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Abstract: We have presented a theoretical investigation of exciton and biexciton states for the ground
and excited levels in a strongly oblate ellipsoidal quantum dot made from GaAs. The variational trial
wave functions for the ground and excited states of the exciton and biexciton are constructed on the
base of one-particle wave functions. The energies for the ground and excited levels, depending on the
ellipsoidal quantum dot’s geometrical parameters, are depicted in the framework of the variational
method. The oscillator strength of the transition from exciton to biexciton states for ground and
excited levels is investigated as a function of the ellipsoidal quantum dot’s small and large semiaxes.
The third-order optical susceptibilities of ground and excited biexcitons around one-photon and
two-photon resonances are calculated as a function of the photon energy. The dependences of third-
order optical susceptibilities for the ground and excited levels on the photon energy for different
values of the ellipsoidal quantum dot’s semiaxis are revealed. The absorption coefficients in the
ellipsoidal quantum dot, both for ground and excited states of exciton and biexciton, are calculated.
The absorption coefficients for the ground level of exciton and biexciton for the fixed value of the large
semiaxis and for the different values of the small semiaxis are determined. Finally, the two-photon
absorption coefficient of the biexciton in the GaAs ellipsoidal quantum dot is computed.

Keywords: oblate ellipsoidal quantum dot; exciton; biexciton; third-order susceptibility; two-
photon absorption

1. Introduction

Exciton (X) and biexciton (XX) states in semiconductor quantum dots (QD) have been
investigated both theoretically and experimentally by different authors [1–6]. As it is well
known, exciton represents electron-hole pair, while biexciton consists of two excitons,
i.e., it is a four-particle system. These quasiparticles play an important role in different
effects, in particular, in Rabi oscillations [7] and in the optical Stark effect [8]. On the
other hand, the transformation of excitons to biexciton leads to another class of interesting
physical phenomena. In this regard, it is worth to note a change in the nonlinear third-
order susceptibility, two-photon absorption, the appearance the shift of photoluminescence
emission peaks, etc. [9–12].

Numerous works are devoted to the investigation of lowest-state or ground properties
of excitons and biexcitons [13–19]. For example, in [13] the authors have investigated,
theoretically and experimentally, the excitonic absorption spectrum, and in [15] the authors
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have considered the impact of excess electron occupation on the exciton’s optical properties.
Additionally, in [17] the hybrid nanostructure model has been discussed for the efficient
creation of the biexciton state.

The optical nonlinearity associated with the transitions between the sublevels of
the excitons is expected to be available for novel infrared devices. Therefore, it is very
important to study the optical properties not only of the lowest state but also of the higher
excited states of confined excitons or multi-excitons [20]. Additionally, the biexciton state
is known to have a relatively higher oscillator strength for two-photon generation [11,21].
Consequently, the optical nonlinearity should be enhanced by the oscillator strength.
On the other hand, authors in various works are focused on the non-linear properties
of biexcitons [22–26]. In particular, in [24] the biexciton states have been discussed in
the framework of the variation method. The optical nonlinearity via the exciton and
biexciton states is considered, based on the three levels, and the third-order susceptibility
has been calculated. In another work [25], linear as well as non-linear optical properties
for intersubband electronic transitions, associated with a biexciton, have been investigated.
By using computed energies and a wave function, the optical absorption coefficients and
the refractive index changes have been calculated. One of the most important results is
that the optical absorption saturation intensity can be tuned by the confinement potential
frequency. To continue, in [26] the theoretical study of linear and non-linear properties
has been presented, based on a three-level model. The refractive index changes around
one-, two-, and three-photon resonance have been calculated. Moreover, the authors found
the strongly dependence of QD’s size on the third-order refractive index changes for three
photon process.

Novel technologies make the growth of QDs of different types and geometries possible.
Numerous works are devoted to the investigation of the physical and optical properties of
QDs with relatively simple and complicated geometry [27–30]. Ellipsoidal QD is one of the
examples of complicated geometry. Such QD has wide application in cases where there
is a need to control the energy in a wide range. This manipulation is due to the fact that
ellipsoidal QD has two geometrical parameters—small and large semiaxes. It is also worth
highlighting that Kohn theorem is implemented both theoretically and experimentally
in ellipsoidal QDs [31,32]. Thus, the theoretical investigation of exciton and biexciton
complexes in ground and excited states in ellipsoidal QD is a problem. Additionally, it
should be noted that we will focus on a special type of the ellipsoidal QD, namely, on the
strongly oblate one, which supposes the quasi two- dimensional character of the biexciton.
This means that two electrons and two holes will be localized in the same plane. Thus, the
properties of the exciton and biexciton will be marked as two-dimensional.

In this paper, we will theoretically investigate non-linear optical properties of biexci-
tons of ground and excited states in GaAs strongly oblate ellipsoidal QD (SOEQD). The
paper is organized as follows: Section 2 is devoted to the exciton and biexciton states
in ellipsoidal QD; non-linear optical properties are described in detail in Section 3; the
discussion of the obtained results is presented in Section 4; and, finally, the short summary
of the main results is included in the last section.

2. Exciton and Biexciton States

As it is mentioned above, we will consider a specific type of ellipsoidal QD, namely,
SOEQD. The particle’s confining potential energy in cylindrical coordinates, localized in
SOEQD with impenetrable walls, has the following form:

Ucon f (ρ, ϕ, z) =

{
0, ρ2

a2 + z2

c2 ≤ 1

∞, ρ2

a2 + z2

c2 > 1
, a >> c (1)

Here, c and a are the small and large semiaxes of the SOEQD, respectively. In the case
where the finite confinement potential is considered, some new physical phenomena will
appear, for example, the possibility of the leakage of the electron and the hole for the QD to
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the surrounding media. It is obvious that in this case the biexciton binding energy will be
less and the biexciton stability can be broken, depending on the geometrical parameters of
the ellipsoidal QD. However, we have considered the case where the QD is surrounded by
the dielectric media, so that the confinement energy prevails over the energies, mentioned
in the article. From a theoretical point of view, the problem becomes more complicated and
requires special numerical methods to be implemented.

The Hamiltonians of the biexciton and exciton have the forms:

ĤXX

(→
r 1,
→
r 2,
→
r α,
→
r β

)
= ∑

j

P̂2
j

2m∗j
+ ∑

j
Ucon f

(→
ρ j, zj

)
+ Vint

(→
r 1,
→
r 2,
→
r α,
→
r β

)
,

ĤX

(→
r 1,
→
r α

)
= ∑

i

P̂2
i

2m∗i
+ ∑

i
Ucon f

(→
ρ i, zi

)
+ Vint

(→
r 1,
→
r α

)
,

(2)

where j = {1, 2, α, β}, i = {1, α}, →r 1 and
→
r 2 are electrons’ coordinates,

→
r α and

→
r β—holes’

coordinates. Interparticle interaction energies are in Hamiltonians for biexciton and exciton
Vint

(→
r 1,
→
r 2,
→
r α,
→
r β

)
and Vint

(→
r 1,
→
r α

)
, including interaction between electrons, between

holes, and between electrons and holes. This interaction for biexciton and exciton problems
has the following forms:

Vint

(→
r 1,
→
r 2,
→
r α,
→
r β

)
= e2

ε
∣∣∣→r 1−

→
r 2

∣∣∣ + e2

ε
∣∣∣→r α−

→
r β

∣∣∣ − e2

ε
∣∣∣→r 1−

→
r α

∣∣∣ − e2

ε
∣∣∣→r 1−

→
r β

∣∣∣ − e2

ε
∣∣∣→r 2−

→
r α

∣∣∣ − e2

ε
∣∣∣→r 2−

→
r β

∣∣∣ ,
Vint

(→
r 1,
→
r α

)
= − e2

ε
∣∣∣→r 1−

→
r α

∣∣∣ .
(3)

It is noteworthy that the specific geometry of the SOEQD makes possible the usage
of important approximation for the nature of the Coulomb interaction. Based on the
oblate geometry of the ellipsoidal QD and taking into account strong size quantization
in axial direction, it can be shown that the problem (exciton and biexciton) has a strongly
pronounced two-dimensional character (see detailed calculations in [6]). Using the justifica-
tion, presented in [6], one can get to the following two-dimensional Schrödinger equation:[

∑
j

(
P̂2

xj

2m∗j
+

P̂2
yj

2m∗j

)
+ ∑

j

m∗j Ω2
j

2
ρ2

j + V2D
int

(→
ρ 1,
→
ρ 2,
→
ρ α,
→
ρ β

)]
ΨXX

(→
ρ 1,
→
ρ 2,
→
ρ α,
→
ρ β

)
= E2D

XXΨXX

(→
ρ 1,
→
ρ 2,
→
ρ α,
→
ρ β

)
(4)

where E2D
XX = EXX − ∑

j

π2}2

8m∗j c2 and Ωj =
π}

2m∗j ac is the frequency of the parabolic confining

potential.
Thus, the problem is reduced to the solving of the two-dimensional Schrödinger

equation. Analogous to Equation (4), for the exciton one can get:[
∑

i

(
P̂2

xi
2m∗i

+
P̂2

yi

2m∗i

)
+ ∑

i

m∗i Ω2
i

2
ρ2

i + V2D
int

(→
ρ 1,
→
ρ α

)]
ΨX

(→
ρ 1,
→
ρ α

)
= E2D

X ΨX

(→
ρ 1,
→
ρ α

)
(5)

Since the two- or four-particle problem is analytically unsolvable, as a first step, it is
necessary to obtain exciton and biexciton wave functions and energy spectra as a function
of the ellipsoidal QD’s small and large semiaxes by using the variational method. For the
variational calculations of biexciton and exciton states in SOEQD for the ground and excited
states, single-particle wave functions and energies, obtained in SOEQD with impermeable
walls from Ref. [30], are used. It is important to indicate that the obtained results for the
one-particle problem have been done in the scope of the adiabatic approximation and are in
good agreement with the numerical method’s results. The use of adiabatic approximation
of the considered system is justified by the two-dimensional character of the QD.
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The wave function and energy for a single particle problem in SOEQD have the
following forms, accordingly [30]:

ψ(ρ, ϕ, z) = eimϕ
√

2π

(
c
√

1− ρ2

a2

)−1/2
sin
(

πn
2c
√

1−ρ2/a2
z + πn

2

)
×

×
√

2m∗e Ωe
}

√
nr !Γ(|m|+1)

Γ3/2(|m|+1+nr)
e−

m∗e Ωe
2} ρ2

(
m∗e Ωe
} ρ2

) |m|
2

1F1

{
−nr, |m|+ 1; m∗e Ωe

} ρ2
}

,

(6)

E =
π2}2n2

8m∗e c2 +
π}2n
2m∗e ac

(N + 1), N = 0, 1, 2, . . . (7)

Here, m, n, and nr are quantum numbers (QN) describing the system. In particular,
m is a magnetic QN, n is the QN in axial direction, nr is QN in radial direction, and
N = 2nr + |m| is principal QN. Finally, 1F1{a, b; x} is a confluent hyper-geometric function
of the first kind. Note that for the excited levels we will consider levels by exciting radial
QN since the excitation in the axial direction has a more significant impact on the total
energy than in the radial direction. Hence, the first excited levels of the system will be
defined by the radial QN.

The problem of constructing the wave functions of few-particle quantum systems
based on one-particle approximation is extremely important and is largely dictated by the
formulation of the problem itself. As is known, one of the most well-known approximations
is the construction of fermion wave functions using Slater determinants [33]. This approach
takes into account the asymmetry of the many-particle wave function with respect to
particle permutations, as well as the Pauli principle. In the relativistic case, the problem
becomes even more complicated. Here, it is necessary to take into account quantum dy-
namic effects. Moreover, if we take into account the fact that the wave functions themselves
become operators, the issue of gauge invariance of the wave functions themselves requires
a separate detailed study. In this regard, the work [34] should be noted, where the authors
proposed a method for constructing the wave function of a multielectron atom based on
the optimal selection of one-electron representations by minimizing the contribution to the
radiation width of the studied atom of the many-electron interaction, which depends on
the choice of gauge. The system considered in this paper is described in the framework
of the nonrelativistic approximation and in the absence of external fields. Therefore, the
issue of calibration arises only when the operator of the incident perturbation is chosen.
We have considered the radiation incident normal to the plane of the QD section. Here, the
Coulomb gauge divA = 0 was chosen.

By using the variational method, we will perform calculations for the ground and ex-
cited levels of biexciton and exciton. For both cases, the variational functions are constructed
on single-particle wave functions, which are correlated with each other by exponential
function(s), containing variational parameters. These variational wave functions have the
following form [11]:

ΨXX

(→
ρ 1,
→
ρ 2,
→
ρ α,
→
ρ β

)
= Cψ100

(→
ρ 1

)
ψ100

(→
ρ 2

)
ψ100

(→
ρ α

)
ψ100

(→
ρ β

)
×

×e−γραβ

{
e−λ(ρ1α+ρ2β)−δ(ρ1β+ρ2α) + e−λ(ρ1β+ρ2α)−δ(ρ1α+ρ2β)

}
ΨX

(→
ρ 1,
→
ρ α

)
= Cψ100

(→
ρ 1

)
ψ100

(→
ρ α

)
e−µρ1α .

(8)

Here, C—normalization constant, ρjk =
∣∣∣→ρ j −

→
ρ k

∣∣∣, j, k = {1, 2, α, β}, λ, δ, γ, and µ

are variational parameters, which are determined after minimizing the following integrals:

EXX =
〈

ΨXX(
→
r 1,
→
r 2,
→
r α,
→
r β)
∣∣ĤXX

∣∣ΨXX(
→
r 1,
→
r 2,
→
r α,
→
r β)
〉

EX =
〈

ΨX(
→
r 1,
→
r α)
∣∣ĤX

∣∣ΨX(
→
r 1,
→
r α)
〉 (9)
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It should be emphasized that in the literature devoted to the biexciton’s studies, it
is accepted to use such wave functions [11,35,36]. The considered trial wave function is
anti-symmetric with respect to electrons and holes.

3. Non-Linear Properties

Since we have already obtained the wave functions and energy spectra for exciton
and biexciton, as a next step, we will investigate the oscillator strength of transition from
exciton to biexciton states and the oscillator strength of excitonic transition. These oscillator
strengths can be given by:

fbe =
2

m0}ωbe
|〈XX|p|X〉|2

feg = 2
m0}ωeg

|〈X|p|0〉|2,
(10)

where |XX〉 and |X〉 denote the biexciton and exciton states, respectively; m0 is the mass of
free-electron; p is the momentum operator; and }ωbe and }ωeg are the transition energy
from exciton to biexciton states and the exciton energy, respectively. For the convenience,
we have used special denotations: b will correspond to the biexciton level, e is for the
exciton level, and g is for the ground. Please note that in our paper, the term “ground”
corresponds to the case where no particle exists in QD.

For the investigation of the non-linear properties of biexciton, we will be limited by
the case of three-level model. For the three-level model, the general expression of the
third-order nonlinear optical susceptibility can be calculated by [37]:

χ(3)(2ω1 −ω2;−ω1,−ω1, ω2) = −
i|µeg|4

2
1

i(}ωeg−2}ω1+}ω2)+}Γeg

1
i(}ω2−}ω1)+}Γe

×

×
(

1
i(}ωeg−}ω1)+}Γeg

+ 1
i(}ω2−}ωeg)+}Γeg

)
+

i|µeg|2|µbe |2
4

1
i(}ωbe−2}ω1+}ω2)+}Γbe

1
i(}ω2−}ω1)+}Γe

×

×
(

1
i(}ωeg−}ω1)+}Γeg

+ 1
i(}ω2−}ωeg)+}Γeg

)
− i|µeg|2|µbe |2

4
1

i(}ωeg−2}ω1+}ω2)+}Γeg

1
i(}ωbg−2}ω1)+}Γbg

×

×
(

1
i(}ωeg−}ω1)+}Γeg

)
+

i|µeg|2|µbe |2
4

1
i(}ωbe−2}ω1+}ω2)+}Γbe

1
i(}ωbg−2}ω1)+}Γbg

×

×
(

1
i(}ωeg−}ω1)+}Γeg

)
,

(11)

where }ω1 and }ω2 are energies of the first and second photons; }ωij, µij, and }Γij de-
note the energy difference, the transition dipole moment between i and j levels, and the
dephasing rate of the transition dipole moment, respectively; and Γe is the population
decay rate of the exciton state, which is inversely proportional to the radiative lifetime,

hence Γe =
2ne2ωeg

2

3m0s3 feg, where nre f is the refractive index of the material and s is speed
of light. Hereafter, we will consider the case where two photons have the same energy
}ω1 = }ω2 ≡ }ω.

The transition dipole moment is related to the oscillator strength as:

µ2
ij =

}e2

2m0ωij
fij (12)

From Equation (11), one can get expressions for one-photon resonance at ω = ωeg
and ω = ωbe, as well as an expression around two-photon resonance. Namely, for one-
photon resonance, correspondingly, e→ g and b→ e transitions, the following expressions
take place:

− i|µeg|4
2}Γe

||

2}Γeg

i(}ω−}ωeg)
2
+(}Γeg)

2
1

i(}ωeg−}ω)+}Γeg
; ω = ωeg

i|µeg|2|µbe |2

4}Γe
||

2}Γeg

(}ω−}ωeg)
2
+(}Γeg)

2
1

i(}ωbe−}ω)+}Γbe
; ω = ωbe

(13)
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Analogous to the previous case, the frequency dispersion around two-photon reso-
nance at 2ω = ωbg can be presented as:

i|µeg|2|µbe |2
4

[
1

(Ebind(XX)/2)2+(}Γeg)
2 − 1

(iEbind(XX)/2+}Γeg)
2

]
× 1

i(}ωbg−2}ω)+}Γbg
'

' i2|µeg|2|µbe |2

E2
bind(XX)

1
i(}ωbg−2}ω)+}Γbg

(14)

where Ebind(XX) is the biexciton binding energy. The biexciton binding energy is defined as:

Ebind(XX) = 2E(X)− E(XX), (15)

where E(X) is the exciton energy.
After calculation of non-linear third-order susceptibility, it is possible to calculate

linear, non-linear, and total absorption coefficients. The total absorption coefficient is a sum
of two absorption coefficients, namely, linear and non-linear:

αtotal(ω) = α0(ω) + α2(ω)I(ω) (16)

Here, α0(ω) =
}Γeg

(}ω−}ωeg)
2
+(}Γeg)

2 , α2(ω) = 32π2ω
ε0c2 Imχ(3)(ω), and I(ω) is intensity of

the incident light.
It is well known that biexciton states experimentally can be explored by observing

two-photon absorption. As a consequence, we will calculate two-photon absorption in
ellipsoidal QD. Two-photon absorption is connected with third-order susceptibility by:

α(ω) =
4πω

c(ε0)
1/2 I(ω)Imχ(3) (17)

Around two-photon resonance, namely, 2ω ' ωbg, Equation (14) will be trans-
formed in:

χ(3) ∼=
i2
∣∣µeg

∣∣2|µbe|2

E2
bind(XX)}Γbg

(18)

4. Results and Discussion

After the detailed description of theory and formulation in Section 3, we will proceed
to the discussion of the obtained results. Results are obtained for the GaAs QD with typical
material parameters m∗e = 0.067m0, m∗h = 0.45m0, and ε = 12.91, where m0 is free electron
mass and ε is the dielectric constant of the material [38]. As a next step, it is necessary
to discuss biexciton energy levels for the ground and excited levels. We have considered
levels, excited by holes and electrons. The results are presented in Figure 1.
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In the energy diagrams we have used the following notations: |ij〉 → eihj for exciton
and |ijkl〉 → eiejhkhl for biexciton, where i, j, k, l = {0, 1, 2, . . .} is the particle level number.
The first excited state of the biexciton is conditioned by the excited hole, while the state,
corresponding to the excited state of electron, is higher. This is due to the difference between
effective masses of the electron and hole. It is interesting that the state, corresponding to the
second excited state of the hole, is close to the state, corresponding to the two first excited
states of two holes (see first circle inset in the figure), creating a doublet state. By the same
analogy, the triplet state can be found with merged states of |1100〉, |1020〉, and |2000〉.

Figure 2 shows the energy levels diagram, with corresponding transitions from biexci-
ton states to exciton states and from exciton states to ground state. The diagram is plotted
for the geometrical parameters of SOEQD c = 5 nm and a = 50 nm. We have considered
only first three levels of the exciton and biexciton systems. The scheme of these transi-
tions with their corresponding energies was used afterwards in order to obtain optical
phenomena around one and two photon resonances.
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parameters of the ellipsoidal QD have been chosen as follows: c = 5 nm and a = 50 nm.

The transitions, which are used in further calculations, are enumerated in Figure 2.
Figure 3 shows the dependences of real and imaginary parts of the non-linear third-order
susceptibility of the biexciton on the photon energy around one-photon resonance ω = ωeg,
around one-photon resonance ω = ωbe, and around two-photon resonance ω = ωbg, as
well as the total susceptibility of the photon energy for the fixed values of the ellipsoidal
QD’s semiaxes.

It follows from the figure that for all cases, be it ground or excited level, the real parts
of χ(3) around one-photon resonance at ω = ωbe and around two-photon resonance at
ω = ωbg change their sign from positive to negative, while the imaginary parts of χ(3)

always have positive values. Contrary to this, the real part of χ(3) around one-photon
resonance at ω = ωeg changes its sign from negative to positive, and the imaginary part
of χ(3) is always negative. It is clear from the Figure 3a that the minimum and maximum
values of real and imaginary parts of susceptibilities for transitions |00〉 and |01〉 are
close to each other, while the values of real and imaginary parts of susceptibility for the
transition |10〉 are weakened, which is explained by the weakness of the oscillator strength
for this case. Contrary to the case around one-photon resonance at ω = ωeg, the imaginary
parts of the susceptibilities have two peaks around one-photon resonance at ω = ωbe.
It is worth highlighting that for the ground level peaks positions are close to each other
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(}ωeg = 56.5 meV and }ωbe = 61.3 meV), which is why one can see one merged peak with
high intensity in Figure 3b. On the other hand, for the excited levels the differences between
transition energies are growing; thus, one can see clearly separated peaks in Figure 3b.
Moreover, the maximum values of peaks for the imaginary parts of susceptibilities around
ω = ωbe and ω = ωbg are alongside each other. Finally, the real and imaginary parts
of the total susceptibilities are presented in Figure 3d, taking into account the intensities’
ratio for one- and two-photon absorptions, which is of about four orders [11]. Note that
the main contribution in total susceptibility is from one-photon resonances rather than
two-photon resonance. However, for the absorption calculation the two-photon resonance
will be important as the intense optical excitation will be applied and the probability of
two-photon absorption will be increased.
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Figure 3. The real and imaginary parts of the susceptibility of ground and excited levels (a) around
one-photon resonance at ω = ωeg, (b) around one-photon resonance at ω = ωbe, and (c) around
two-photon resonance at ω = ωbg; (d) the dependence of the real and imaginary parts of the total
susceptibility on the photon energy.

In Figure 4, the same dependences as for Figure 3 have been plotted for the ground-
to-ground transitions for different values of small semiaxis. As is obvious from Figure 4,
the highest peak value has the curve for the highest value of the small semiaxis. The peak
positions have red shift with the increase of the small semiaxis. This statement is valid both
for the real and imaginary parts of the susceptibility. Here, we have investigated the impact
of the small semiaxis since the size quantization in the axial direction is much more visual
than in the radial direction. So, for all cases we kept the value of the large semiaxis as fixed.

Figures 5 and 6 are devoted to the investigation of the absorption coefficient for the
ground and excited levels, for the different values of the ellipsoidal QD’s geometrical
parameters, respectively.
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Figure 4. The real and imaginary parts of the susceptibility for ground levels for different small
semiaxis (a) around one-photon resonance at ω = ωeg, (b) around one-photon resonance at ω = ωbe,
and (c) around two-photon resonance at ω = ωbg; (d) the dependence of the real and imaginary parts
of the total susceptibility on the photon energy.
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the dependence of the total absorption on the photon energy.
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Figure 6. The absorption coefficient for ground levels for different small semiaxis (a) around one-
photon resonance at ω = ωeg, (b) around one-photon resonance at, ω = ωbe, and (c) around
two-photon resonance at ω = ωbg; (d) the dependence of the total absorption on the photon energy.

It can be seen from the Figure 5a that biexciton absorptions for ground and excited
levels have the same peaks; however, the absorption for transition |10〉 is shifted to the
higher energy. The same behavior can be found also in Figure 5b–d. To continue, if one
looks over Figure 5b,d, one can conclude that the absorption curve around one-photon
resonance at ω = ωbe and total absorption curve for the ground level have one peak, while
absorption curves for transitions |01〉 and |10〉 have two peaks. The origin of these peaks can
be explained by the behavior of χ(3) around one-photon resonance at ω = ωbe. Moreover,
the total absorption for transition |10〉 have multiple peaks, which can be explained by the
fact that the differences between energy levels play a part in the total energy, which, in its
turn, result in the existence of many peaks. Finally, Figure 6 allows one to investigate the
absorption and total absorption around one- and two-photon resonances for the different
values of the ellipsoidal QD’s small geometrical parameter, when the large geometrical
parameter is fixed.

Here, it is important to note that the highest peak has the absorption curve, calculated
for the highest value of the small semiaxis of the ellipsoid, and the lowest peak has the
curve for the lowest small semiaxis. Thus, the higher the small semiaxis’s value, the higher
peak of the curve. The same approach is valid for the total absorption.

5. Conclusions

We have calculated the energies of biexciton states for ground and excited levels in
GaAs ellipsoidal QD in the scope of the variational method. The trial variational functions
have been constructed based on a single-particle wave function, having three variational
parameters for the biexciton and one for the exciton. As the biexciton excited energy states
have not been intensively studied in the literature, the energy diagram for the biexciton
has been calculated up to 12th excited level for two sets of geometrical parameters. The
shifts of the energy levels, conditioned by the change of the QD’s sizes, have been seen. For
simplicity, we have considered only first three energy levels of the exciton and biexciton in
order to construct the quantum transitions between these quasiparticles. Corresponding
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oscillator strengths of excitonic transitions, namely, for biexciton-exciton and exciton-
ground state transitions, have been considered.

Instead of total third-order nonlinear optical susceptibility, obtained in the case of
three-level model, the real and imaginary parts of third-order susceptibilities around one-
photon resonances at ω = ωeg and ω = ωbe for ground and excited levels, and around
two-photon resonance at ω = ωbg, have been discussed. It has been shown that for ground
and excited levels, the real parts of χ(3) around one-photon resonance at ω = ωbe and
around two-photon resonance at ω = ωbg change their sign from positive to negative,
while the imaginary parts of χ(3) always have positive values. Contrary to this, the real
part of χ(3) around one-photon resonance at ω = ωeg changes its sign from negative to
positive, and the imaginary part of χ(3) is always negative. It turns out that the strong
peak for one-photon resonance at ω = ωbe for the ground state consists of two merged
peaks, while for the excited states these peaks are visibly separated. The ratio of the one-
photon resonances to the two-photon resonance is about four orders in GaAs ellipsoidal
QD. That is why the main contribution in the total susceptibility belongs to one-photon
resonances. On the other hand, the contribution in the absorption spectra of two-photon
resonance is growing because the incident light has high intensity and non-linear effects
become important. Finally, the formula of the third-order susceptibility for the two-photon
resonance has been obtained.
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