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Abstract: The Nile tilapia (Oreochromis niloticus) gut harbors a diverse microbial community;
however, their variation across gut regions, lumen and mucosa is not fully elucidated. In this
study, gut microbiota of all samples across gut regions and sample types (luminal content and
mucosa) were analyzed and compared from two Ethiopian lakes. Microbiota were characterized
using 16S rRNA Illumina MiSeq platform sequencing. A total of 2061 operational taxonomic units
(OTUs) were obtained and the results indicated that Nile tilapia from Lake Chamo harbored
a much more diversified gut microbiota than Lake Awassa. In addition, the gut microbiota
diversity varied significantly across the gut region based on the Chao1, Shannon and Simpson
index. The microbiome analyses of all samples in the midgut region showed significantly higher
values for alpha diversity (Chao 1, Shannon and Simpson). Beta diversity analysis revealed a clear
separation of samples according to sampling areas and gut regions. The most abundant genera were
Clostridium_sensu_stricto and Clostridium_XI genera across all samples. Between the two sampling
lakes, two phyla, Phylum Fusobacteria and Cyanobacteria, were found to be significantly different.
On the other hand, six phyla (Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria and
Cyanobacteria) were significantly different across gut regions. In this study, we found that all samples
shared a large core microbiota, comprising a relatively large number of OTUs, which was dominated
by Proteobacteria, Firmicutes, Cyanobacteria, Fusobacteria and Actinobacteria. This study has established
the bases for future large-scale investigations of gut microbiota of fishes in Ethiopian lakes.

Keywords: diversity; gut microbiota; 16S metabarcoding; Nile tilapia

1. Introduction

The microbiota of the gut has a significant effect on the health status of the host. The microbial
community enhances the health of the host by inhibiting the performance of pathogenic microbes [1]
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and improving the immune response [2]. Moreover, gut microbiota facilitates the degradation of
non-digestible fibers and synthesizes essential compounds such as vitamins [3]. It was also shown to be
involved in the development of gut morphology [4]. The microbial structure of the gut changes with the
developmental stage of the host and constantly adapts to the current situation [5]. Understanding the
related mechanisms is crucial for economical important species, especially in aquaculture activities,
where productivity is dependent on the animal health.

Nile tilapia (Oreochromis niloticus) is one of most frequent fish species in the world used in
aquaculture. Production is expected to increase further due to the good performance in culture and its
resistance to various environmental conditions [6]. In tropical areas, production is possible throughout
the year. In temperate climate, severe mortalities occur during winter, and hence cold tolerance is an
economically important trait in Nile tilapia [7]. A current study suggests that the gut microbiome might
contribute to the fish adaptation in extreme environments, in particular, lower temperature [8]. It had
been shown that fish populations inhabiting different geographical areas with different elevations
from sea level showed gut microbiota composition variations [9]. To determine differences between
populations from cold and warm environments could therefore help to characterize temperature
adaptation pattern in the species. As a first step, we describe the microbiome composition of Nile
tilapia (O. niloticus) from two Ethiopian lakes that harbor native populations of the species at two
different elevations.

In Nile tilapia, the gut ecosystem is composed by diverse microbial groups, most of them are
strict anaerobes. Traditionally, this has been assessed by conventional culture-dependent techniques.
With this method, Aeromonas hydrophila, Aeromonas veronii, Burkholderia cepacia, Chromobacterium violaceum,
Citrobacter freundii, Escherichia coli, Flavimonas oryzihabitans and Plesiomonas shigelloides have been
identified from the gut of mature Nile tilapia [10]. Moreover, Virgibacillus pantothenticus, Bacillus cereus,
Bacillus licheniformis, Enterococcus faecalis and Virgibacillus alginolyticus were isolated from the gut of
Mozambique tilapia (Oreochromis mossambicus) [11].

In the aquatic environment, factors such as dissolved oxygen, temperature and salinity could affect
the microbial structure in the gut of fish [12]. Moreover, trophic level and taxonomy of fish species can
have an effect on composition of gut microbiota [13]. Nguyen et al. [14] reported that environmental
parameters associated with seasons and geographic locations are among the factors that affect gut
microbiota among fishes. The application of molecular approaches based on sequence diversity of
the 16S ribosomal RNA gene helped to explore the gut microbiota more thoroughly, compared to the
traditional cultural-techniques [15]. As determined by this sequence-based method, the dominant
microbial group in most fish species is γ-proteobacteria [16,17]. The gut of East African cichlid fishes
harbored Fusobacterium, Firmicutes and Proteobacteria [18]. A study on O. niloticus from Lake Nasser in
Egypt revealed that cyanobacteria, alpha proteobacteria and methanogenic uncultured euryarchaeota
were the dominant microbial groups [19].

Ethiopia is a country with a vast area of inland water bodies consisting of diverse aquatic
ecosystems. There are more than 30 lakes in Ethiopia and the majorities are located in the rift valley
region. The Ethiopian rift valley is a densely populated area with various agroindustry enterprises
and mechanized irrigation farms. At the same time, it is one of the most environmentally vulnerable
areas in the country [20]. Diverse groups of economically and ecologically important species of fish are
dependant on the lakes. Lake Awassa is the prominent freshwater lake located in the central Ethiopian
Rift Valley at the highest topographic position. It is near the city of Awassa, and has long been
exposed to anthropogenic impacts, including over-fishing, irrigation, deforestation, overgrazing and
indiscriminate use of pesticides and fertilizers in the catchment areas [21]. Several varieties of fishes
are found in the lake of which the native African species, Nile tilapia (O. niloticus) is the dominant [22].
Lake Chamo is one of the lakes from the East African rift system in Ethiopia. The lake is rich in
various species of fishes including Nile tilapia (O. niloticus), Nile perch (Lates niloticus) and tiger fish
(Hydrocynus forskahlii) [23].
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The studies in Ethiopian lakes focus mainly on diversity, feeding and migration related to the
spawning habit of the fish [24–26]. The microbial diversity of fish gut in Ethiopia remains largely
unexplored, and it is not known whether these fish species harbor unique gut microbiota or not.
The aim of this study was to gather baseline data on the microbial complexities across the gut regions,
and sample types (luminal contents and mucosa associated) of Nile tilapia (O. niloticus), one of the
widely used aquaculture species of fish around the world. In addition, the gut microbial dynamics of
samples of Lake Awassa and Lake Chamo were compared to collect first insights on environmental
influence on microbiome composition.

2. Materials and Methods

2.1. Description of the Specimen Collection Sites

The specimens were collected in July 2018 from Lake Awassa and Lake Chamo. Lake Awassa is
located between 06◦58′ to 07◦14′ N latitudes and 38◦22′ to 38◦28′ E longitudes, with an elevation of
1685 m above sea level (m.a.s.l) and it is the highest in altitude among the Rift Valley closed basin lakes.
The maximum depth of the lake is 22 m. Its average pH is 8.17. The lake has an average temperature of
24.5 ◦C and its dissolved oxygen, total dissolved solid, nitrate and sulfate values of the lake water are
5.48, 974.5, 3.86 and 119.7 mg/L, respectively [21]. Lake Chamo is found in southern Ethiopia, and it
is located in the Great Rift Valley at an elevation of 1235 m (a.s.l). The specific site lies between the
coordinates of 5◦50′0′′ to 5.83′33” N latitude and 37◦33′0” to 37.55′ E longitudes. It is the southernmost
lake of the Ethiopian Rift Valley (Figure 1). The temperature of the surface water is 28.58 ◦C and has an
average pH of 8.66. The dissolved oxygen, total dissolved solid, concentration of nitrite and sulfate are
7.82, 725.58, 46.10 and 69.45 mg/L, respectively [27].
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2.2. Fish Sampling and Processing

A total of 95 adult male Nile tilapia samples (45 from Lake Awassa and 50 from Lake Chamo) were
purchased from the fishermen at the landing sites of Lake Chamo and Lake Awassa and sacrificed using
high doses of clove oil [28]. Male individuals were used because of their larger size, facilitating the
analysis and not to deplete female stock. Before dissection, fish samples and instruments were rinsed
with 70% ethanol and aseptically dissected. The entire gut was removed and divided into three regions
(stomach, midgut and hind gut). The gut luminal contents were collected following the procedure of
Ghanbari et al. [29]. Gut contents were gently squeezed and placed in sterile screw cap tubes containing
sterile phosphate-buffered saline and glycerol in equal volume. After collecting gut contents from the
three regions, each part was thoroughly washed by soaking into 0.85% (w/v) saline solution. The gut
mucosa-associated bacteria were collected as described before [30,31]. Gut mucosal samples were
similarly placed into screw cap tubes containing phosphate-buffered saline and glycerol. Both luminal
contents samples and mucosal samples were stored at −20 ◦C until further processing.

2.3. DNA Extraction

DNA extraction of gut luminal and mucosal samples were performed using the PowerFecal®

DNA Isolation Kit (Qiagen, Hilden, Germany) with some modifications. The modifications include
heating the tubes at 70 ◦C instead of 65 ◦C after addition of C1 solution and using warm elution buffer
preheated at 40 ◦C at the end. The final elution volume was 50 µL. The extracted DNA was stored
at −20 ◦C until further processing. The quantity of the extracted DNA was checked using the Qubit
dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA).

2.4. PCR Amplification and Sequencing

The amplicon sequencing approach was performed on a total of 95 individual DNA samples
using the Illumina MiSeq system (Illumina, San Diego, CA, USA). DNA sequencing libraries targeting
the V3–V4 hypervariable region of the 16S rRNA gene were prepared using the dual index approach
from Shokralla et al. [32]. This consists of two PCR steps. In the first one, specific primers were
used, while in the second, index information for sample identification was added. The first PCR was
conducted with the primers 347F and 803R from Nossa et al. [33] extended with part of the Illumina P5
(TCTTTCCCTACACGACGCTCTTCCGATCT) and P7 (CTGGAGTTCAGACGTGTGCTCTTCCGATCT)
adapters. PCR was performed in 10µL reactions containing 5µL of QIAGEN Multiplex PCR Master Mix
(Qiagen, Hilden, Germany), 1 µL of each primer (1 µM) and 4 µL of template/genomic DNA. PCR was
conducted using the following temperature profile: 95 ◦C for 15 min; 30 cycles of 95 ◦C for 30 s, 55 ◦C for
1 min, and 72 ◦C for 1 min; and a final extension at 72 ◦C for 10 min. PCR products were purified by
mixing four microliters of PCR product with 2.9 µL of AMPure XP beads (Beckman Coulter Inc., Bree,
CA, USA) and letting them incubated for 5 min at room temperature. Bound DNA beads were captured
by an inverted magnetic bead extraction device, VP 407-AM-N (V&P Scientific, INC., San Diego, CA,
USA) and washed twice in an 80% 200 µL ethanol solution for 45 s. Later, the beads were dried at room
temperature for 5 min and eluted in 17 µL of elution buffer (65 ◦C 10 mM Tris-Hcl, pH 8.3). For index
PCR, we used the TrueSeq apater sequences: P5: AATGATACGGCGACCACCGAGATCTACAC
[Index] ACACTCTTTCCCTACACGACG; and P7:CAAGCAGAAGACGGCATACGAGAT [Index]
GTGACTGGAGTTCAGACGTGT).

The PCR was conducted in a total volume of 10 µL containing 2 µL of each primer (1 µM), 5 µL
of QIAGEN Multiplex PCR Master Mix and 1 µL of purified PCR product. The reaction was carried
out, after an initial denaturation and activation at 95 ◦C for 15 min, using 10 cycles of 95 ◦C for
30 s, 58 ◦C for 60 s, and 72 ◦C for 60 s. All resulting products were pooled and sequenced using an
Illumina MiSeq paired-end (PE) 300 sequencing platform (San Diego, CA, USA). The run was done as
a joint run together with other libraries. About 10% of the reads should account to the microbiome
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pool. Sequencing was performed at the Genomics Service Unit, Ludwig-Maximilian’s-Universität
München, Germany.

2.5. Sequencing Data Analysis

Sequences were quality controlled with Cutadapt v. 0.11.1 [34] by removing regions matching the
adapter sequences and the remaining downstream sequence with the default settings. Regions with
low sequence quality were excluded with the same program with sliding window approach allowing a
minimum quality of 30. Trimmed reads with length below 200 bp were excluded. Paired reads were
merged with PEAR v. 0.9.4 [35] with the default settings and deleting overlapped sequences smaller
than 200 bp. Merged reads were checked if they contained the correct primer sequence information
with an in-house script presented in Curto et al. [36] with small modifications. A maximum of two
mismatches between primer sequence and read was allowed and matching regions were trimmed out.
USEARCH 6.0 was used to further detect chimeras based on the RDP pipeline [37]. Usearch global
alignment algorithm was applied to achieve operational taxonomic units OTU table by mapping
high-quality reads to the remaining OTUs at 97% cutoff. Data filtering was done using default
minimum count of 4 and 20% prevalence on MicrobiomeAnalyst in order to remove low quality
or uninformative features [38]. Data rarefaction to minimum library size was done before further
downstream processing.

Alpha diversity of each sample was assessed using the Chao1, Shannon and Simpson index.
Beta diversity was determined based on the Bray-Curtis index distance method and principal coordinate
analysis (PCoA) plots were made. In addition, non-metric multidimensional scaling (nMDS) was
generated. Permutational multivariate analysis of variance (PERMANOVA) was used to analyze beta
diversity. A one-way ordered analysis of similarity (ANOSIM) and homogeneity of group dispersions
(PERMDISP) tests were also conducted on Bray-Curtis index distance method to supplement results
of the PERMANOVA using MicrobiomeAnalyst [38]. The statistical significance of gut microbiota
structure between different sampling sites and gut regions was assessed by non-parametric univariate
Mann-Whitney/Kruskal-Wallis test. According to Turnbaugh et al. [39], the core microbiome is defined
as the minimum community of microbes that is essential for the good functioning of the ecosystem.
The core microbiome analysis was done as described in MicrobiomeAnalyst [38]. To detect the core
microbiome, 20% prevalence and 0.01% relative abundance was used. Linear discriminant analysis
effect size (LEfSe) were used to identify significantly different abundances of bacterial taxa across all
samples. The analysis first performs non-parametric factorial Kruskal-Wallis (KW) sum-rank test to
detect features with significant differential abundance with respect to the class of interest, followed by
linear discriminant analysis to estimate the effect size of each differentially abundant features.

3. Results

In total, 849,199 raw reads were obtained for the library pool of Nile tilapia microbiome after
sequencing. After the initial quality filtering process, 718,091 sequences were retained. This resulted
in a mean read depth per sample of 1930 sequences. In all samples, a total of 2061 OTUs were
detected. Seven phyla and 41 genera were detected. The majority of sequences belonged to members
of Firmicutes (61%) and Proteobacteria (16%) (Figure 2). Other phyla including Bacteroidetes and
Chloroflexi were less represented. Rarefaction curves showed that plateau level was reached in all
samples (Supplementary Figure S3). All samples have a Good’s coverage of more than 98% (Table S3).
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3.1. Diversity Measures

The result of alpha-diversity clearly indicates Nile tilapia from Lake Chamo harbored a much more
diversified gut microbiota than Lake Awassa (p-value 0.009, 0.008 and 0.025 for Chao1, Shannon and
Simpson indexes, respectively) (Figure 3). In addition, gut microbiota diversity varied significantly
across the three gut regions, with p-values 0.006, 0.008 and 0.03 for Chao1, Shannon and Simpson
indexes, respectively. The midgut had a higher diversity than stomach and hind gut. Beta diversity
analysis revealed a clear separation of samples according to sampling areas and gut regions (Figure 4).
Non-metric multidimensional scaling (nMDS) showed a close association between the samples from
one lake, while both lakes were differentiated from each other. A close association was shown between
samples of one gut region (Figure 4). Furthermore, statistical analysis of beta diversity across samples
showed significant divergence of the microbial communities across fish sampling sites and gut regions
(ANOSIM tests p < 0.001, R: 0.4). In addition, the non-significant results of the PERMDISP test of the
two sampling lakes (p-value = 0.967) indicated that the results of the PERMANOVA can be interpreted as
true differences in the location of samples or the average community composition. Besides, a significant
PERMIDISP result (p-value 0.0003) and PERMANOVA (p-value < 0.001) of the sampling gut regions
indicates there is a strong dispersion effect (variability in the community composition). On the other
hand, no significant differences were detected between the microbial communities of intestinal luminal
content and mucosa-associated microbiota (Supplementary Figure S2).
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3.2. Core Microbiome

The core microbiome of the present study comprised of six phyla, 14 families and 15 genera
(Table 1). Three families, Nannocystaceae, Nocardioidaceae and Sporolactobacillaceae, and five
genera, Sporolactobacillaceae_incertae_sedis, Rhodobacter, Nocardioides, Oceanicola and Enhygromyxa
were restricted to Lake Chamo only. Of the six core phyla, Firmicutes was the most abundant
from all samples. At the family level, Clostridiaceae_1 and Peptostreptococcaceae were found
to be the most dominant. Clostridium_sensu_stricto and Clostridium_XI were the most dominant
taxa across all samples. The core gut bacteria of stomach dominated by Clostridium_sensu_stricto,
Clostridium_XI, GPXI, Cetobacterium and Turicibacter (Figure 5A). Additionally, the bacterial genera
Clostridium_sensu_stricto, Clostridium_XI, GPXI, Cetobacterium, Turicibacter, Bacillariophyta, Bacillus,
Romboutsia, Mycobacterium were also found to be the dominant core bacteria in the midgut region
(Figure 5C) and Clostridium_sensu_stricto, Clostridium_XI, Cetobacterium and Turicibacter in the hind gut
region (Figure 5B). The genera Flexithrix, Aciditerrimonas and Povalibacter were exclusive for stomach.
Twenty genera including Mycobacterium, Daeguia, Litorillinea, Methylocystis and Motilibacter were
exclusive for mid gut region. The overall core gut bacteria of all gut regions consisted of 15 genera
(Figure 5D).



Microorganisms 2020, 8, 1040 9 of 19

Table 1. List of the core microbiota.

Phylum Class Order Family Genus

Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto
Peptostreptococcaceae Clostridium_XI

Romboutsia
Bacilli Bacillales Bacillaceae 1 Bacillus

Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Turicibacter

Cyanobacteria Cyanobacteria Family XI Family XI GpXI
Chloroplast Chloroplast Chloroplast Bacillariophyta

Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Cetobacterium

Proteobacteria Gammaproteobacteria Methylococcales Methylococcaceae Methyloparacoccus
Gammaproteobacteria_incertae_sedis Candidatus Carsonella Candidatus Carsonella

Alphaproteobacteria Rhodospirillales Acetobacteraceae Roseomonas
Rhizobiales Brucellaceae Daeguia

Rhodobacterales Rhodobacteraceae Gemmobacter
Deltaproteobacteria Myxococcales

Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium
Acidimicrobiales

Chloroflexi Caldilineae Caldilineales Caldineaceae Litorilinea
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3.3. Differential Abundance Analysis

Differential abundance testing between all samples were done by a nonparametric test
(Mann–Whitney/the Kruskal–Wallis test) as it is used in MicrobiomeAnalyst [38]. The result
of this analysis clearly indicated significant difference for only two phyla, Phylum Fusobacteria
(p-value = 1.226E−7) and Cyanobacteria (p-value = 0.0013) (Figure 6) between the two
lakes. On the other hand, six phyla (Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes,
Proteobacteria and Cyanobacteria) showed significant variation across gut regions (p-value < 0.05)
(Supplementary Figure S1). At genus level, a total of 33 and 34 significant genera were found
between the lakes (Awassa and Chamo) and gut regions (stomach, mid gut and hind gut) respectively
(p-value < 0.05) (Supplementary Tables S1 and S2). However, the genus Ralstonia was the only one
to show significant variation between sample types (luminal content and mucosa) (p-value < 0.05)
(Figure 6). Moreover, the abundance of Ralstonia was higher in mucosal samples than luminal content.
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Linear discriminant analysis (LDA) effect size (LEfSe) of the gut region showed
Clostridium_sensu_stricto was the taxa contributing most to the dissimilarity of the stomach. On top of
this, Bacillariophyta, Bacillus and Methyloparacoccus contributed most for the mid gut. Moreover,
Clostridium XI was found to be the most contributing for hind gut. LEfSe analysis revealed
significant bacterial differences between samples from Lake Awassa (negative scores) and Lake
Chamo (positive scores) (Figure 7).
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4. Discussion

The bacterial composition along the gut of Nile tilapia of Lake Awassa and Chamo was analyzed
using high-throughput sequencing of the 16S rRNA genes. Fish from Lake Awassa showed lower
microbial diversity than fish from Lake Chamo, which might be due to high pollution load from the
municipality, regional hospital and factories surrounding the lake [40]. A recent study conducted on
the water quality status of Lake Awassa reported that the concentration of metals such as manganese
(0.83 mg/L), zinc (5.75 mg/L), chromium (0.22 mg/L), phosphate (1.31 mg/L) and biochemical oxygen
demand 5 (BOD5, 68.7 mg/L) exceeded the WHO standard [21]. The effect of pollutants and
toxins present in the environment on gut microbiota of fish was reported by several authors [41,42].
The composition of intestinal microbiota was changed following copper exposure in common carp [42].
High throughput sequencing of the 16S rRNA gene V3–V4 region revealed a significant change in the
richness and diversity of microbiota in the gut of polystyrene MP-exposed zebrafish [41]. Moreover,
the microbial diversity differences observed in this study might be due to the availability of feed
sources in the lakes since feeding habits can greatly influence the structure and composition of the gut
microbiota [43].

In this study, the gut microbiota diversity varied significantly across the gut regions (stomach, mid
gut and hind gut) as determined by the Chao1, Shannon and Simpson index. Besides, beta diversity
analysis revealed a clear separation of samples in accordance to these gut regions (Figure 4) and a
closer association between samples of the same gut region. Similar results are reported in other studies.
The gut microbiota in porcine, for example, exhibited significant differences in various intestinal
segments [44]. The physiological differences between various segments of the gut of piglets indicated
significant microbiome composition divergence [45]. The present study indicates that the midgut had
a higher diversity than stomach and hind gut. Though no definitive distinction exists between the
midgut and hind gut in Nile tilapia, the mid gut is the longest portion of the gut, which extends from
the stomach to the posterior part of the gut. This region is the location where majority of digestive
activities occur and believed to have consortia of microbes involved in digestion [46].

This study depicted no significant difference in the alpha and in beta diversity between intestinal
content microbiota and mucosa-associated microbiota (). This contradicts previous studies where
significant variations between luminal and mucosal microbiota was reported [47,48]. This study is the
first to explore the variations of mucosal and luminal microbiota of Nile tilapia gut.

The dominant phylum in the gut of Nile tilapia in the present study was Firmicutes followed by
Proteobacteria. This result agrees partially with previous studies done elsewhere on Nile tilapia. In the
gut of genetically improved farmed tilapia, Proteobacteria, Firmicutes and Cyanobacteria were the most
dominant phyla reported [49]. Moreover, Ran et al. [50] reported that Fusobacteria, Proteobacteria and
Bacteroidetes were the dominant groups of microbiota from the gut of Nile tilapia. Fusobacteria,
Bacteroidetes and Proteobacteria were also reported from the gut of Nile tilapia as a dominant phylum
in study by Ray et al. [51].

To elucidate the ecology of gut microbiome fully, identifying the core microbiome is needed and it
is the first step in defining a ‘healthy’ community [52]. In this study, we found that all samples shared a
large core microbiota. The core microbiota was dominated by Proteobacteria, Firmicutes, Cyanobacteria,
Fusobacteria, Actinobacteria and Chloroflexi. A core gut microbiota has been reported for certain fish
species; such as rainbow trout [53], Atlantic cod [54], Atlantic salmon parr [55], zebrafish [56] and
cichlid fishes [18]. In cichlid fishes studied; Firmicutes, Fusobacteria, Proteobacteria, Bacteroidetes,
Actinobacteria, Planctomycetes and Verrucomicrobia were reported as predominant phyla. Therefore,
this study agrees with the study on cichlid fishes. Identification of unique taxa such as Flexithrix,
Aciditerrimonas and Povalibacter in the stomach and 20 genera in the midgut region indicates host
physiological selection. The detection of a core microbiota for the three gut regions suggests that these
bacteria are capable of colonizing the different anatomical regions.
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The most abundant core OTUs at the genus level were Clostridium_sensu_stricto, Clostridium_XI,
Turicibacter and Cetobacterium. All these genera have been previously reported as part of gut microbiota
of fishes [57]. Clostridium is associated with cellulose degradation in the gut of freshwater fishes and
Cetobacterium is involved in the degradation of protein in carnivorous fish [57]. Since Nile tilapia is
omnivorous fish and capable of eating both, cellulosic materials and animals in particular zooplanktons,
it is expected to find the predominance of Clostridium and Cetobacterium in their gut. Cetobacterium also
involved in the production of Vitamin B12 [58,59]. Since Vitamin B12 acts as a modulator of gut
microbial ecology [60], the abundance of Cetobacterium might be essential for having healthier gut
microbiota. In addition, Cetobacterium spp. promotes decomposition of consumed organic debris,
phytoplankton or zooplankton [61].

Many taxa were found to be differentially abundant between the different sections of gut and the
two lakes as determined by univariate Mann-Whitney/Kruskal-Wallis test and LEfSe test. Between the
two sampling lakes, only phylum Fusobacteria and Cyanobacteria showed significant differences.
Besides, LEfSe analysis also revealed significant bacterial differences between samples of Lake Awassa
and Lake Chamo (Figure 4). Similarly, Candis et al. [51] identified Fusobacterium at significantly
higher levels in the gut of Nile tilapia. Moreover, Fusobacteria-like OTUs were reported from fish gut
as a core microflora [62]. On the other hand, Cyanobacteria was reported as a major component of gut
microbiome from the gut of Nile tilapia in Egypt [62].

In our study, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria and
Cyanobacteria were significantly varied across gut regions (stomach, mid gut and hind gut)
(p-value < 0.05). Most of the gut microbial studies on Nile tilapia were focused on the posterior
gut and to the best of our knowledge, this is the first report which covers stomach, mid gut and
hind gut. However, similar results were reported elsewhere from the gut of other fishes and a
particular region of Nile tilapia. Actinobacteria, Protebacteria and Firmicutes reported to be the
dominant phyla throughout the whole gastrointestinal tract of Gilthead Sea Bream (Sparus aurata) [63].
The cyanobacteria Microcystis spp found to be the dominant microbiota in the stomach of Nile
tilapia [64]. LEfSe analysis of the gut regions showed the taxa contributing most to the dissimilarity of
the stomach to be Clostridium_sensu_stricto. Moreover, for the mid gut, Bacillus, Bacillariophyta and
Methyloparacoccus and for hind gut Clostridium XI were found the most contributing. Bacterial diversity
in the posterior gut sections of temperate marine herbivorous fish species from New Zealand were
dominated by members of clostridial clusters XI and XIVa [65]. Protease and cellulase producing
bacterial strains were found in large number in hind gut whereas highest number of amylolytic bacteria
were found in foregut regions of O. mossambicus (Peters) and O. niloticus (Linnaeus) [66]. Similarly,
amylolytic bacteria were also isolated from the foregut of Jundiá Catfish [67]. Since Clostridium is a
cellulose degrader, our result agrees to their findings. In our study, the genus Ralstonia was significantly
varied between sample types (content and mucosa) (p-value < 0.05) (Figure 5) and its abundance is
higher in mucosal samples than content. Although studies on the gut mucosal microbiota in Nile
tilapia are lacking (to the best of our knowledge), Ralstonia as a dominant mucosal intestinal microbiota
was reported from sea bass [68]. In another study, the dominant autochthonous bacteria in the GI tract
of yellow grouper belonged to Proteobacteria [69].

5. Conclusions

This study characterizes bacteria associated with the gut of Nile tilapia from Lake Awassa and
Lake Chamo using the 16S rDNA metabarcoding technique. The diversity of bacteria associated with
the gut of Nile tilapia collected in our study varied both between the two lakes and sampling gut
regions. The observed differences in microbial compositions may be due to different selection pressure
occurring in these environments and are likely to have different physiological implications. In this study,
we found that all samples shared a large core microbiota, comprising a relatively large number of OTUs,
which was dominated by Proteobacteria, Firmicutes, Cyanobacteria, Fusobacteria and Actinobacteria.
The study has established the bases for future large-scale investigations of the gut microbiota of fishes
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in Ethiopian lakes. In order to make assumptions about the ecological consequences of microbiome
composition, a much deep and large-scale investigation of the gut microbiota of Nile tilapia from more
lakes in the region is also necessary.
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Figure S1: Differential abundance analysis of some phyla. Figure S2: Principal coordinate analysis (PCoA) plot
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curve, Table S1: Bacterial genus significantly different between lake Awassa and Chamo. Table S2: Bacterial genus
significantly different between the gut regions. Table S3: Goods coverage.
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