regulation 
enlarges and regularizes the unregulated walker’s basin much more than position regulation. These simulation 
results are consistent with  experiments9,14 and thus demonstrate a functional connection between task-level 
motor regulation and global stability. However, that prior work did not assess motor regulation strategies within 
the context of viability.

Here, we extend this recent work and study the same powered walker (Fig. 1) to identify the viable region in 
its state  space5, i.e., the set of all states beginning in which the walker can step forever by applying at least one 
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sequence of its push-off inputs for every starting state. The viable regions of walking models with definite swing 
leg dynamics, including the compass walker studied here, have not yet been explicitly estimated. Conversely, in 
the nonviable set of states, the walker cannot avoid falls, let alone regulate to achieve task goals, with any pos-
sible active push-off control. Therefore, the viable region is also the set within which different motor regulation 
strategies can be meaningfully compared for their effect on the walker’s ability to avoid falls, i.e., their global 
stability. Taking step-to-step speed regulation as a model task-level motor regulation  strategy9,14,19, we estimate 
the speed-regulated walker’s basins for several target speeds vis-à-vis the viable region. Not only do the speed-
regulated walker’s basins occupy large regular regions, but we find that only a small collection of these basins 
covers nearly the entire viable region itself. Motivated by these results, we propose a hierarchical task switching 
controller that, at least in principle, allows the walker to avoid falls by appropriately switching between different 
task-level regulators at each walking step. Our work suggests a possible mechanism by which humans could avoid 
falls, by exploiting redundancy in previously learned regulation strategies to achieve task goals in a variety of 
walking contexts, including that of responding to a large, unexpected disturbance.

Results
We employ the simplest dynamic walker that walks on a level surface by means of impulsive push-off actuation, 
modeling ankle plantar flexion during toe-off in  humans21 (see “Methods”). The walker’s state, just after heel 
strike, is fully described by the stance leg angle θ+ and its angular rate θ̇+ , in the inertial frame attached to the 
stance foot (Fig. 1). We study the walker’s step-to-step dynamics as a hybrid Poincaré map, F , over the two-
dimensional state space (θ+, θ̇+) with push-off input P (Eq. 2).

We further impose viability constraints on the walker that yield restrictions on its states and inputs (see 
“Methods”): specifically, the stance foot must remain on the ground throughout the stance phase; the impulsive 
actuation must be small enough to not lift the walker off the ground when the swing foot’s heel strike is impend-
ing, and must be large enough to lift the stance foot off the ground after push-off.

Where are the compass walker’s dynamics viable? 1‑step viable region. Walking motions can start 
in the feasible region V0  of the state space:

We further restrict θ+ � 0.85 , which covers the range of stance angles observed in humans.
Previously19, we identified the “1-step” region of the powered compass walker (Fig. 1) as the set of states 

from which the walker can have at least one heel strike. The 1-step region is the wedge-shaped region within 
V0  , demarcated by the curves �low and �high (Fig. 2a). However, our previous work did not seek to identify the 
walker’s viability within this region.

(1)V0 � {(θ+, θ̇+) | θ+ � 0, θ̇+ � 0}.
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Figure 1.  Three snapshots of a 2D powered compass  walker21 walking on a level ground (step speed, Vk ): (a) 
just after kth , (b) just before (k + 1)st and (c) just after (k + 1)st heel strike. The walker has straight, massless, 
stance (red) and swing (blue) legs, and a mass at the hip (circle). The masses at the feet (not shown) are 
infinitesimally small compared to the hip mass. The push-off impulse, P, is applied instantaneously just before 
heel strike. At the beginning of the kth step, the walker’s state in the inertial frame is [θ+k , θ̇+k ]⊤.
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Here, we find the viable subset of the 1-step region, i.e., the 1‑step viable region V1  , by imposing viability con-
straints on the walker’s dynamics over one step (Eq. 2). We visualize V1  in a scaled state space (Fig. 2b), which 
we introduced  previously19.

The nonnegativity constraint of the ground reaction force (GRF) at the stance foot yields two curves, Ŵ+
GRF 

and Ŵ−
GRF defined by the equalities in Eq. (5). Each of these curves partition the 1-step region into viable and 

nonviable sets. Specifically, the walker’s stance foot maintains contact with the ground throughout when initial-
ized from states on the sides of both Ŵ+

GRF and Ŵ−
GRF that contain the origin (0, 0) (Fig. 2b).

The actuation limits (Eq. 8) by themselves do not further limit the push-off-powered walker’s viability over a 
single step. Consequently, the walker’s 1-step viable region V1  is bounded by only four curves, viz., �low , �high , 
Ŵ+
GRF , and Ŵ−

GRF (Fig. 2).
Also shown in Fig. 2 are the walker’s period-1 gaits, i.e., gaits that repeat every step. The walker admits fami-

lies of “long-period” and “short-period”  gaits16,21, which are fixed points (θ∗, θ̇∗; P∗) of the map F (Eq. 2), for a 
given P∗ . While the long- and short-period gaits admit distinct step times and contrasting open-loop stability as 
θ+ → 022, their  curves19 intersect at (0, 0) in the original state space (Fig. 2a). In contrast, in the scaled state space 
(Fig. 2b), those very gaits remain bounded away from each other as θ+ → 0 , which facilitates further analysis.

Viability kernel: ∞‑step viable region. While the walker can definitely take a step in the 1-step viable region 
V1  (Fig. 2), it is not guaranteed to walk forever, even with the best-possible push-off control. This is because the 
walker’s state after taking a step need not remain in V1  , but is only guaranteed to lie in V0  (Eq. 1). We therefore 
identify the largest closed subset V of V1  in which the walker can remain viable forever, i.e., for an infinite num-
ber of walking steps. That is, for any state xk := [θ+k , θ̇+k ]⊤ ∈ V , there exists at least one push-off input Pk such 
that xk+1 := [θ+k+1, θ̇

+
k+1]

⊤ = F(xk; Pk) ∈ V , satisfying viability constraints. The set V is thus the ∞‑step viable 
region or the viability kernel5,8 of the powered compass walker. It also follows that V is the largest positively invar‑
iant set (i.e., invariant in forward time)23 under the walker’s closed-loop dynamics, i.e., with state-dependent 
push-off input. Alternatively, V is the largest controlled‑invariant  set23 of the push-off-powered compass walker. 
Outside V , the states are nonviable as no sequence of push-offs can prevent the walker from eventually failing 
(i.e., either violating at least one of the viability constraints or falling).

We employed the viability kernel  algorithm5 that avoids brute-force computation by utilizing the positive 
invariance property of V for its estimation (see “Methods”). Our implementation of that algorithm converged 
after 18 iterations so that the set V18 , i.e., the 18-step viable region where the walker can take at least 18 steps, is 
the final estimate of the ∞-step region V (Fig. 3a) to within the resolution of the grid on the state space.

We estimated the areas of different regions in the original state space using the composite Simpson’s rule. The 
∞-step viable region V (Fig. 3a) occupies ≈ 97.46% area of the 1-step viable region V1  (Fig. 2): This indicates 

a b

GRF

GRF

Figure 2.  Powered compass walker’s 1‑step viable region V1  , i.e., the set of states beginning in which the walker 
takes at least one step while remaining viable, bounded by the curves �low , �high , Ŵ+

GRF , and Ŵ−
GRF : (a) In the 

wedge-shaped region in the middle (“1-step”  region19), demarcated by the curves �low and �high , the walker has 
at least one heel strike though it may not necessarily maintain a nonnegative GRF at the stance foot. Indeed, in 
the nonviable region, the stance leg either moves too slowly to swing past the vertical, moves too fast so that the 
walker falls forward, or fails to maintain ground contact throughout the stance phase. Thus, V1  is a strict subset 
of the “1-step”  region19. (b) To better visualize V1  , we plot the state space with θ̇+ scaled to 
θ̇+sc � θ̇+−�low(θ

+)

�low(θ
+)−�high(θ

+)
 for any given θ+ ∈ (0, 0.85] , so that the new variable θ̇+sc is 0 on the upper �low curve 

and takes a value −1 on the lower �high  curve19 (freehand arrows). The period-1 gaits of the walker, viz., 
“long-period” and “short-period” gaits that repeat every step, along with their open-loop stability, are as in our 
previous  work19: solid lines show open-loop-stable gaits, while broken lines depict open-loop-unstable gaits. Inset 
shows zoomed-in area where Ŵ+

GRF , and Ŵ−
GRF intersect each other and the period-1 gaits.
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that the walker’s push-off can be chosen to make it walk forever beginning in almost all states for which it can 
have a legitimate heel strike (Eq. 4).

Unreachability within the viability kernel. We found the unreachable subset VUR of V that cannot be traversed 
by the walker’s trajectories (see “Methods”). The set VUR consists of two disjoint subsets of V , together occupying 
≈ 2.47% of its area (Fig. 3a). As expected, the walker’s period-1 gaits lie entirely within the reachable subset of V.

Evidently, any walking task or target that would require the walker to traverse such unreachable sets cannot 
be achieved. The walker’s state can end up in VUR due to external disturbances or can be initialized within it; 
however, its state immediately (i.e., in one step) leaves VUR under the walker’s dynamics (Eq. 14).

Viability kernel boundaries. The viability kernel algorithm guarantees that the trajectories of nonviable grid-
point states (Fig. 3) cannot enter the viability kernel V while those originating in the interior of V always remain 
in it. However, V is a closed  set5, so states on its boundary must also satisfy the positive invariance property 
(Eq. 13): That is, the boundary of V can be mapped into itself or into the interior of V24, provided appropriate 
input push-offs are chosen.

The boundary of V is a union of three curves: Ŵb , Ŵt and ŴGRF (Fig. 3). Our numerical results indeed show 
the positive invariance of the estimated boundaries of V , which leads to their validation via the mathematical 
theory of dynamical systems (see “Methods”).

Task-level regulation, global stability, and fall avoidance. No strategy can avoid falls for states out-
side the viability kernel V . Conversely, the walker can walk forever inside V by employing any one of infinitely 
many appropriate sequences of push-offs. However, the region V itself exists and is independent of any given 
control strategy the walker might choose. Thus, it is meaningful to assess the performance of different specific 
control strategies in avoiding falls only for the trajectories starting within V.

We are particularly interested in motor regulation templates, i.e., empirically motivated models of how 
humans manipulate task-level observables on a step-to-step  basis10,14. As a model task-level regulation strategy, 
we here specify experimentally informed step-to-step speed  regulation9,14 on the walker (Fig. 1): see “Methods”. 
Specifically, we pick a push-off impulse at each step by minimizing the squared discrepancy between the speed 
V at the next step and its desired target value V∗ , chosen a priori.

Global stability under task‑level regulation: basins of attraction. Previously19, we demonstrated a functional 
connection between task-level motor regulation and the walker’s ability to reject large disturbances, i.e., its 
global stability. The maximal attainable global stability for the walker, capable of applying arbitrary sequence of 
push-offs within its actuation limits, is, indeed, its viability. Therefore, we assess a walker’s global stability via the 
basins of attraction of its steady-state gaits in the state space vis-à-vis the viability kernel V (Fig. 3).

Figure 3.  The ∞-step viable region or the viability kernel V in the scaled state space (Fig. 2b) of the powered 
compass walker, numerically approximated via Algorithm 1 as the 18-step viable region V18 after convergence on 
a grid. The set V , bounded by the curves {Ŵb,Ŵt,ŴGRF} , is a strict subset of the 1-step viable region V1  (Fig. 2): 
indeed, states within V1  (or “1-step”  region19) that are either below Ŵb or above Ŵt are nonviable. The boundary 
ŴGRF is common to both V and V1  . The curves of long- and short-period gaits are from Fig. 2. (a) The two 
unreachable subsets (hatched regions) of V , demarcated by the boundaries Ŵ1 and Ŵ2 , cannot be traversed by 
the walker. (b) The open‑loop basin of attraction with zero push-off ( P∗ = 0 ) is a subset of V , within which 
trajectories approach the steady-state long-period gait S at {(θ∗, θ̇∗);P∗} = {(0, 0); 0} . The basin boundaries 
form the stable  set19,48 of the unstable short-period gait U (a saddle point) at {(θ∗, θ̇∗);P∗} = {(0, 0); 0} and also 
contain the boundaries Ŵb \�high := {(θ+, θ̇+) ∈ Ŵb | θ

+ � 0.37402} and Ŵt of V.
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As in our recent  work19, we numerically estimated basins by simulating the open-loop ( Pk := P∗ ) walker’s 
trajectories for 50 steps and those of the speed-regulated (Eq. 16) walker for 25 steps, starting from every state 
on the same grid that we used for the estimation of V . The walker’s trajectories that fail to satisfy viability con-
straints are not considered part of its basins.

The open-loop basins (Fig. 4) are significantly smaller in area than those of the speed-regulated basins 
(Fig. 5). Moreover, the geometric structure of the open-loop basins becomes more intricate as push-off impulse 
P∗ increases, with a growing number of disjoint boundaries  (see19 for a discussion of the aspect of the nonin-
vertibility structure of the open-loop basins). In contrast, the speed-regulated walker’s basins occupy large areas 
within V and are highly regular (Fig. 5): their boundaries are given by level curves of the form θ− = constant19 
and/or are shared with the boundaries of V themselves.

In Fig. 6, we compare the normalized areas of the basins of attraction within the viability kernel V for the 
open-loop and speed-regulated walkers for target speeds V∗ � 0.38301 (or, push-offs P∗ � 0.79478 ), leading 
up to the transcritical  bifurcation19.

The open-loop walker’s basin shrinks significantly as P∗ increases from 0.01 to 0.1325, before the long-period 
gait loses open-loop stability at P∗ ≈ 0.13571 via a period-doubling bifurcation. The open-loop basin occupies 
a maximum of ≈ 8.4% of the area of V at P∗ = 0.01 . In comparison, the speed-regulated walker’s basin of its 
long-period gait grows with speed until it achieves its maximum size, ≈ 56.4% area of V , at V∗ ≈ 0.23308 
( P∗ ≈ 0.24214 ) before shrinking significantly at higher speeds.

Viability via hierarchical task switching control. The open-loop basins in Fig. 4 together occupy only ≈ 20.36% 
of the area of the viability kernel V with many hard-to-fill gaps in between. Furthermore, we estimate that all of 
the open-loop basins, corresponding to P∗ values of all the long-period gaits, together can cover no more than 
40% of the area of V.

Conversely, the task-level speed regulator, while achieving the specified goal of maintaining a target speed at 
each step, allows the push-off powered compass walker to reject a large range of external disturbances, despite 
not being designed to do  so19. The speed-regulated walker’s basins occupy large, regular regions of V for a range 
of target speeds V∗ (Fig. 6). Furthermore, as we show in Fig. 7, only five of the speed-regulated walker’s basins 
from Fig. 5 almost fully cover V . Thus, starting from almost every state in V , as might occur from an external 
disturbance, there is at least one task-level speed regulator (or V∗ ) that allows the walker to avoid falls as long 
as the state trajectory remains within the corresponding basin. Additionally, since a set of target speeds V∗ can 
be chosen so that any two adjacent speed-regulated basins overlap (as in Fig. 7), there is flexibility to switch 
between the corresponding regulators immediately ( V∗

i ↔ V∗
i+1 ) provided the walker’s state lies within the basin 

intersection. Thus, this suggests that task-level speed regulation, unlike open-loop dynamics, could, at least in 
principle, be used to keep the walker viable for almost all states in V , i.e., allowing it to avoid falls forever, in 
response to any disturbance that does not push the system entirely out of V . For example, a plausible task switch-
ing controller could appropriately switch target speed at each step to one of the five values {V∗

i , i = 1, . . . , 5} , as 
in Fig. 7, so that the walker can move from one speed-regulated basin to another without falling. We posit that a 
similar adaptive hierarchical control/regulation strategy exists in human walking and provides a key mechanism 
used to avoid falling.

To further elucidate the function of such task switching control, we consider a scenario where the walker 
experiences a large disturbance while maintaining some desired speed V∗

f  . Let the state of the walker immediately 
after the disturbance lie within the viability kernel: xk ∈ V at the kth walking step. Moreover, we assume that 
xk ∈ B (V∗

i ) , where B (V∗
i ) is the task-regulated basin corresponding to some suitably chosen intermediate 

target speed V∗
i  . The walker then applies a push-off Poptk,i  to achieve the target value V∗

i  at the next step ( V∗ := V∗
i  

in Eq. 15). We construct a possibly minimal set, Vp , of all such target speeds V∗
i  such that the corresponding set 

of speed-regulated basins together can cover the viability kernel: V≈ ∪i B (V∗
i ) (Fig. 7). Thus, specifying such a 

hierarchical control strategy amounts to specifying a suitable set of “task switches”, i.e., target speeds {V∗
i ∈ Vp} 

at each step, for the regulators. Such task switching control can, in principle, allow the walker to get back to 
its original task goal V∗

f ∈ Vp while remaining viable throughout its post-disturbance recovery phase: at the 
(k + 1)st walking step, the walker’s state xk+1 not only belongs to B (V∗

i ) but also to B (V∗
j ) for some V∗

j ∈ Vp , 
j  = i , by design. Once the walker’s state trajectory enters the basin B (V∗

f ) corresponding to the original task, 
the relevant speed regulator to achieve that task goal is switched back on for subsequent walking steps, until the 
next large disturbance is encountered. See Figs. 7 and 8 for sample results illustrating the walker’s recovery in 
the aforementioned scenario. These results also demonstrate the basic behavioral feature of the two levels of our 
hierarchical control/regulation strategy: First, the “high-level” task switching controller brings the walker rapidly 
(i.e., in a few steps) to the desired V∗

f -manifold within the basin B (V∗
f ) . Then, the “low-level” regulator targeting 

speed V∗
f  makes relatively small adjustments (possibly over many steps) as the walker approaches its steady-state 

gait. Thus, using task switching, it is possible to return to the basin of attraction for the desired task goal, and 
thereby recover from a disturbance without falling, in only a few steps. Responses such as these are comparable 
to those predicted in other simple biped  models8 and also those observed in experiments in humans recover-
ing from large balance  perturbations25,26. Overall, following such a hierarchical strategy of switching between a 
small set of target speeds, the walker could walk forever while overcoming a wide range of large disturbances. 
Furthermore, because task switching is not mechanical, it is not affected by the the walker’s inertial properties. 
Thus, the time scale of task switching in humans would be limited not by mechanics proper, but by the speed of 
processes in the nervous system related to perception, motor activation, and cognition (particularly executive 
function). Therefore, task switching can, in principle, be accomplished almost instantaneously. This would have 
obvious benefits for recovering from sudden, unexpected disturbances.
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Figure 4.  Evolution of the open-loop ( Pk := P∗ , constant) walker’s basin of attraction within the viability 
kernel V of its long-period steady-state gait ( ) with increasing push-off impulse P∗ . Compare to Fig. 5. The 
open-loop basin at P∗ = 0.001 is similar in structure to that with no push-off ( P∗ = 0 ) that shares boundaries 
with V (Fig. 3b). As P∗ increases, the basins shift to the right within V , while shrinking progressively for 
P∗ � 0.01 . The first period-doubling bifurcation occurs at P∗ ≈ 0.13571 , so that the open-loop basin at 
P∗ ≈ 0.288 is empty. Basin areas ( % of the area of V ) for increasing P∗ : {8.32, 8.36, 5.38, 3.11, 1.46, 0}%.
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Figure 5.  Evolution of the speed-regulated walker’s basin of attraction within the viability kernel 
V of its long-period steady-state gait ( ) with increasing target step speed V∗ (or, push-off impulse 
P∗ ∈ {0.001, 0.01, 0.05, 0.1, 0.1325,≈ 0.288} ). Compare to Fig. 4. For V∗ � 0.113 , the basins are highly regular 
regions delimited by the level curves ( Ŵleft and/or Ŵright of the form {θ− = constant} ) and the boundaries of 
V themselves. The geometric structure and size of the speed-regulated basins at V∗ ∈ {≈ 0.016,≈ 0.051} 
is affected by viability constraints, specifically, actuation limits (Eq. 8): the basin at V∗ ≈ 0.016 is similar 
in structure to the open-loop basin for P∗ ∈ {0, 0.001} (Figs. 3 and 4). Basin areas ( % of the area of V ) for 
increasing V∗ : {8.12, 11.62, 20.59, 36.62, 44.83, 54.13}%.
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Discussion
We studied the simplest dynamic walker’s viability, i.e., its ability to avoid falls forever by applying an appropriate 
sequence of push-off inputs. Specifically, for the push-off-powered compass  walker21, we estimated the viability 
kernel V in its state  space5 and verified that our numerical results are consistent with the mathematical theory of 
dynamical systems. We found that the walker’s push-off can be chosen to avoid falls forever beginning in almost 
all states that allow the walker to have a heel strike. Moreover, greater than 97% of the states within V remain 
reachable via push-off inputs, indicating a high degree of maneuverability of the viable walker.

We posited that humans could remain viable, i.e., avoid falls forever, via a hierarchical schema consisting of 
both control and functionally distinct task-level step-to-step regulation of gait observables. As a model task-
level motor regulation strategy for the walker, we imposed speed  regulation9,14 that, as we demonstrated  in19, 
greatly enhances the walker’s global stability (large disturbance rejection) compared to open-loop (unregulated) 
dynamics. Here, however, we assessed the walker’s global stability relative to its viability—its maximal attainable 
global stability—via the basins of attraction of its steady-state gaits in the state space vis-à-vis V . This facilitated 
a direct comparison between open-loop dynamics, task-level regulation, and theoretically best-possible control 
strategies from the perspective of fall avoidance alone.

We found that the speed-regulated walker’s basins, unlike the open-loop basins (Fig. 4), occupy large, regular 
regions within V (Figs. 5 and 6). Moreover, for a range of target speeds, their boundaries are given by simple level 
curves and/or are shared with the boundaries of V themselves. Furthermore, the speed-regulated basins cor-
responding to only a few target speeds together nearly cover the entirety of V even as any adjacent pairs of such 
basins overlap in the state space (Fig. 7). Our results thus strongly suggest a potential role of task-level regulation 
within high-level control strategies that are explicitly geared toward avoiding falls or attaining viability. In light of 
this, we proposed a high-level, adaptive task switching control strategy that, in principle, maintains viable walking 
by selecting between a small collection of task-level speed regulators corresponding to a few preselected target 
speeds—“task switches”—at each walking step. However, it is clear that, at least in principle, such task switching 
controllers could also employ qualitatively different regulators, based on gait observables other than walking 
speed (e.g., step length or time), or even a combination of such regulators. Thus, our proposed task switching 
schema is more general than the example implemented here using speed regulation alone.

The theoretically best-possible control strategies that guarantee the walker’s viability could require specifying 
an entire sequence of push-offs for each different walking trajectory. In comparison, a hierarchical task switching 
controller seems advantageous from an information transmission and processing perspective: it needs specifying 
only a sequence of discrete task switches, each belonging to a small predetermined set. While we are agnostic as 
to how such hierarchical task switching control could be realized biologically, our results nevertheless suggest 
that its “information cost” could be relatively low for the nervous system. This is because the cognitive demands 
of discretely switching between a few (and likely already learned or “crystallized”27,28) tasks could be substantially 
lower than estimating/specifying appropriate control inputs “from scratch” at each walking step. Thus, humans 
might prefer cognitively less-demanding hierarchical control strategies based on task switching. Indeed, task 
switching (or “set shifting”) is already a well-established sub-component of executive  function29. For older adults, 
executive function is crucial to their ability to avoid falling and impaired executive function predicts their fall 
 risk30–32. The ability to task switch in particular declines in older  adults33 and predicts both poor  balance34 and fall 

Figure 6.  Evolution of the basin sizes (percent of the area of the viability kernel V , Fig. 3) for the open-loop 
and speed-regulated walkers. Both V∗ and P∗ correspond to the steady-state long-period gait. The markers 
denote sizes of the basins estimated via simulations (Figs. 3, 4, and 5). The solid line for speed regulation denotes 
analytical approximations of basin sizes when basin boundaries can be predicted (either as level curves and/or 
coinciding with the boundaries of V ): these predictions match simulations well except when actuation limits 
significantly affect the basin structure at low speeds or push-offs. The solid line for open loop corresponds to 
unstable gaits so that their basins are empty.
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 history35. Our results thus provide direct theoretical support to the idea that the impaired ability to task switch 
appropriately and/or quickly enough likely contributes to increased fall risk in older adults.

Our 2D deterministic walker does not explicitly include the effect of motor noise present in the human 
nervous system, neither does it capture certain important aspects of human walking like stance phase actuation 
and control of mediolateral balance. While sufficiently large noise in the push-off input P could make some 
of the walker’s trajectories nonviable, we expect task switching to remain important in fall avoidance for the 
remaining majority of states within V . Similarly, our study could be repeated for a more elaborate model, such 
as a 3D walker that requires a lateral stability controller to take individual steps, albeit at significantly higher 
computational expense. While the specific results of any such model would differ, our general conclusion that 
task switching via an adaptive hierarchical control/regulation strategy can help avoid falls is expected to hold.

It is well known that humans can adapt their stepping to avoid falls, even when experiencing substan-
tial external  disturbances36–39. Walking humans can also readily achieve a variety of task goals in different 

Figure 7.  Five of the speed-regulated walker’s basins from Fig. 5 of its long-period steady-state gait ( ) 
corresponding to the target step speeds, {V∗

1 ≈ 0.016,V∗
2 ≈ 0.051,V∗

3 ≈ 0.113,V∗
4 ≈ 0.178,V∗

5 ≈ 0.251} . 
These five basins together cover > 99.99% of the area of the viability kernel. Also, any two adjacent basins 
have some overlap with each other. We consider two examples of a scenario where the walker experiences 
a large disturbance while walking at some desired speed V∗

f  , such that its “disturbed” state (star pentagons) 
lies within the speed-regulated basin B (V∗

i ) corresponding to some speed V∗
i  . A sequence of walking steps 

(broken lines joining squares) then illustrates the walker’s post-disturbance recovery back to the steady-state 
gait ( ) corresponding to speed V∗

f  via task switching control of speed regulators: in example 1 (star pentagon, 
red), V∗

f = V∗
3  , and V∗

i = V∗
5  ; in example 2 (star pentagon, blue), V∗

f = V∗
2  , and V∗

i = V∗
4  . In both examples, 

the “high-level” task switching controller allows the walker to reach the desired V∗
f -manifold within the 

basin B (V∗
f ) in only three steps. After that, the “low-level” regulator targeting speed V∗

f  allows the walker to 
transiently approach the steady-state gait over many steps. See Fig. 8 for the corresponding sequences of step 
speeds and push-off inputs employed by the walker during its recovery.
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 environments9,40–43. However, it remains unknown how the human “controller” adapts to such task goals at a 
neurophysiological level. As in our previous  work19, the structure of our model is based in part on experimental 
evidence of task-level motor regulation in human  walking9,14. Here, we developed a general theoretical framework 
to show how humans can, at least in principle, avoid falls by switching between regulation strategies used to 
perform already-learned goal-directed tasks. We expect that our framework will pave the way for more focused 
experiments in the future.

While our perspective is focused on goal-directed behavior of biological movement, our results have implica-
tions for robotics as well. Indeed, some high-level strategies based on switching between different  controllers44 or 
between limit cycles with speed changes have demonstrated improved stability and versatility of bipedal  walking45 
and  running46 robot models. For multi-degree-of-freedom robot models, it is computationally difficult to map 
out the viability kernel in their high-dimensional state spaces. However, the concept of task switching within 
a hierarchical control/regulation strategy could be potentially employed to enhance the robustness of walking 
robots and help reduce (or perhaps minimize) their falls.

Methods
Simplest dynamic walker. We employ a 2D compass walker (Fig. 1) that walks on a level surface by means 
of impulsive push-off actuation P. The continuous stance phase of this walker is unactuated with no foot place-
ment control. This makes it the simplest actuated model having definite swing leg dynamics, unlike 2D inverted 
pendulum  models8.

Every forward walking step (Fig. 1) consists of a continuous-time single-support stance phase followed by an 
instantaneous impulsive double-support phase. Thus, the walker’s step-to-step dynamics are inherently hybrid. 
The walker’s state, just after heel strike, is fully described by the stance leg angle θ+ and its angular rate θ̇+ , in 
the inertial frame attached to the stance foot. The walker’s step-to-step dynamics can be studied as a hybrid 
Poincaré map, F � [F1, F2]

⊤ , over the two-dimensional state space (θ+, θ̇+) with push-off input Pk applied just 
before heel strike at the end of step k19,21: 

The map F is non‑invertible19, i.e., any given state of the walker could have zero, one, or more than one preim-
age under F , even when P is fixed. Also, across heel  strikes21 (Fig. 1): 

The walker’s heel strike is legitimate (Fig. 1) when:

(2a)θ+k+1 = F1(θ
+
k , θ̇+k ),

(2b)θ̇+k+1 = F2(θ
+
k , θ̇+k ; Pk).

(3a)θ+k+1 = −θ−k ,

(3b)θ̇+k+1 = θ̇−k cos 2θ−k + Pk sin 2θ
−
k .

a b

Figure 8.  The sequences of step speeds Vk (a) and corresponding push-offs Pk (b) during the walker’s recovery 
(in two example scenarios depicted in Fig. 7) from large disturbances via task switching control of speed 
regulators. The walker’s speed rapidly switches to the target speed V∗

f  in three steps so that V4 = V∗
f  : in example 

1 (star pentagon, red), V∗
f = V∗

3  ; while in example 2 (star pentagon, blue), V∗
f = V∗

2  . Subsequently, in example 1, 
the walker maintains its target speed throughout its approach to the steady-state gait: Vk = V∗

3  for k � 5 . On the 
other hand, in example 2, the walker’s approach to its steady-state gait is transiently affected by actuation limits 
(Eqs. 6 and 8): Vk < V∗

2  for 5 � k � 9 , and Pk = Pk,max for 4 � k � 8.
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We also assume no slipping at the foot-ground contact.

Viability constraints. For the walker to remain viable, its stance foot must remain on the ground so that the 
ground reaction force (GRF) at the stance foot is nonnegative throughout the stance phase. Since this GRF can 
be smallest either just after or before heel strike, we get two inequality constraints over the state space (Fig. 1): 

Moreover, this places a state-dependent limit on the maximum push-off, Pk,max , since the walker cannot lift 
off the ground when the swing foot’s heel strike is  impending8:

Furthermore, the impulsive actuation cannot apply a braking force, i.e., Pk � 0 . Additionally, we assume that the 
stance foot must lift off the ground after push-off. This places a state-dependent limit on the minimum push-off, 
Pk,min , so that the walking motion can continue (Eqs. 3b and 1):

Therefore, the push-off impulse at each step k needs to satisfy actuation limits (Eqs. 6 and 7) for the walker to 
remain viable:

Numerical estimation of the viability kernel. Estimating the viability kernel V for a given actuated 
dynamical system is in general a non-trivial task, even in low-dimensional state  spaces23. For instance, V is 
more difficult to estimate than a basin of attraction, another positively invariant set. The trajectories originating 
in V can only be guaranteed to remain in an as yet unknown V ad infinitum by choosing an appropriate input 
sequence. Brute-force estimation of V requires the computation of many sufficiently long trajectories start-
ing from each state, each of which differ due to distinct control input sequences. If at least one such trajectory 
satisfies viability constraints, then the corresponding starting state would likely belong to V . Conversely, the 
trajectories of basin states approach an attractor that is often known a priori. Thus, brute-force estimation of a 
basin requires only a single sufficiently long trajectory starting from each state and a decision as to whether or 
not it will eventually reach the attractor. A recent  study8 examined the viability of 2D inverted pendulum models 
of walking, which have a 1-dimensional state space and a 2-dimensional control input space. In contrast, the 
system considered here has a 2-dimensional state space and a 1-dimensional control input space.

The viability kernel  algorithm5[pp. 153–154] avoids brute-force computation by utilizing the positive invari-
ance property of V , which for the walker (Eq. 2) can be written as:

Here, the set F(V;P ) � {F(x; P(x)) | x ∈ V, P(x) ∈ P } , where P(x) is any appropriately chosen push-off P 
depending on the state x := [θ+, θ̇+]⊤ , and the set P is the collection of all such push-offs matched to states such 
that the relation (9) holds. The positive invariance property pertains to sets in the state space alone. Since P is not 
known a priori, we consider all push-offs within the actuation limits (Eq. 8) to eliminate P from the relation (9).

The dynamics of a powered compass walker, capable of applying any push-off within the actuation limits at 
each step, is described by a difference  inclusion5, i.e., a set-valued map F̃ satisfying

where the set F̃(xk) is obtained from Eq. (2):

where �̇k+1 is an interval defined, using Eq. (3b) and the allowable range of push-offs Pk (Eqs. 6 and 7), as:

Thus, at step k, the set F̃(xk) is a vertical line segment, �̇k+1 , in the state space at θ+ = θ+k+1 = −θ−k  (Eq. 3a). 
Therefore, Eq. (9), expressed solely in terms of states, becomes:

(4)θ− � 0, θ̇− � 0, φ− = 2θ−, and φ̇− � 2θ̇−.

(5a)GRF+ : cos θ+ − (θ̇+)2 � 0,

(5b)GRF− : cos θ− − (θ̇−)2 � 0.

(6)Pk,max =

{

θ̇−k tan 2θ−k for − (π/4) < θ−k � 0,
∞ for θ−k � −(π/4).

(7)Pk,min =

{

0 for − (π/4) < θ−k � 0,
−θ̇−k cot 2θ−k for θ−k � −(π/4).

(8)Pk,min � Pk � Pk,max.

(9)F(V;P ) ⊆ V.

(10)xk+1 ∈ F̃(xk),

(11)F̃(xk) :=
{

[

θ+k+1, θ̇
+
k+1

]⊤
| θ̇+k+1 ∈ �̇k+1

}

,

(12)�̇k+1 :=

{ [

θ̇−k (1/ cos 2θ−k ), θ̇−k cos 2θ−k
]

for − (π/4) < θ−k � 0,

(−∞, 0] for θ−k � −(π/4).

(13)F̃(x) ∩V �= ∅ for all x ∈ V.
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Thus, one can recursively obtain V via the following algorithm:

The intermediate estimates {Vj+1 ⊆ Vj; j = 1, 2, 3, . . .} form a nested sequence of j-step viable regions, whose 
limit is the viability kernel: V:= ∩∞

j=1Vj = limjVj  . We numerically approximate V via a uniform 42500×1002 
grid of points over the scaled state space (Fig. 2b): �θ+ = 2× 10−5 and �θ̇+sc = 1/1001 . However, all dynamics 
calculations are carried out in the original state space, for the corresponding grid over the wedge-shaped region 
(Fig. 2a).

Algorithm 1 is practically useful if it converges (stops) in a finite (preferably small) number of iterations. This 
requires an accurate representation of the boundaries of Vj  (at the jth iteration) so that the intersection F̃(x) ∩Vj  
in Algorithm 1 can be found reliably. The boundaries of V1  ( �low , �high , Ŵ+

GRF and Ŵ−
GRF in Fig. 2) are smooth 

level curves, which we accurately represent via fitted piecewise cubic splines with continuous curvature (mat-
lab’s spline). Since sets {Vj; j � 2} are recursively estimated as collections of j-step viable grid-point states, 
their boundaries are not known in closed form. We represent such boundaries by employing shape-preserving 
piecewise cubic polynomials (matlab’s pchip) to reduce potential artifacts (overshoots and oscillations) in the 
fitted curves over the grid. We passed such fitted boundary curves through nonviable grid-point states tightly 
enveloping estimates of Vj  so as to avoid accidental removal of viable states during the iterations of Algorithm 1. 
Our implementation of Algorithm 1 converged at j = 18 , so that the set V18 is the final estimate of the ∞-step 
region V (Fig. 3a) to within the grid resolution.

Unreachable subset of the viability kernel. The image of V under F̃ , i.e., F̃(V ) := {F̃(x) | x ∈ V } , 
does not cover V entirely, so that the unreachable subset of V is the open set:

We found that the set VUR consists of two disjoint subsets of V demarcated by the boundaries Ŵ1 and Ŵ2 (Fig. 3a). 
None of the grid-point states in V map above the boundary Ŵ1 with P = 0 , and consequently for any P > 0 
(Eq. 3b). Studies of non-invertible  maps47,48 thus suggest that the boundary Ŵ1 belongs to a critical curve (often 
denoted as LC): the number of preimages of states on opposite sides of LC differs by two, which we also found 
to be the case for Ŵ1.

Validation of the viability kernel boundaries. The boundary of V is a union of three curves: Ŵb , Ŵt 
and ŴGRF (Fig. 3). The composite boundary ŴGRF itself is a subset of the union of the boundaries Ŵ+

GRF and Ŵ−
GRF 

of the 1-step viable region V1  (Fig. 2b). The boundary Ŵb smoothly merges with the �high curve ( ̇θ+sc = −1 in 
Fig. 3) at θ+ ≈ 0.37402 . Thus, Ŵb is partitioned into two subsets, Ŵb \�high := {(θ+, θ̇+) ∈ Ŵb | θ

+ � 0.37402} 
and Ŵb ∩�high := {(θ+, θ̇+) ∈ Ŵb | θ

+ � 0.37402} . We numerically verified that both ŴGRF and Ŵb ∩�high can 
indeed be mapped in the interior of V.

Furthermore, both boundaries Ŵb \�high and Ŵt map into Ŵb \�high after one step of the walker with zero 
push-off. Moreover, the boundary Ŵb is tangent to the curve of short-period gaits at the open-loop-unstable gait 
U (a saddle point) at {(θ∗, θ̇∗);P∗} = {(0, 0); 0} (Fig. 3). These numerical results suggest that Ŵb \�high and Ŵt 
belong to the stable set of the saddle U19,48,49 of the walker’s non-invertible map F with P = 0 in Eq. (2). Consist-
ently, we found that both Ŵb \�high and Ŵt are contained in the open-loop basin boundaries for P∗ = 0 (Fig. 3b), 
which constitute a stable  set19. Since the stable set of a saddle is positively invariant, this confirms that the set 
{Ŵb \�high} ∪ Ŵt is also positively invariant.

Step-to-step speed regulation as a model task-level regulation strategy. We pick a push-off 
impulse at each step based on the discrepancy between the speed V at the next step that depends on the walker’s 
current state and its desired target value V∗ , chosen a priori. Thus, at step k, the smallest push-off, Poptk  , that 
minimizes the next-step quadratic cost  is19:

(14)V
UR

� V\ {F̃(V) ∩V} := {x ∈ V| x /∈ F̃(V)}.
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where xk := [θ+k , θ̇+k ]⊤ is the walker’s state at the beginning of step k. Then, the speed-regulated walker applies 
push-off Pk that satisfies actuation limits (Eq. 8) at step k:

We note that this speed regulation strategy (Eq. 15) does not explicitly utilize the location of the boundaries of 
V (Fig. 3) to infer Poptk .

The push-off Poptk  places the speed-regulated walker’s state xk+1 on the target-speed manifold—a goal equiva‑
lent manifold12—that is a piecewise-smooth curve in the two-dimensional state  space19, defined by:

whenever Poptk ∈ [Pk,min, Pk,max] (Eq. 8). We efficiently simulated the speed-regulated walker’s trajectories by 
precomputing the target-speed manifold by solving Eqs. (17) using numerical  continuation19.
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Code is available at https:// doi. org/ 10. 5281/ zenodo. 65305 60.
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