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Abstract: Clear decreases in horizontal force production capacity during sprint acceleration have
been reported after hamstring injuries (HI) in football players. We hypothesized that lower FH0 is
associated with a higher HI occurrence in football players. We aimed to analyze the association
between sprint running horizontal force production capacities at low (FH0) and high (V0) velocities,
and HI occurrence in football. This prospective cohort study included 284 football players over one
season. All players performed 30 m field sprints at the beginning and different times during the
season. Sprint velocity data were used to compute sprint mechanical properties. Players’ injury
data were prospectively collected during the entire season. Cox regression analyses were performed
using new HI as the outcome, and horizontal force production capacity (FH0 and V0) was used at
the start of the season (model 1) and at each measurement time point within the season (model 2) as
explanatory variables, adjusted for individual players’ (model 2) age, geographical group of players,
height, body mass, and previous HI, with cumulative hours of football practice as the time scale.
A total of 47 new HI (20% of all injuries) were observed in 38 out of 284 players (13%). There were
no associations between FH0 and/or V0 values at the start of the season and new HI occurrence
during the season (model 1). During the season, a total of 801 measurements were performed, from
one to six per player. Lower measured FH0 values were significantly associated with a higher risk
of sustaining HI within the weeks following sprint measurement (HR = 2.67 (95% CI: 1.51 to 4.73),
p < 0.001) (model 2). In conclusion, low horizontal force production capacities at low velocity during
early sprint acceleration (FH0) may be considered as a potential additional factor associated with HI
risk in a comprehensive, multifactorial, and individualized approach.

Keywords: hamstring strain; sports injury prevention; risk factors; sprinting; injury surveillance;
soccer; prospective studies
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1. Introduction

Hamstring injuries are the most prevalent injuries in football (soccer), with an average
of 22% of players sustaining at least one hamstring injury during a season [1]. The majority
of hamstring injuries (~70%) occur during high-speed sprinting actions such as winning ball
possession, passing a defending player, or gaining position to score a goal [2]. Consequently,
it seems logical to expect sprinting to be a key parameter in football from both performance
and hamstring injury prevention perspectives.

Sprint acceleration performance has been shown to be associated with the ability to
produce and apply high levels of force in the horizontal direction over the entire accel-
eration [3]. This ability is well described by a macroscopic linear relationship between
horizontal force and velocity obtained during sprint acceleration (i.e., F-v relationship) [4,5].
The F-v relationship is an integrative descriptor of an athlete’s mechanical output capabili-
ties during maximum sprinting accelerations, representing the maximal force an athlete
can produce in the horizontal direction during sprinting at different velocities [4,5]. The
left side of the spectrum represents the force production capacity at low velocities and
the right side represents the force production capacity at high velocities. Using the two
extremes of the curve and spectrum (axes intercepts) allows to not depend on the choice of
specific velocities to characterize these two force production capacities. Consequently, FH0
(which is the theoretical maximal force production at zero velocity) represents the force
production capacity at extremely low velocity, and V0 (which is the theoretical maximal
velocity until which horizontal force can be produced) represents the force production
capacity at extremely high velocity (for illustration, see Figure 1 of Cross et al. [6]) [4].
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Figure 1. Flow chart showing the recruitment, number of included players and number of sprint acceleration. 

Table 1. Baseline data including anthropometrical, history of hamstring injury, and sprint acceleration mechanical output 
data at the start of the season, in addition to new hamstring injuries (i.e., primary outcome), for the total population and 
according to the three groups (i.e., Finland, Japan and France) or to the history of hamstring injury. 

 

Total 
Per Groups Per History of Hamstring Injury 

 Japan France Finland 
No Previous  

Hamstring Injury 
History of Previous  
Hamstring Injury 

Number (n (%)) 284 (100) 110 (39) 56 (20) 118 (42) 224 (79) 60 (21) 
Anthropometrical parameters (mean (SD))       

Age (years) 21.4 (4.3) 20.0 (1.0) 
c** 

18.2 (1.8) 24.3 (5.3) 
a,b*** 

21.3 (4.1) 22.1 (5.2) 

Height (cm) 176.7 (7.2) 
172.7 (5.2) 

c*** 177.0 (6.7) 
180.4 (7.0) 

a***,b** 176.7 (7.2) 177.0 (7.0) 

Mass (kg) 71.3 (8.4) 66.9 (5.3) 68.1 (8.1) 
77.0 (7.6) 

a,b*** 
71.4 (8.5) 71.2 (8.3) 

History of hamstring muscle injury       

Number of players (%) 60 (21) 16 (15) 14 (25) 30 (25) 0 (0) 60 (100) 
Sprint acceleration mechanical outputs (mean (SD))       

Pmax (W·kg−1) 16.8 (1.6) 
16.3 (1.4) 

c*** 
17.3 (1.8) 

16.9 (1.6) 
a** 

16.7 (1.6) 17.1 (1.7) 

FH0 (N·kg−1) 7.5 (0.6) 7.4 (0.6) 7.5 (0.6) 7.5 (0.6) 7.5 (0.6) 7.5 (0.6) 

V0 (m·s−1) 9.0 (0.5) 
8.8 (0.5) 

c*** 
9.3 (0.6) 

9.1 (0.4) 
a***,b** 

9.0 (0.5) d* 9.1 (0.5) 

F-v profile 
−0.83 
(0.08) 

−0.84 
(0.09)c* 

-0.81 
(0.09) 

−0.83 
(0.07) 

−0.84 (0.09) −0.82 (0.08) 

New hamstring injury           

Number of players with new hamstring injury (n (%)) 38 (13) 6 (6) 12 (21) 20 (17) 16 (7) 22 (37) 
Number of new hamstring injury (n) 47 8 16 23 19 19 

Incidence of new hamstring injury (per 1000 h of foot-
ball (95%CI)) 

0.4 (0.3 to 
0.5) 

0.1 (0.0 to 
0.2) 

0.8 (0.5 to 
1.2) 

0.6 (0.4 to 
0.9) 0.2 (0.1 to 0.3) 0.8 (0.4 to 1.2) 

Figure 1. Flow chart showing the recruitment, number of included players and number of sprint acceleration.

This ability to produce horizontal force is mainly associated with muscular actions in
the posterior chain, including the hamstrings, gluteals, and plantar flexors [7–9], which is
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one of the hypotheses explaining the high rate of hamstring injuries during acceleration
and sprint running activities. In the hamstring injury prevention approach, knee flexor
strength has been analyzed as a risk factor, screening test, and prevention measure [10–13].
However, prospective studies in football have shown that isolated, single-joint torque knee
flexor evaluations do not accurately predict hamstring injury [10–13]. Such an approach
does not reflect the complex action of these bi-articular muscles during sprinting [9,14,15].
This supports the importance of analyzing a complex phenomenon such as sprinting not
only through an isolated part or sum of parts (one or more single muscles), but also through
the actual specific behavior of the entire neuromuscular system of the lower extremity
during sprinting (i.e., integrative macroscopic approach) [16–19]. This may eventually
better reflect the overall ability of the athlete to develop horizontal force on the ground
during the specific sprint running task, contrary to single-joint, isolated, and nonspecific
evaluations.

In line with the close relationships between sprinting mechanics (especially the F-v
profile) and hamstring function, a clear decrease in FH0, with no change in V0, has been
reported at the time of return to football after hamstring injury [20,21]. This decrease in
FH0 could be related to the impairment of hamstring muscles to efficiently manage force
production during sprinting. FH0 may be considered as an indirect marker of the entire
posterior chain force production in the high-force, low-velocity context characterizing early
acceleration. This reported FH0 decrease [20,21] is consistent with the reduced hamstring
muscle strength reported after hamstring injury [22,23]. However, these latter results on
FH0 decrease [20,21] do not inform about the extent to which the lower FH0 measured after
hamstring injury is a consequence of the injury, or was already present before the injury
and was part of the injury risk factors. This supports the interest of the present study.

In this context, we hypothesize that the lower horizontal force capacity (FH0 and V0)
can indirectly reveal an overall functional weakness of the posterior chain, including the
hamstring muscles. This may also be a marker of a previous injury as previously reported
by Mendiguchia et al. [20,21], or risk for a future injury as hypothesized in the present
study, which is not addressed in previous research. In addition, since few studies have
reported information on running-based measurements as hamstring injury risk factors [24]
or regarding the main hamstring injury mechanisms [2], and given arguments related to
the interest of horizontal force production during sprinting [20,21], there is great interest in
improving the knowledge of such potential hamstring injury risk factors in football. We
therefore aimed to analyze the association between horizontal force production capacities
during sprinting (FH0 and V0) and hamstring injury occurrence in football players. We
hypothesized that lower FH0 is associated with higher hamstring injury occurrence in
football players.

2. Materials and Methods
2.1. Study Design

We conducted a one-season prospective cohort study on football players who were
assessed for mechanical outputs during sprint accelerations (i.e., horizontal force produc-
tion during sprinting) in field conditions at the start of the season as well as several times
during the season. For these players, prospective exposure and injury data collection
was done throughout the entire season. The study protocol was reviewed and approved
by the Saint-Etienne University Hospital Ethics Committee (institutional review board:
IORG0007394; IRBN322016/CHUSTE).

2.2. Population

At the start of the season, we contacted the head coaches of football groups to ask
for participation in this study. We explained the objectives, procedure, and risks of the
study, via oral communication and a paper information sheet, to the head coaches, assistant
coaches, and medical staff members (one per football team).
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The football players were then included according to the following inclusion criteria:
(1) considered fit for competitive football activity by the team medical staff, (2) normally
involved in training sessions at the start of the season, and (3) free of injury and able to
perform the first sprint acceleration mechanical output measurement at the start of the
season. The exclusion criteria were any medical problems contraindicated for football and
sprint measurements at the start of the season and being a goalkeeper. Informed written
consent was provided by each player before their participation in the study.

2.3. Sprint Acceleration Mechanical Output Measurements

Players were tested only if they were considered fit for competitive football activity
by the team medical staff. Testing sessions were performed in the middle of a week (~72 h
after a match, if any), outdoors, on the usual training surface (i.e., artificial turf), without
rain, without wind in the direction of the sprint (i.e., headwind or tailwind), with usual
football clothing and shoes, after a structured warmup (including approximately 5 min of
jogging, 5 min of dynamic stretching (movement drill), and 2 × 10 m and 2 × 30 m sprints
with increasing intensity, with small variations according to teams).

At each testing session, the instantaneous sprint velocity was measured during
2 maximal 30 m sprints from a standing start, separated by 3 to 5 min of rest. Run-
ning velocity was measured by means of a laser distance measurement system (LDM 301,
JENOPTIK, Jena, Germany; sampling rate, 100 Hz) for the Japan group, and a radar system
(Stalker ATS Pro II, Applied Concepts, Richardson, TX, USA; sampling rate, 46.87 Hz) for
the France and Finland groups. Both devices were used in previous studies and provide
accurate data for further fitting and computation [4,25]. The device was placed on a tripod
10 m behind the subjects at a height of 1 m corresponding approximately to the height of
the subjects’ centers of mass.

Then, running speed time curves were fitted by a mono-exponential function, allowing
step-averaged horizontal external anterior-posterior ground reaction force computations
using a recently validated method [4,25]. From these data, the maximal power output
associated with the antero-posterior component of the ground reaction force (Pmax) and
the maximal theoretical force and velocity components of the F-v profile (FH0 and V0)
were calculated [4,25]. FH0 and V0 values from the sprint trial with the highest Pmax were
used for analysis. This method of calculation has been reported to have a low risk of bias
in comparison to the gold standard (i.e., force platforms) (<5%) [4,25], and the intertrial
reliability measured by the coefficient of variation was 3.5% and 0.6% for FH0 and V0
values, respectively [25].

2.4. Exposure and Injury Data Collection

At the beginning of the season, the history of previous hamstring injuries was collected
for each included player by the medical teams using their medical files (prospective injury
data collection from previous seasons) or a retrospective player’s medical interview if it
was the first season for the player. Considering we only needed a binary response (i.e., a
previous hamstring injury or not—as defined below), we assume that the recall bias was
not major in our present study. In addition, anthropometrical parameters (age, height, and
body mass) were assessed.

During the season, exposure in hours of football practice (i.e., training and competition)
was collected weekly by coaches.

During the season, all new injuries were prospectively collected by the medical teams
using a standardized report form. An injury was defined as: “A physical complaint or ob-
servable damage to body tissue produced by the transfer of energy experienced or sustained
by an athlete during participation in training or competition, whatever its consequences
with respect to impairments in connection with competition or training” [26]. Injury charac-
teristics were recorded following the classification reported by Timpka et al. [26], including
the severity (i.e., minor 1–7 days, moderate 8–28 days, serious >28 days). For the purpose
of this study, the primary outcome was new hamstring injury, corresponding to an injury
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with a location recorded at the “posterior thigh” and type recorded as “strain/muscle
rupture/tear” [26], whatever the consequence on football practice (i.e., we included time-
loss and no-time-loss injuries). The diagnosis was made by a sports medicine physician
generally based on the clinical examination, associated with imaging according to their
decision. Sports medicine physicians were blinded for the results of sprint acceleration
mechanical output measurements.

2.5. Sample Size Calculation

Based on the recommendation from Bujang et al. [27], we used the formula: n = 100 + 50i
(i: number of independent variables) because we aimed to analyze two variables (FH0 and V0);
we calculated an a priori sample size of 200 players.

2.6. Statistical Analysis

First, descriptive analyses were performed using frequency and percentages for cate-
gorical data, means and standard deviations (SD) for continuous variables, and incidence
of hamstring injuries per 1000 h of football with a 95% confidence interval (95% CI), for the
total population, as well as for the three groups (i.e., Finland, Japan, France) and between
players with and without a history of hamstring injuries. The normality of all variables
was tested using the Shapiro-Wilk normality test. Comparisons were performed on the
baseline data (anthropometrical parameters, history of hamstring injuries, and baseline
sprint acceleration mechanical outputs) between the three groups using ANOVA when
data followed a normal distribution, and between players with and without history of
hamstring injuries using Student’s t-test when data followed a normal distribution or
Mann–Whitney U test if not.

Then, to analyze the association between horizontal force production capacities dur-
ing sprinting (FH0 and V0) and hamstring injury occurrence, we used a time-to-event
approach [28]; information after the occurrence of the outcome (i.e., hamstring injury) was
censored. The time to first event was analyzed using cumulative hours of football practice
(i.e., training and competition) as the time scale. A Cox proportional hazards regression
(or Cox regression) model was used to analyze the association of FH0 and V0 with the
occurrence of hamstring injury, adjusted to group, age, height, body mass, and history of
previous hamstring injuries at the time of measurement (yes or no). A first adjusted Cox
regression model (model 1) was conducted using the FH0 and V0 values at the start of the
season and new hamstring injury occurring during the season (yes or no) as the outcome,
with follow-up until the end of the season with no hamstring injury occurrence; the unit of
analysis was the individual player. A second adjusted Cox regression model (model 2) was
conducted using the FH0 and V0 values at each measurement session within the season and
new hamstring injury occurring after the measurement session (yes or no) as the outcome,
with follow-up when no hamstring injury occurrence until the next measurement, if any,
or at the end of the season. The unit of analysis was the player-measurement and the Cox
regression was also adjusted per individual player; analysis was adjusted to the individual
player as some players completed more than one measurement [10]. The hazard ratio (HR)
with a 95% CI was presented for each variable, and assumption that the HR was constant
over time was tested.

The researchers who performed the analyses (PE and LN) were independent from foot-
ball groups and did not conduct the measurements. Significance was accepted at p < 0.05.
Analyses were performed using Excel (Office, Microsoft®, 2017, Redmond, DC, USA), JASP
(JASP Team software, v0.11.1, University of Amsterdam, The Netherlands), and R (v3.6.3.,
© Copyright 2016 The Foundation for Statistical Computing, Vienna, Austria, (Comprehen-
sive R Archive Network, http://www.R-project.org, accessed on 14 April 2020).

http://www.R-project.org
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3. Results
3.1. Population and Sprint Acceleration Mechanical Output Measurements

We contacted the head coaches of three football groups: the Tsukuba university football
club in Japan (including five football teams; Japan group) at the start of the 2014–2015
season; OGC Nice in France (including three football teams (second team, U19 and U17);
France group) at the start of the 2017–2018 season; and eight teams of the professional
football premier league “Veikkausliiga” in Finland (Finland group) at the start of the 2019
season. From the 328 eligible players (110 from Japan, 68 from France, 150 from Finland),
284 players were included in this study. The recruitment flow chart is presented in Figure 1,
and the characteristics of the included players are presented in Table 1.

Table 1. Baseline data including anthropometrical, history of hamstring injury, and sprint acceleration mechanical output
data at the start of the season, in addition to new hamstring injuries (i.e., primary outcome), for the total population and
according to the three groups (i.e., Finland, Japan and France) or to the history of hamstring injury.

Total
Per Groups Per History of Hamstring Injury

Japan France Finland No Previous
Hamstring Injury

History of Previous
Hamstring Injury

Number (n (%)) 284 (100) 110 (39) 56 (20) 118 (42) 224 (79) 60 (21)

Anthropometrical parameters (mean
(SD))

Age (years) 21.4 (4.3) 20.0 (1.0) c** 18.2 (1.8) 24.3 (5.3) a,b*** 21.3 (4.1) 22.1 (5.2)

Height (cm) 176.7 (7.2) 172.7 (5.2) c*** 177.0 (6.7) 180.4 (7.0) a***,b** 176.7 (7.2) 177.0 (7.0)

Mass (kg) 71.3 (8.4) 66.9 (5.3) 68.1 (8.1) 77.0 (7.6) a,b*** 71.4 (8.5) 71.2 (8.3)

History of hamstring muscle injury

Number of players (%) 60 (21) 16 (15) 14 (25) 30 (25) 0 (0) 60 (100)

Sprint acceleration mechanical
outputs (mean (SD))

Pmax (W·kg−1) 16.8 (1.6) 16.3 (1.4) c*** 17.3 (1.8) 16.9 (1.6) a** 16.7 (1.6) 17.1 (1.7)

FH0 (N·kg−1) 7.5 (0.6) 7.4 (0.6) 7.5 (0.6) 7.5 (0.6) 7.5 (0.6) 7.5 (0.6)

V0 (m·s−1) 9.0 (0.5) 8.8 (0.5) c*** 9.3 (0.6) 9.1 (0.4) a***,b** 9.0 (0.5) d* 9.1 (0.5)

F-v profile −0.83 (0.08) −0.84 (0.09)c* −0.81 (0.09) −0.83 (0.07) −0.84 (0.09) −0.82 (0.08)

New hamstring injury

Number of players with new
hamstring injury (n (%)) 38 (13) 6 (6) 12 (21) 20 (17) 16 (7) 22 (37)

Number of new hamstring injury (n) 47 8 16 23 19 19

Incidence of new hamstring injury
(per 1000 h of football (95% CI)) 0.4 (0.3 to 0.5) 0.1 (0.0 to 0.2) 0.8 (0.5 to 1.2) 0.6 (0.4 to 0.9) 0.2 (0.1 to 0.3) 0.8 (0.4 to 1.2)

a Finland differed from Japan and from France; b Finland differed from France; c Japan differed from France; d “No previous hamstring
injury differed” from “History of previous hamstring injury”; * p < 0.05; ** p < 0.01; *** p < 0.001. 95% CI: 95% confidence interval. F-v profile
corresponds to the slope of the F-v linear relationships. Among the 284 included players, a total of 241 injuries (95% leading to time loss in
football) were reported during the season in 159 players (56%). The main injury diagnosis was ankle sprain (n = 52, 22%), followed by
hamstring injury (n = 47; 20%); other injuries were lower limb non-muscle injuries except ankle sprain (26%), lower limb muscle injuries
except hamstring injury (22%), and other injuries (10%). The incidence of hamstring injuries per 1000 h of football varied according the
three groups (lower for Japan group) and between players with and without history of hamstring injury (higher in players with history of
previous hamstring injury).

Among the 284 players, a total of 801 player-measurements were performed: 41 players
performed one measurement (14%), 106 performed two measurements (37%), 42 performed
three measurements (15%), 69 performed four measurements (24%), 10 performed five
measurements (4%), and 16 performed six measurements (6%). The timing of the sprint
acceleration mechanical output measurements during the season is presented in Figure 2.
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Figure 2. The timing of the sprint acceleration mechanical output measurements during the season. The x-axis represents
the time (in days) from the start of the season (t = 0), the y-axis represents the groups (Finland = green, Japan = red,
France = blue), the color of the circle represents the groups (Finland = green, Japan = red, France = blue), the size of the
circle represents the number of measurements at the measurement session. The first vertical line represents the end of the
pre-season and the second vertical line the end of the season, with color according to the group.

3.2. Hamstring Injuries

A total of 47 new hamstring injuries occurred in 38 players (13%) (Table 1). An amount
of 41 hamstring injuries (87%) lead to time loss from football, with a mean time absence of
18 (SD = 11) days; the severity was reported as minor for 8, moderate for 28 and serious for
5 hamstring injuries. No hamstring injury occurred during sprint acceleration mechanical
output tests. The mean time between the measurement at the start of the season and the
first hamstring injury occurrence was 166 (SD = 158) hours of football practice (model 1),
and the mean time between a (subsequent) measurement and the first hamstring injury
occurrence was 73 (SD = 48) hours of football practice (model 2).

3.3. Associations between Sprint Horizontal Force Production Capacities and Hamstring Injuries

When considering baseline data only (model 1), the adjusted Cox regression showed
no association of FH0 or V0 with the occurrence of new hamstring injury (Table 2). When
considering the FH0 and V0 values at each measurement session (model 2), the adjusted
Cox regression showed that lower FH0 was significantly associated with higher occurrence
of new hamstring injury (HR = 2.67 (95% CI: 1.51 to 4.73), p < 0.001), while V0 was not
(Table 2).
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Table 2. Hazard ratio (HR) with 95% confidence interval (95% CI) of the association between FH0 and V0; and (1) new
hamstring injury during the season based on FH0 and V0 values at the start of the season for the 284 players and adjusted
for group, age, height, body mass, and history of hamstring injury (model 1); and (2) new hamstring injury after the sprint
acceleration measurement based on the FH0 and V0 values of each measurement of the season for 801 player-measurements
and adjusted for individual player, group, age, height, body mass, and history of hamstring injury (model 2), according to
the time scale of cumulative hours of football.

Model 1 (n = 284 Players) Model 2 (n = 801 Player Measurements)
Explanatory Variables HR (95% CI) p-Value HR (95% CI) p-Value

FH0 (N·kg−1) 1.27 (0.70 to 2.33) 0.43 2.67 (1.51 to 4.73) <0.001
V0 (m·s−1) 1.31 (0.66 to 2.60) 0.44 1.49 (0.70 to 3.18) 0.30

Concordance (Harrell’s c-index) 0.817 (0.811 to 0.823) 0.937 (0.931 to 0.943)

4. Discussion

The main findings of the present study were that (1) horizontal force production
capacity at low (FH0) and high (V0) velocities measured at the start of the season was
not associated with a new hamstring injury occurring during the season, and (2) lower
maximal horizontal force production capacity at low velocities (FH0) measured at more
regular intervals of time over the season was significantly associated with a higher rate
of new hamstring injury occurring within the weeks following the sprint acceleration
mechanical output testing, while V0 was not. Every 1 N.kg decrease of FH0 was associated
with 2.67 times higher risk of sustaining a new hamstring injury, within a mean timing of
73 h of football practice (corresponding at ~7 weeks with 10 h of football practice per week).

4.1. Strengths and Limitations

The main strengths were the numbers of included and injured players leading to a suf-
ficient number of cases for analyses [27,29], the representativity of the population (football
players, high levels, different countries and continents), the collection of sprint accelera-
tion mechanical output data at different times of a football season (which is only rarely
published) [30], the time-to-event analytical approach [28] and adjustment of analyses to
important hamstring injury risk factors (i.e., football exposure, age, history of previous
hamstring injuries) [24,31,32] and to the confounding factors (i.e., geographic location and
individual player). In addition, sprint acceleration mechanical outputs were easy to assess
in a sports practice context (performed on training field with few materials, did not require
a significant change in players’ training), and were well accepted by players, coaches, and
technical and medical staffs.

Regarding the limitations, heterogeneity of the population (different countries, play-
ing levels, age groups, and training habits) might have had an influence on the results,
therefore analyses were adjusted to the group and age of players. The number of mea-
surements was different and measurements were performed at different times within the
season depending on the teams and players, which limited the analyses of the changes in
sprint acceleration mechanical outputs within the season [30] and over time in relation to
new hamstring injury. However, we think that these limitations are outweighed by the fact
that these measurements were performed on a large overall cohort and real-life scenario of
high-level football practice. The results differed between models 1 and 2, explained by the
fact that input data were different, which supports the interest of regular measurements
within a season. Isolated hamstring muscle strength was not available, although it is
reported inconsistently as an intrinsic risk factor [10,11,24,33–35]. The hamstring injury
diagnosis was performed by different sports medicine physicians, according to teams,
with potential different skills and diagnosis habits, however it was based on the same
injury definition and classification. Not all hamstring injuries were confirmed by MRI.
The sprint acceleration mechanical outputs were analyzed during linear sprinting, while
hamstring injuries might have occurred during another movement other than sprinting
(e.g., slide tackling (overstretch), cutting (change of direction), and kicking) [2], and the
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exact mechanisms of hamstring injuries were not available. Previous hamstring injuries
were retrospectively collected, exposing the recall bias. The time from previous hamstring
injury was not assessed, and this can change the impact on the horizontal force production
and the occurrence of a new hamstring injury. This simple measurement is not an assess-
ment of specific muscles that contribute to acceleration, nor does it take sprint running
technique into consideration [36–38], and it does not take into account all the other potential
injury risk factors [18,24,31,32]. This simple measurement of sprinting mechanical outputs
is thus proposed as a complementary, sprint-specific component among other potential
injury risk factors [24,31,32]. Finally, no analysis of specificity, sensitivity, or area under the
curves for potential predictor variables was performed, as the study aim was to analyze the
association between sprint mechanical outputs and hamstring injury, and the variability of
FH0 and V0 values across the sporting populations and according to the levels [4,25,30] led
to the risk of irrelevant and inappropriate cut-off values in practice.

4.2. Lower Maximal Horizontal Force Production as a Risk Factor for Hamstring Injury

After data collection regarding hamstring injuries [20,21], the present study adds
new insights into using “pre-injury” data from sprint acceleration mechanical outputs.
Our results show the association between new hamstring injuries and lower limb muscle
function with a more integrative and performance-oriented approach than previously
proposed [10,11,34,35,39]. This is also an approach to analyze the main injury mechanism
of hamstring injury, i.e., high-speed sprinting [2].

As hip extensors and knee flexors, hamstring muscles are associated with the horizon-
tal component of the ground reaction force during sprint running [8,9,40]. Any impairment
of hamstring muscles can alter posterior chain power production and, in turn, result in a
lower maximal horizontal force component [9,14,15]. We therefore suggest that the lower
limb posterior chain function, including the hamstrings, gluteals, and plantar flexors,
within the specific sprint running movement, may be indirectly assessed by measuring
sprint acceleration mechanical outputs and notably FH0.

The impairment of hamstring muscles and its functional consequences may increase
the risk of a new hamstring injury. Such an impairment can be considered revealing of
an overall weakness of the muscles and posterior chain force production, which are not
able to sustain the load required during sprint acceleration. It may also be considered as a
marker of pre-injury without symptoms, which can progress to a symptomatic injury under
increased loads. Thus, the measurement of the sprint acceleration mechanical output, and
especially the FH0 component, can therefore be a promising, affordable, time-effective, and
ecological screening tool for assessing the risk of hamstring or lower limb posterior chain
injuries. Further studies should replicate this analysis to confirm the present results and
analyze potential thresholds of FH0 values and predictive ability of this measurement to
detect a higher risk of hamstring injuries. In addition, deeper analyses should be made in
relation to the injury mechanism: is this association specific to sprinting hamstring injuries?
Have FH0 and V0 a similar association with hamstring injury when injury occurs in the
first steps, at or near maximal velocity, or during curve sprint?

4.3. The Multifactorial Nature of Hamstring Injury

We adjusted the analyses to parameters that have been reported in the literature
to be associated with the hamstring injury risk [18,24,31,32]. This is important because
these factors can influence the studied variables (FH0 and V0) in addition to the outcome
(hamstring injury). This could be the case for the history of previous hamstring injuries,
which is reported to be associated with a higher risk of new hamstring injury [24,31,32]
and also with a decreased horizontal force production [20,21].

Such an approach, including adjustments of the analyses, is also consistent with the
multifactorial nature of injury [41,42]. Hamstring injury is multifactorial as reported in the
literature [24,31,32]; its prevention should be conducted accordingly [43]. This means that,
in addition to considering several aspects related to the physical and biological characteris-
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tics (and not only focused on isolated factors such as strength, load, or flexibility) [18,44,45],
psychological and sociological aspects should also be considered [43,46]. The context of
hamstring injury should thus be included in the preventive approach [47], including for
example, the psychological pressure (chocking) in team sports [48].

We suggest that hamstring injury management (prevention and rehabilitation) should
be approached in a multifactorial way by keeping the main injury mechanism (sprint
running) at the center of a comprehensive whole [17,18]. The latter is consistent with
the fact that (i) field performance measurements, including sprint measurements, have
been suggested as useful by experts for the return-to-sport decision [49], (ii) experienced
field sports practitioners involved in professional football teams reported sprinting and
high-speed running focused exercises as most effective (perceived) to prevent muscle
injuries [50], (iii) running-based factors appear as potential hamstring injury risk factors [24],
and (iv) the required running velocity in athletic disciplines has been reported to play a
role in the hamstring injury risk [51].

4.4. Relevance of Regular Monitoring of Sprint Acceleration Mechanical Outputs over the Season

Given the fact that analyses using the measurement performed at the beginning of
the season were not significant, while using all measurements throughout the season (e.g.,
measurements right before the injury) revealed a significant association with new HMI; we
suggest that individual sprint acceleration mechanical outputs should be assessed regularly
during the season. This is in agreement with Green et al. [24] suggesting that using data
from a single occasion of baseline assessment may not be valid to prospectively evaluate
associations with subsequent hamstring injuries occurring sometimes several months later.
Sprint acceleration mechanical outputs may change with changes in physical status and
training regimen throughout the season [30] and as a result of hamstring injuries [20,21].
Thus, regular measurements throughout the season are likely more valuable to better
inform the player on injury risk. This will also be of interest to analyze the normal
variability of weekly or monthly sprint acceleration mechanical outputs and their relation
to hamstring injury risk, for example, promising in situ approaches recently presented by
Morin et al. [52].

5. Conclusions

This prospective cohort study provides a new step in hamstring injury management
by reporting a potential new hamstring injury risk factor and showing an interest of
analyzing sprint acceleration mechanical outputs. This supports the interest of including
sprinting in the hamstring injury risk reduction process as a piece of the puzzle to reach a
solution [53]. Sprint acceleration mechanical outputs have been reported to be useful to
orient training [5] and to return to sprinting after hamstring injuries [18,20]. Our results
suggest that it may also help to inform players about the risk of hamstring injuries. Thus,
this macroscopic, integrative, and ecological approach appears promising for both sprint
performance improvement and hamstring injury management.
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