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Abstract 

Background: Systematic reviews and meta-analysis of time-to-event outcomes are frequently published within 
the Cochrane Database of Systematic Reviews (CDSR). However, these outcomes are handled differently across 
meta-analyses. They can be analysed on the hazard ratio (HR) scale or can be dichotomized and analysed as binary 
outcomes using effect measures such as odds ratios (OR) or risk ratios (RR). We investigated the impact of reanalysing 
meta-analyses from the CDSR that used these different effect measures.

Methods: We extracted two types of meta-analysis data from the CDSR: either recorded in a binary form only 
(“binary”), or in binary form together with observed minus expected and variance statistics (“OEV”). We explored how 
results for time-to-event outcomes originally analysed as “binary” change when analysed using the complementary 
log–log (clog-log) link on a HR scale. For the data originally analysed as HRs (“OEV”), we compared these results to 
analysing them as binary on a HR scale using the clog-log link or using a logit link on an OR scale.

Results: The pooled HR estimates were closer to 1 than the OR estimates in the majority of meta-analyses. Important 
differences in between-study heterogeneity between the HR and OR analyses were also observed. These changes led 
to discrepant conclusions between the OR and HR scales in some meta-analyses. Situations under which the clog-log 
link performed better than logit link and vice versa were apparent, indicating that the correct choice of the method 
does matter. Differences between scales arise mainly when event probability is high and may occur via differences in 
between-study heterogeneity or via increased within-study standard error in the OR relative to the HR analyses.

Conclusions: We identified that dichotomising time-to-event outcomes may be adequate for low event probabilities 
but not for high event probabilities. In meta-analyses where only binary data are available, the complementary log–
log link may be a useful alternative when analysing time-to-event outcomes as binary, however the exact conditions 
need further exploration. These findings provide guidance on the appropriate methodology that should be used 
when conducting such meta-analyses.
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Background
Systematic reviews and meta-analyses of time-to-event 
outcomes (e.g. time to death, recurrence of symptoms, 
relief of pain etc.) are frequently carried out in areas such 
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as cancer, respiratory and cardiovascular diseases, since 
event timings are crucial to assessing the impact of an 
intervention [1]. The decision on how time-to-event out-
comes are handled in a particular meta-analysis largely 
depends on how eligible studies are reported, and is 
usually out of the control of the meta-analyst except if 
individual participant data (IPD) are available. The infor-
mation extracted by systematic reviewers may include 
the total number of participants and events per arm, and/
or the hazard ratio alongside its confidence interval, and/
or the log-rank observed minus expected statistic (“O-E”) 
and its variance (“V”) (which are useful alternative statis-
tics if a hazard ratio is not directly reported [1]). Time-
to-event data can be analysed using the effect measure of 
hazard ratio (HR), or can be dichotomised and analysed 
as binary using effect measures such as the odds ratio 
(OR) or risk ratio (RR) [2]. Although HR is considered the 
most appropriate scale for analysis of time-to-event data, 
in practice OR and RR are frequently used instead due to 
the following reasons: unavailability of individual partici-
pant data (IPD); limitations on how these outcomes are 
reported in individual trial reports; lack of familiarity in 
handling time-to-event outcomes for meta-analysis; dif-
ficulties in understanding the methods of analysing such 
data without a statistician; limited available training for 
the majority of systematic reviewers and meta-analysts 
who perform such analyses [3].

In the past, research was conducted comparing the dif-
ferences between the OR using logistic regression mod-
els and the HR using proportional hazard (PH) models 
within individual studies. Green and Symons [4] showed 
that logistic and Cox PH models produce similar results 
when the event is rare and for shorter follow-up times 
under a constant hazard rate. Ingram and Kleinman [5] 
added that important differences among the methods 
occur in the presence of varying censoring rates and 
length of follow-up. However, it has not been estab-
lished yet how such results transfer to the context of an 
aggregate data meta-analysis for which summary data 
is extracted from trial reports. Further, in this context 
it is of interest to examine potential alternatives such as 
the use of the complementary log–log link, which may 
reduce the difference in the results between the two 
effect measures used. The overall meta-analytic estimate 
can be affected due to changes to the weighting allo-
cated to each study, and therefore changes to the results 
can be unpredictable. We aimed to carry out an empiri-
cal “meta-epidemiological” study using survival meta-
analysis data from the Cochrane Database of Systematic 
Reviews (CDSR) (Issue 1, 2008) to explore the implica-
tions of analysing time-to-event outcomes as binary in 
meta-analysis. We assessed the importance of extracting 
suitable data such as the “O-E” and “V” statistics rather 

than binary summaries to perform such analyses; in the 
occasion where binary data were available we examined 
whether the use of alternative methodology such as the 
complementary log–log link (clog-log), proven to facili-
tate interpretation of the results on a HR scale [6, 7] can 
minimise the error we may observe in the results. We 
assess only the differences between the OR and the HR, 
as the RR, according to the literature [8–11], is placed in 
between these measures and therefore, we expect to cap-
ture any bias within these extremes. We perform these 
analyses under both two- and one-stage models.

The rest of the paper is set out as follows. In the meth-
ods section, we describe the dataset we used and the sta-
tistical models that we applied. In the results, we present 
descriptive statistics of the database and then we describe 
the results obtained from reanalysing the data originally 
analysed as binary on an HR scale and from reanalysing 
the data originally analysed using “O-E” and “V” data on 
an OR scale. These results are followed by a discussion 
exploring the strengths and limitations of our findings, 
together with conclusions and implications.

Methods
Data
The Nordic Cochrane Centre provided the content of the 
first issue from 2008 of the CDSR. The database includes 
meta-analyses within reviews which have been classi-
fied previously by outcome type, medical specialty and 
types of interventions included in the pairwise compari-
sons [12]. The database did not record whether data type 
was time-to-event; however, based on the outcome clas-
sification we were able to identify (using words such as 
“survival”, “death”, “fatality”) three sets of time-to-event 
meta-analyses:

• “binary”: Those with outcome classification “all-
cause mortality” where the information recorded was 
based only on the number of events and participants 
per arm;

• “OEV”: Those with outcome classifications “over-
all survival” and “progression/disease free survival” 
where the information recorded was based on 
“binary” data in addition to log-rank “O-E” and “V” 
statistics”; these were originally analysed as HRs in 
the RevMan software;

• Those with estimated log HR and its standard error. 
These were removed from further analyses since 
there was no available information on the number 
of events and participants per arm and therefore no 
binary data meta-analysis could be conducted.

Therefore, we identified two subsets of time-to-event 
meta-analyses: those with binary summaries, and those 
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with binary summaries in addition to OEV data; we 
analysed each outcome per dataset separately to assess 
whether differences exist due to different characteristics 
of the outcomes. We also examined whether the infor-
mation obtained from “OEV” data was based on aggre-
gate data or IPD by examining the individual Cochrane 
reviews.

Eligibility Criteria
RMT (for “binary” data) and TS (for “OEV” data) initially 
extracted these data and conducted cleaning including 
examination of the outcome classification; TS repeated 
the “binary” data extraction to confirm the information 
obtained were accurate and RMT confirmed the choice 
of included meta-analyses obtained from “OEV” data 
extraction. Both datasets could contribute more than 
one meta-analysis per Cochrane review. RMT and TS 
identified 46 misclassifications due to disagreement with 
the original outcome classification as listed in the data-
sets, conflicting information in the database or unavail-
ability of the correct version of the Cochrane review. 

We excluded 1,284 studies including double zero events, 
since they do not contribute to the meta-analysis results 
[12, 13]. We removed another 359 meta-analyses includ-
ing fewer than 3 studies because some of the models 
applied below (i.e. generalised linear mixed models) will 
be affected by estimation issues and inevitable failures 
using small numbers of studies [14]; hence we wanted to 
make fair comparisons between the models applied. Der-
ivation of the analysis sample is provided in Fig. 1.

Descriptive statistics
We describe the number of studies per meta-analysis, 
number of events and study size by the median and inter-
quartile range. We also identify the number of medical 
specialities, and median number of events (and inter-
quartile range) per medical specialty.

Model description for “binary” data
We used the following meta-analysis models to analyse 
the data on the OR or HR scale. The first was a model pro-
posed for “binary” data (assuming a binomial likelihood 

Fig. 1 Analysis sample of “binary” and “OEV” datasets from the CDSR (2008, issue 1)
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with a logit link) which is based only on the number of 
patients and number of events which occurred. Interpre-
tation for the treatment effect is conducted in terms of 
the logarithm of an OR.

In the second approach, we modelled the binary data 
using a normal approximation to binomial likelihood 
with a complementary log–log link (clog-log), where 
treatment effect interpretation was based on the loga-
rithm of a HR. This method is also based only on the 
number of patients and events which occurred, and 
ignores censoring and the time element; however it is 
closely related to continuous-time models, has a built-
in proportional hazards assumption, and therefore has 
important application in survival analysis [6].

Fitting two‑stage random‑effects models for “binary” data
Prior to fitting the two-stage random-effects mod-
els, study arms with zero events were identified for the 
“binary” data. For 771 studies, a “treatment arm” con-
tinuity correction was applied as proposed by Sweet-
ing et al. [15] and was constrained to sum to one as this 
ensures that the same amount of information is added to 
each study.

Let i = 1, 2, . . . , n denote the study. The estimated log 
odds and log hazard ratios were given by:

where Ai, Ci represented number of events, Bi, Di rep-
resented number of non-events in the treatment and 
control groups respectively, PTi = Ai

Ai+Bi
 was the propor-

tion of events on the treatment arm of the ith study, and 
PCi =

Ci
Ci+Di

 was the proportion of events on the control 
arm of the ith study.

The corresponding variances were given by:

Equations 2 and 4 provided a HR estimate via the use 
of the complementary log–log link considered as a useful 
link function for the discrete-time hazards models as rec-
ommended by Hedeker et al. [7] and Singer et al. [6]. We 
estimated the study-specific log odds ratios or log hazard 
ratios, yi and their within-study variances s2i  as shown 
above and fitted a standard two-stage random-effects 
model to these. Additionally, we obtained the  I2 statistic 
from the fitted models as follows:
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where τ 2 denotes the variance of the underlying true 
effects across studies and σ 2 the typical within-study 
variance.

To avoid downward bias in the variance components 
estimates, we used the REML estimator for model imple-
mentation [16]. The models were implemented via the 
“rma.uni” command from “metafor” package in R. We 
also fitted one-stage random-effects models for “binary” 
data. The methods related to one-stage meta-analysis 
models and code is available in Additional file 1.

Model description for “OEV” data
For “OEV” data, the “O-E” and “V” statistics were avail-
able in the Cochrane database alongside the number of 
patients and events. These data came either from pub-
lished reports or from IPD; TS examined the individual 
reviews from the Cochrane database and assessed the 
data origin. Since there were more available information 
for these data the following three models were applied, 
using only two-stage meta-analysis models.

Similarly to “binary” data, we initially analysed 
the “OEV” data as “binary” and modelled them as 
described in detail in the preceding section. We also 
used the log-rank Observed—Expected events (O-E) 
and the log-rank Variance (V) statistics calculated pre-
viously from the number of events and the individual 
times to event on each research arm of the trial; we 
used the log-rank approach [17] in order to obtain 
another type of HR estimate. We used random-effects 
models to analyse the data throughout, including 
between-study heterogeneity to account for variation 
across studies.

Fitting two‑stage random‑effects models for “OEV” data
Similarly to the “binary” data, the estimated log odds 
and log hazard ratios were given by Eqs. 1 and 2 for the 
binary summaries while the “O-E” and “V” statistics 
were used as follows:

I2 =
τ̂ 2

τ̂ 2 + σ̂ 2

(5)

yi =
logrank Observed − Expected events (O − E)

logrank Variance (V )
for HRs
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The corresponding variances were given by Eqs. 3 and 
4 for binary summaries while for “O-E” and “V” statistics 
as follows:

where V  denotes the variance of the logrank statistic. 
We used the REML estimator for model implementation 
[16] and the models were implemented via the “rma.uni” 
command from “metafor” package in R.

Model comparison for “binary” data
The following model comparisons were performed. For 
the “binary” data set, we examined whether the results 
from analysing survival data as binary on an OR scale are 
similar to results from analysing on the HR scale using 
the clog-log link, both under two-stage and one-stage 
models. For presentation purposes, we present only com-
parisons of the results under two-stage models in the 
main paper (and for one-stage models in the Additional 
file  1) in order to assess the discrepancies between the 
model using the logit link and the model using the com-
plementary log–log link.

First, we examined the proportion of significant and 
non-significant meta-analytic pooled effect estimates 
under the different scales used (OR vs HR scale); we iden-
tified the number of meta-analyses which were signifi-
cant under one scale and non-significant under the other 
at a two-sided 5% level of significance.

Bland–Altman plots with associated 95% limits of 
agreement were constructed, with the aim of facilitat-
ing interpretation of results and producing fair compari-
sons between the two scales [18]. In order to create these 
plots, results were standardised by dividing the logarithm 
of the estimate by its standard error. Plots were produced 
for the standardised treatment effect estimates and for 
the I2 statistics. I2 represents the percentage of variabil-
ity that is due to between-study heterogeneity rather than 
chance; I2 values range from 0 to 100%. This measure was 
chosen for model comparison as it enables us to compare 
results directly between the two scales used. The variance 
of underlying true effects across studies ( τ 2 ) was not used 
as it does not allow direct comparison between different 
outcome measures.

We identified “outliers” as meta-analyses outside the 
95% limits of agreement, and we examined their charac-
teristics. The meta-analysis characteristics we examined 
were the following:

• between-scale differences in the magnitude of the 
pooled treatment effect estimate and its 95% confi-
dence intervals

(6)s2i =
1

logrank Variance (V )
for HRs

• the levels of within-study standard error and 
between-study heterogeneity and study weights in 
the meta-analysis

• study-specific event probabilities and baseline risk

We summarised these differences by meta-analysis and 
reported those characteristics which were mostly asso-
ciated with substantial differences between OR pooled 
effect estimates and corresponding HR pooled effect 
estimates.

Model comparison for “OEV” data
For the “OEV” data set, comparisons on overall and pro-
gression disease free survival outcomes were conducted 
separately; this was because differences between these 
outcomes might be observed in the presence of differ-
ent disease severities, and therefore this would be asso-
ciated with different length of follow-up and risk of the 
outcome.

For both outcomes, we performed comparisons by 
examining the differences between analysing the data 
as binary on an OR scale, analysing the data as binary 
using the clog-log link on a HR scale, or analysing the 
data using the “O-E” and “V” statistics on a HR scale. We 
assessed whether the differences observed from analys-
ing the data as binary on an OR scale could be reduced 
by the use of the clog-log link. We present only compari-
sons of the results under two-stage models since there 
were no available IPD to perform comparisons under 
one-stage models.

Similarly to “binary” data, we examined the propor-
tion of significant and non-significant meta-analytic 
pooled effect estimates under the different scales used 
and identified the number of meta-analyses which were 
significant under one scale and non-significant under the 
other. We created Bland–Altman plots for the standard-
ised treatment effect estimates and for the I2 statistics 
to explore the agreement among the methods producing 
fair comparisons between the two scales [18]. Meta-anal-
yses outside the 95% limits of agreement were examined 
for their characteristics.

Results
Results for “binary” data
For the outcome of “all-cause mortality”, 1,132 meta-
analyses within the Cochrane database were originally 
analysed as binary. The median number of meta-analyses 
per review was 1 with IQR (1,2). The median number of 
studies and the median number of events are provided in 
Table 1, indicating that these numbers were a lot smaller 
than those obtained for the “OEV” data.

The distribution of medical specialities of the meta-
analyses is presented in Table  2. For the “binary” data, 
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“Cardiovascular” (23%) is the most frequently occurring 
category, followed by “Cancer” (13%), “Gynaecology, 
pregnancy and birth” (12%) and “respiratory diseases” 
(12%). The median number of events in cancer substan-
tially exceeded the median number of events in other 
medical areas.

Once the models were applied, we compared results 
between OR and HR analyses. Table  3 provides the 

percentages of significant and non-significant meta-anal-
yses at a two-sided 5% level of significance indicating that 
there are few discrepancies present for both “binary” and 
“OEV” datasets under two-stage models.

According to the Bland–Altman plot (Fig. 2), the aver-
age difference between the two methods for the stand-
ardised pooled effect estimates was -0.004 units (-0.222 
units, 0.214 units) and -0.1% (-10.6%, 10.3%) for the 

Table 1 Descriptive statistics for “binary” and “OEV” data from the CDSR

“binary”

Outcome All‑cause Mortality
Total Number of MA 715

Number of studies per MA: Median (IQR) 5 (3, 8)

Number of events per MA: Median (IQR) 13 (4, 40)

Median Study Size (IQR) 124 (60, 312)

“OEV”

Outcome Overall Survival Progression/
Disease Free 
Survival

Total Number of MA 69 31

Number of studies per MA: Median (IQR) 10 (6, 14) 10 (7, 14)

Number of events per MA: Median (IQR) 108 (58, 254) 104 (70, 192)

Median Study Size (IQR) 182 (93, 369) 185 (90, 317)

Table 2 Distribution of medical specialties for the “binary” and “OEV” data meta-analyses in the CDSR

a Other: Blood and immune system, General heath, Injuries, Mouth and dental, and Cystic fibrosis
b ACM All-cause mortality;
c OS Overall Survival;
d PDFS: Progression/Disease free survival

“binary”
Medical Specialty ACMb

Number (%) of MAs
Events per MA:
Median (IQR)

Cancer 95 (13%) 49 (17, 120)

Cardiovascular 168 (23%) 14 (4, 43)

Central nervous system/musculoskeletal 44 (6%) 12 (5, 33)

Digestive/endocrine, nutritional and metabolic 71 (10%) 7 (3, 18)

Gynaecology, pregnancy and birth 87 (12%) 7 (2, 20)

Infectious diseases 46 (6%) 18 (8, 47)

Mental health and behavioural conditions 21 (3%) 2 (1, 5)

Pathological conditions, symptoms and signs 5 (1%) 9 (2, 15)

Respiratory diseases 87 (12%) 11 (5, 36)

Urogenital 30 (4%) 4 (2, 12)

Othera 61 (9%) 9 (3, 27)

“OEV”
Medical Specialty OSc:

Number (%) of MAs
Events per MA: 
Median (IQR)

PDFSd: Number (%) 
of MAs

Events per 
MA: Median 
(IQR)

Cancer 60 (87%) 104 (45, 221) 31 (100%) 116 (56, 243)

Digestive/endocrine, nutritional and metabolic 1 (1%) 52 (35, 64) - -

Infectious diseases 8 (12%) 482 (160, 1109) - -
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estimation of  I2 for two-stage models; this indicates a 
relatively small percentage difference between the two 
methods in the estimation of the measure of impact of 
heterogeneity  I2. The width of the 95% limits of agree-
ment is small, indicating acceptable agreement between 
the two methods except in specific circumstances men-
tioned below. The corresponding results for one-stage 
models are presented in Additional file 1.

Based on Bland–Altman plots, 6% (n = 47) of the 
meta-analyses were considered as outliers. In 21% of 
the “binary” outlying meta-analyses (e.g. MA 327; out-
lier obtained from I2 estimates) a high event probabil-
ity (defined here as probability greater than 0.7 for the 
majority of the individual studies) was observed. For 
example, meta-analysis 327 consists of 7 studies for 
which the event probability was greater than 0.7 for 5 
out of 7 studies; consequently, high event probability 
affected substantially the differences in the individual 
study estimates between the OR and HR analyses, lead-
ing to different allocated relative weights for the stud-
ies, and discrepancies in the pooled effect estimates as 
shown in Fig. 3.

The pooled HR estimates were closer to 1 than the 
OR estimates in the majority of meta-analyses (Addi-
tional file 1; outlier obtained from standardised and I2 
estimates) with the exception of MA 574 for “binary” 
data where, even though most of the individual study 
HR estimates are closer to 1 than the individual OR 
estimates, the pooled HR estimate is further from 1 
than the pooled OR estimate. Increased within-study 
variability on the OR scale relative to the HR scale may 
affect the weighting more than the actual estimates in 
the studies, for example within “binary” data meta-
analysis 7 (Additional file  1; outlier obtained from 

standardised estimates), producing some differences 
in the pooled effect estimates between the two scales. 
Important differences in between-study heterogeneity 
between the HR and OR analyses were also observed. 
For example, meta-analysis 330 (outlier obtained from 
I2 estimates) consists of 8 studies of which 6 are smaller 
studies which received increased weight in the HR anal-
ysis compared to the OR analysis while the two larger 
studies received smaller weights; this affected both the 
individual HR estimates that have moved closer to each 
other and the relevant weights of the studies as pre-
sented in Fig. 4.

In 34% of the outlying meta-analyses, the individual 
study estimates and the corresponding weights were 
affected by a combination of differing event probabil-
ity across study arms, differences in between-study het-
erogeneity or increased within-study variability on the 
OR relative to the HR scale. In the presence of a limited 
amount of studies in the meta-analyses this was even 
more evident. Additional examples of forest plots indi-
cating the discrepancies among the results are shown in 
Additional file 1.

Results for “OEV” data
In the Cochrane database, 157 meta-analyses were origi-
nally analysed using the “O-E” and “V” statistics on a HR 
scale. The median number of meta-analyses per review 
was 2 with IQR (2, 3). We observed that analysing time-
to-event outcomes as HRs is restricted to very few medi-
cal specialties (Tables  2). For the “OEV” data, “Cancer” 
was still the most frequent medical specialty for both 
outcomes as observed in “binary” data (Table 2).

Table  3 provides the percentages of significant and 
non-significant meta-analyses for each outcome for 

Table 3 Number (%) of (non-)significant meta-analyses under different scales for two-stage models (“binary” and “OEV” data)

Outcome OR HR (O‑E & V)

“binary”
Significant Non-significant Significant Non-Significant

HR
(clog‑log)

All-cause mortality Significant 106 (15%) 2 (0.1%)

Non-significant 4 (0.6%) 603 (84%)

“OEV”
Significant Non-significant Significant Non-Significant

HR
(clog‑log)

Overall Survival Significant 20 (29%) 1 (0.2%) 18 (26%) 10 (14%)

Non-significant 1 (0.2%) 47 (68%) 3 (4%) 38 (55%)

Progression / Disease free Survival Significant 9 (29%) 0 (0%) 8 (26%) 6 (19%)

Non-significant 1 (3%) 21 (68%) 1 (3%) 16 (52%)

HR
(O‑E &V)

Overall Survival Significant 18 (26%) 10 (14%)

Non-significant 3 (4%) 38 (55%)

Progression / Disease free Survival Significant 9 (29%) 5 (16%)

Non-significant 1 (3%) 16 (52%)



Page 8 of 14Salika et al. BMC Medical Research Methodology           (2022) 22:73 

two-stage models, indicating that discrepancies are more 
prevalent in the “OEV” data compared to the “binary” 
data; additionally the amount of discrepancies observed 
in statistical significance from the comparison of OR and 
HR obtained from the clog-log link was smaller than the 
amount of discrepancies observed between the OR and 
HR analyses.

Bland–Altman plots produced for “OEV” data indi-
cated that the average difference between each pair of 

methods is larger than those obtained from the “binary” 
data (Figs.  5 and 6). For example, for overall survival, 
the average difference between the two methods for the 
standardised pooled effect estimates was 0.2 units (-1.8 
units, 2.1 units) for OR versus HR and 0.2 units (-2.2 
units, 2.5 units) for HR using clog-log versus HR; how-
ever, for OR vs HR clog-log differences the average bias 
was 0 units (-2.6 units, 2.7 units) indicating that clog-log 
is a closer approximation to OR rather than HR analyses 

Fig. 2 Bland–Altman plots comparing standardised pooled effect and I2 estimates for two-stage models (“binary” data)

Fig. 3 Forest plot (MA 327) indicating discrepancies in the presence of high event probability
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(Fig.  5). For the estimation of  I2, the average difference 
between the methods is -6% (-41%, 29%) for OR versus 
HR, -6% (-42%, 31%) for HR using clog-log versus HR, 
and 0% (-21%, 21%) for OR vs HR clog-log differences; 
similarly the clog-log seems a closer approximation to 
OR analyses rather than HR analyses (Fig. 6). The corre-
sponding results for the outcome of progression/disease 
free survival are shown in Additional file 1.

Outliers were considered 28% of the “OEV” meta-
analyses. Of these, 57% were from IPD rather than non-
IPD and 54% of them were for the outcome of overall 
survival. In 50% of the outliers a high event probabil-
ity (defined here as probability greater than 0.7) was 
observed, suggesting that this may be an important fac-
tor associated with differences among the scales used. 
For example, meta-analysis 45 (outlier obtained from 
standardised estimates) consists of 7 studies for which 
the event probability was greater than 0.7 for all the 
studies; consequently high event probability affected 
substantially the differences in the individual study 
estimates between the OR and HR analyses, leading to 
different allocated relative weights for the studies, and 
discrepancies in the pooled effect estimates as shown in 
Fig. 7. Even though the individual HR clog-log estimates 
were closer to the individual OR estimates the final 
pooled effect estimate was closer to the pooled HR esti-
mate; this was not though the case for all meta-analyses.

Increased within-study variability on the OR scale 
relative to the HR scale may affect the weighting more 
than the actual estimates in the studies, for example for 
meta-analysis 17 (Additional file 1; outlier obtained from 
standardised estimates), producing differences in the 
pooled effect estimates between the two scales. Similarly, 

even though the individual study estimates and weights 
of OR and HR clog-log were closer to each other, the HR 
clog-log pooled effect estimate was closer to the pooled 
HR estimate; however, this was not the case for all meta-
analyses. Important differences in between-study hetero-
geneity between the HR and OR analyses were observed 
in meta-analyses such as 42, 90. For example, meta-anal-
ysis 90 (outlier obtained from I2 estimates) consists of 11 
studies out of which 8 are smaller studies and 3 are larger 
studies. Smaller studies received increased weight in the 
HR analysis compared to the OR analysis, while larger 
studies received smaller weights in the HR scale com-
pared to OR scale. However, this was not the case on the 
HR clog-log scale as presented in Fig. 8.

In 46% of the outlying meta-analyses, the individual 
study estimates, and the corresponding weights were 
affected by a combination of differing event prob-
ability across study arms, differences in between-study 
heterogeneity or increased within-study variability on 
the OR relative to the HR scale. In the presence of a 
limited amount of studies in the meta-analyses this 
was even more evident. Additional forest plots indicat-
ing the discrepancies among the results are shown in 
Additional file 1.

Overall, using the “OEV” data, a mixed pattern was 
observed. In 39% (n = 11) of outlying meta-analyses 
the OR pooled effect estimate was closer to HR pooled 
effect estimate; however in 4 out of 11 outlying meta-
analyses the individual study estimates obtained from 
the HR clog-log link were a closer approximation to the 
individual study HR estimates. Similarly, even though 
in 61% (n = 17) of the outlying meta-analyses the HR 
clog-log pooled effect estimate was closer to the pooled 

Fig. 4 Forest plot (MA 330) indicating discrepancies arising from differences in between-study heterogeneity
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HR estimate, 3 of outlying meta-analyses provided 
individual study OR estimates closer to individual 
study HR estimates, and another 3 individual study HR 
clog-log estimates were closer to individual study OR 
estimates.

Discussion
Using meta-analysis data from the CDSR of 2008, we 
investigated how time-to-event outcomes are treated 
within meta-analysis; we explored the differences that 
occur when data are analysed as binary as opposed to 

Fig. 5 Bland–Altman Plot comparing standardised OR vs. HR estimates for two-stage models in “OEV” data

Fig. 6 Bland–Altman Plot comparing I2 estimates (OR vs. HR) for two-stage models in “OEV” data
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analysing the data using the complementary log–log link 
or using the “O-E” and “V” statistics where interpreta-
tion is conducted on a HR scale. For both datasets, we 
identified important reasons associated with discord-
ance among the results, indicating that the correct choice 
of the method does matter and may affect the interpre-
tation and conclusions drawn from the results. Our 
analyses highlighted that high event probability was an 
important factor associated with discordant effect esti-
mates; changes to between and within-study variation 

were important mechanisms producing differences in 
the results as well. However, there were occasions where 
there was no clear single factor driving the differences, 
since there was a combination of reasons affecting the 
individual study estimates and corresponding weights. 
Regarding method selection, based on the “OEV” data we 
identified that a mixed pattern was observed and there 
was no clear indication under which exact conditions the 
clog-log link outperforms logit link on an OR scale and 
vice versa.

Fig. 7 Forest plot (MA 45) indicating discrepancies in the presence of high event probability

Fig. 8 Forest plot (MA 90) indicating discrepancies arising from differences in between-study heterogeneity
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While most of the meta-analyses within the database 
were analysed originally as binary, with an outcome 
classification of all-cause mortality it is worth mention-
ing that these meta-analyses could include the outcome 
of short-term mortality (e.g. 30  days) or longer-term 
mortality (e.g. 5  years); therefore some of these meta-
analyses with short follow-up may have been appro-
priately analysed as binary. The outcome classification 
of all-cause mortality was considered a representative 
sample of survival meta-analysis up to 2008, how-
ever results might be different for other outcomes and 
results might have changed in later reviews where more 
information on methodology was available. The data 
used for the comparison of OR/HR scale in the “OEV” 
data were slightly different; we used the number of 
events and non-events for the OR and HR clog-log cal-
culation (as in “binary” data) and calculated a HR based 
on “O-E” and V statistics. Therefore, there is a possi-
bility for some cases that the two data sets entered by 
Cochrane reviewers may not completely correspond to 
each other.

We did not assess other reasons for differences 
between the results due to lack of information on cen-
soring and follow-up times. Interpretation of the results 
was conducted with caution as we are interpreting the 
results based on known factors, without excluding other 
unknown factors that may have affected the results. We 
were not able to examine whether current practice of 
analysing time-to-event data has changed and whether 
methodological choices have improved since 2008. Fur-
ther work examining the differences observed between 
analyses on the OR and HR scales in the presence of IPD 
is necessary.

The model used to analyse time-to-event data as binary 
is the conventional approach widely used by many sys-
tematic reviewers and meta-analysts [19]. It is quick, 
inexpensive and study results are obtained from appro-
priately synthesized study publications or by contacting 
study authors [20]. This approach to analysis ignores cen-
sored observations [21] and treats them as missing and 
has also been criticised for the within-study normality 
assumptions required [20].

The use of a clog-log link function, facilitating the 
results’ interpretation in a HR scale for both “binary” 
and “OEV” data, was the best alternative approach ena-
bling us to make comparisons between the scales used 
if only binary summaries are available. In the past, the 
clog-log link has been proven to provide a close approx-
imation to Cox regression invoking a proportional 
hazards assumption, rather than a proportional odds 
assumption [6]. However, due to lack on information 
on “O-E” and “V” statistics for “binary” data only, we 

were not able to assess whether the HR obtained from 
the clog-log link is a close approximation to the true 
HR; therefore this magnifies the importance of extract-
ing appropriate information when conducting time-to-
event meta-analysis. For the “OEV” data, “O-E and V” 
data provide the best method to analyse aggregate data 
and facilitate results’ interpretation on the HR scale 
but in the absence of IPD important biases may occur 
when large treatment effects and unbalanced data are 
present [22]. Additionally, we were not able to identify 
a clear pattern under which the complementary log–log 
link could be employed since there were circumstances 
under which it performed better or worse than an OR 
analysis; therefore we were not able to identify whether 
the clog-log approach is useful when a MA includes 
binary summaries alongside OEV or HR summaries. IPD 
and simulation studies are required to assess in more 
detail the conditions determining where this method 
would be acceptable.

For the “binary” data, we also used a one-stage ran-
dom-effects model with fixed study-specific effects 
describing the baseline risk probability of the event in 
each study. These models use exact binomial likelihoods 
and may therefore be more accurate, especially with 
sparse data [14]. The fixed study-specific effects cause 
difficulties in estimation since the number of parame-
ters increases with the number of studies, but maximum 
likelihood theory requires the number of parameters to 
remain stable as the sample size increases. A random-
effects model with random study-specific effects could be 
applied, however based on simulation studies this model 
performed better than others without any serious biases 
present [14]. We were not able to make comparisons 
using one-stage models in the “OEV” data. We would be 
able to apply one-stage models when the data were ana-
lysed as binary, but we did not have the IPD required to 
fit one-stage models on the HR scale.

To our knowledge, no research has been conducted 
using such a large database assessing the differences 
between a) analysing the data as binary and interpreting 
the results in an OR scale and b) analysing the data either 
using the clog-log link or log-rank “O-E” and V statistics 
facilitating interpretation on the HR scale.

We have demonstrated the impact of reanalysing 
meta-analyses (“binary” or “OEV” datasets) within 
the Cochrane Database on a different scale, identify-
ing the main drivers influencing discrepancies between 
the meta-analytic results. Our findings provide useful 
insights into changes to meta-analytical results and indi-
cate that choice of method used in meta-analysis of sur-
vival data does matter, especially in the presence of high 
event probabilities.
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Conclusions
In conclusion, our findings indicate that time-to-event 
data should be ideally analysed accounting for their 
natural properties, as it is possible for important dis-
crepancies to be observed and conclusions from the 
meta-analysis to be altered. We identified that dichoto-
mising time-to-event outcomes may be adequate for low 
event probabilities but not for high event probabilities. 
In meta-analyses where only binary data are available, 
the complementary log–log link may be a useful alterna-
tive when analysing time-to-event outcomes as binary, 
however the exact conditions need further exploration. 
These findings provide guidance on the appropriate 
methodology that should be used when conducting such 
meta-analyses.
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