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Abstract Process understanding is emphasized in the

process analytical technology initiative and the quality by

design paradigm to be essential for manufacturing of bio-

pharmaceutical products with consistent high quality. A

typical approach to developing a process understanding is

applying a combination of design of experiments with

statistical data analysis. Hybrid semi-parametric modeling

is investigated as an alternative method to pure statistical

data analysis. The hybrid model framework provides flex-

ibility to select model complexity based on available data

and knowledge. Here, a parametric dynamic bioreactor

model is integrated with a nonparametric artificial neural

network that describes biomass and product formation rates

as function of varied fed-batch fermentation conditions for

high cell density heterologous protein production with

E. coli. Our model can accurately describe biomass growth

and product formation across variations in induction tem-

perature, pH and feed rates. The model indicates that while

product expression rate is a function of early induction

phase conditions, it is negatively impacted as productivity

increases. This could correspond with physiological chan-

ges due to cytoplasmic product accumulation. Due to the

dynamic nature of the model, rational process timing

decisions can be made and the impact of temporal

variations in process parameters on product formation and

process performance can be assessed, which is central for

process understanding.

Keywords Upstream bioprocess development/

optimization � Dynamic modeling � Hybrid modeling �
E. coli � High cell density fermentation

Introduction

Bioprocess development and optimization are essential

elements of the biopharmaceutical business model and

manufacturing economics. Robust process design is desired

early on, since process changes at a later stage often require

re-approval by regulatory authorities [1]. At the level of

product manufacturing, United States’ Food and Drug

Administration (FDA) has introduced the Process Analyt-

ical Technology (PAT) initiative intended to change from

‘‘recipe’’ production and off-line testing to real-time on-

line testing and closed-loop control of intermediates and

end product(s) [2]. A related strategic approach to quality

product development is quality by design (QbD) [3–5]. The

basis of QbD is to understand the sources of variability in

process and product and to understand the linkages so that

variability can be controlled [3–7].

Bioprocesses are often affected by a large set of input

and output parameters of which the critical process

parameters (CPPs) and critical quality attributes (CQAs)

are the parameters to identify and assess [7, 8]. An integral

QbD/PAT tool to determine the effects of multivariate

interactions is statistical design of experiments (DoE) [9–

12]. Application of a DoE strategy provides understanding

of the relationship between parameters and CQAs and

leads to establishment of a design space and ultimately a
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control space [3–5, 9, 13]. The control space defines the

operational limits of the CPPs such that the quality of the

CQAs can be ensured [10, 13].

Data obtained from the execution of DoEs are usually

analyzed using statistical data analysis and regression

models [9, 14–16]. In most situations, response surface

models (RSM) are used to determine interactions of

parameters in the design space [15, 17–19]. However, these

approaches disregard mechanistic knowledge of the pro-

cess. More classical modeling approaches seek to describe

the process using first-principles, but have difficulty to

accurately describe complex processes without laborious

development [3, 4, 20, 21]. An alternative to these

approaches is hybrid semi-parametric modeling [4, 20–23],

hereupon shortly referred to as hybrid modeling. Hybrid

modeling allows incorporating existing process knowledge

and experimental data into a flexible framework in which

both parametric (model structure specified by fundamental

knowledge) and non-parametric model (model structure

identified from data) structures are working together.

Additional knowledge and data can be added to the model

framework as they become available. Several authors have

described hybrid models of upstream bioprocesses, in

which knowledge and data related to the biological system

were added to a bioreactor model [24, 25]. Hybrid models

have been used for the modeling, monitoring or opti-

mization of industrial fermentations [26–30]. Their benefits

for PAT have been assessed [4, 21, 26, 27], although an

industrial bioprocess development case, in particular with

respect to PAT and QbD, has not yet been reported.

The purpose of this work is to study the application of

hybrid modeling to a dataset generated during a DoE

investigation to find optimal induction conditions for

recombinant protein expression in E. coli. In the developed

hybrid model, a general parametric bioreactor model was

integrated with a nonparametric artificial neural network to

correlate biomass and product formation rates with process

parameters. Model and process performance are assessed

and discussed with respect to PAT and QbD.

Methods

Fermentation process

The E. coli fermentation process development batches are

conducted in four identical fermenters. Cultivations are

started with a constant volume of batch medium. Fixed

aeration rate and vessel pressures are applied, while dis-

solved oxygen is regulated by agitation speed. Batches are

inoculated at identical biomass concentrations.

The fermentation process consists of three phases: (1)

growth in batch mode, (2) growth in fed-batch mode; and

(3) induction of product expression by addition of IPTG.

Temperature is regulated through water jacket control and

pH is controlled by base addition. Exhaustion of carbon

source at the end of the batch phase is indicated by a pH

rise and agitation drop [31, 32]. At this point, the fed-batch

phase is initiated (automated step). Feed of fed-batch

medium is regulated through gravimetric feed control. Up

to this point, batch and fed-batch conditions are identical in

all fermentations.

Cytoplasmic expression of the recombinant protein

occurs after induction with IPTG. Four induction phase

parameters were examined through DoE to identify optimal

expression conditions: induction temperature, pH, feed rate

and biomass concentration at induction. All other condi-

tions were kept constant. The total induction period varied

from 22 to 30 h in different batches, but all batches were

sampled at least at the 22 h time point, which was selected

as experimental end-point of the DoE.

On-line measurements

On-line process parameters (temperature, pH, dissolved

oxygen, agitation rate, air-flow rate, vessel pressure and

feed and base balance readings) were recorded at 15 s

intervals. Principally used for real-time feed-back control

loops, the recorded on-line data is otherwise typically

under-utilized, only being employed for batch profile

generation, qualitative batch-to-batch comparisons and

occasional basic data analysis.

For hybrid modeling the dataset treatment was as fol-

lows. The high frequency on-line data of each batch was

averaged in 30 min intervals to increase hybrid modeling

computing efficiency. The data starting point (t0) was

selected at the first sample point during fed-batch phase

(often the pre-induction sample). Each data file is then

continued until end-of-batch in 30 min steps.

Biomass, product and metabolite quantification

In-process samples were taken manually at induction and at

the pre-defined end-point of 22 h of induction. Over the

course of the batches, a small number of additional samples

(up to a maximum of 6) were taken during fed-batch and

induction phases.

Biomass concentration was determined by measurement

of optical density (OD) at 650 nm (analytical error:

2–3 %). OD and dry cell weight (DCW) correlate well in a

linear relationship: DCW (g/L) = 0.6 9 OD (R2 = 0.98,

n = 97 pre- and post-induction samples). For quantifica-

tion of the soluble cytoplasmic expressed product, in-pro-

cess samples are mechanically lysed using a bead mill

homogenizer to produce three separate fractions: total

fraction, pellet (insoluble fraction) and supernatant (soluble
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fraction). An assessment of productivity on all three frac-

tions was performed by densitometry of Coomassie stained

SDS-PAGE which revealed complete product solubility.

Productivity results mentioned in this work were produced

by an orthogonal quantification method that is based on

RP-HPLC analysis of further treated supernatant samples

against purified standards (analytical error: 5–10 %, based

on repetitions starting from unfractionated culture sam-

ples). Volumetric productivity results of this RP-HPLC

assay, normally expressed in mg/l, were scaled and made

dimensionless for confidentiality reasons.

Sporadically, supernatants from culture samples were

also analyzed for acetate content using a Bioprofile 300

analyzer from Nova Biomedical. However, the analytical

error of these measurements is unknown but considered to

be relatively high.

Process development batches

After initial screening batches, a total of 53 fermentations

batches were conducted to optimize productivity, either

part of a DoE design, a set of investigative batches or part

of a set of fermentations to confirm reproducibility. Table 1

summarizes the 53 batches, their respective design struc-

tures and the investigated conditions. Selection of each

design structure, its factors and their analytical ranges,

were result of a procedure in which previous experience

with product and process, results of screening experiments

and business related constraints were considered. Process

temperature, pH and feed rate were scaled to preserve

process confidentiality.

Design of experiments

At first, a four-factor Doehlert design (DoE 1 in Table 1)

with quadratic response surface was applied: 23 experi-

ments (including three center point repeats) with four

factors (biomass at induction, induction temperature, pH

and feed rate) and two responses: specific and volumetric

productivity. Although many different DoE designs are

potentially suitable [9, 14, 33, 34], the spherical Doehlert

design was selected for its efficiency and the flexibility for

subsequent displacement into adjacent experimental

regions, in which already carried out experiments can

easily be integrated [34]. Furthermore, the Doehlert design

offers the possibility to investigate certain factors in more

detail than others [35]. In our four-factor design, both

biomass at induction and temperature were studied at seven

levels, while induction pH and feed rate were studied at

five and three levels, respectively [33, 35]. Induction

temperature, pH and feed rate were scaled around the

center point of DoE 1: T = 0; pH = 0 and uC = 0.

RSM analysis of the 23 DoE batches of DoE1 suggested

optimal productivity conditions to be outside of the

investigated design space. Therefore, additional batches

were performed in experimental regions of lower induction

biomass and temperature and higher induction pH and feed

rate (DoE 2 and DoE 3 in Table 1). However, experimental

results of these additional batches did not obtain the

expected higher productivity.

Hybrid process model

For the described fed-batch E. coli process, the material

balances provide a sound and general valid modeling

framework. The balance equations for biomass and product

were derived assuming an ideally mixed reactor, with X

and P/X designating biomass and specific productivity,

respectively. It is generally assumed that biomass functions

as a catalyst in microbial growth and the balance equation

for biomass formation is written using a specific rate:

dX

dt
¼ l � X � D � X ð1Þ

where l is the specific biomass growth rate, D is a dilution

rate equal to D ¼ ðuFeed þ uBaseÞ=V in fed-batch mode. The

substrate feeding rate uFeed and the base addition rate uBase
determine the change in culture volume V:

dV

dt
¼ uFeed þ uBase ð2Þ

The product is expressed in the cytoplasm, wherefore we

introduce an ordinary differential equation for the specific

productivity P/X by:

d P
X

� �

dt
¼ vP=X � I ð3Þ

where vP=X describes the rate of change in the specific

productivity and I is the induction parameter (0 before

induction, 1 after induction). Note that the dilution rate is

canceled out in this equation. Equations 1 and 3 can then

be combined to obtain the kinetic for volumetric produc-

tivity P that consists of a growth and non-growth associ-

ated product term.

dP

dt
¼ vP=X � I þ P

X
� l

� �
� X � D � P ð4Þ

A correlation between biomass growth and base addition

was used to exploit the available online base consumption data

and to compensate for the relative lownumber of biomass data

points to capture the dynamics of biomass growth, i.e.:

Z t

t0

uBase � dt ¼ aBase � X tð Þ � V tð Þ � X t0ð Þ � V t0ð Þð Þ ð5Þ
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where uBase is the gravimetric base addition rate and aBase is

a function correlating base consumption and biomass

growth.

The above-described parametric bioreactor model

describes how biomass and specific productivity rates, l
and vP=X , as well as the base correlation coefficient aBase

are related to biomass and product concentration in time.

The rates and correlation coefficient are considered func-

tions of process conditions. They are not directly measur-

able and therefore they were modeled by means of a

nonparametric sub-model as described in the following

section.

Neural networks

For the approximation of arbitrary nonlinear functions,

artificial neural networks are suitable candidates [36, 37] and

they have as such been employed in most of the published

dynamic serial hybrid modeling structures [23]. Here, the

specific rates and base correlation coefficient were approx-

imated by a neural network with three layers. The nodes in

the input and output layers of both networks were chosen to

have linear transfer functions, whereas the nodes in the

hidden layer have tangential hyperbolic transfer functions,

h �ð Þ, i.e.:
l; vP=X; aBase
� �

¼ w2 � h w1 � x1 þ b1ð Þ þ b2 ð6Þ

where w1 and w2 are the weights of the connections

between the nodes of the network, b1 and b2 are the biases

and x1 is the vector of inputs. For the discrimination of the

best network structure and most relevant inputs, as well as

for the training/identification of the weights and biases (w1,

w2 and b1, b2, following summarized designated as w) each

of the data sets was divided into three partitions, a training,

validation and test partition, as outlined in the next section.

Different numbers of nodes in the hidden layers were

studied for both networks and data sets. The different

network structures were compared based on their perfor-

mance in terms of Bayesian information criteria (BIC),

calculated for the training, validation and test data [38].

The best structure was chosen as the one with the greatest

BIC value for the validation set, whilst showing consistent

performance also for the training set. Different network

inputs were studied, the final set of inputs to the artificial

neural network comprised X, P/X, T, pH and the carbon

source feeding rate uC, which is the product of uFeed and the

concentration of carbon source in the feed solution.

Hybrid modeling datasets

Two datasets were considered for hybrid modeling: one

dataset (HM1) with experiments of the DoE 1 design space

and a larger dataset (HM2) comprising all 53 fermentations

(Table 1). Each dataset was divided into three partitions:

training, validation and test partition. The parameters were

identified based on training data, as described in the next

section, whereas the validation data were used to determine

the point at which the training was stopped, i.e. cross-

validation. The test set was used to assess the generaliza-

tion properties of the models. In HM1, DoE 1 batches were

split between a training (2/3 of the batches) and a valida-

tion partition (1/3 of the batches) in a random fashion. One

additional batch was considered in the training partition of

HM1: a dataset that technically fell just outside the 4D

design space, but with each of the individual factors falling

within their respective range for DoE 1.

Five batches that allow assessment of model perfor-

mance with respect to process variations were considered

as test batches for HM1: four were rejected from the

original DoE due to a process control failure that caused

feed rate to fluctuate during the induction period, and a fifth

batch was performed to challenge the dynamic hybrid

model. In this last experiment, temperature, pH and feed

rates were varied over the course of the fermentation. The

results of these five batches could not be used by the static

end-point response surface model, but they could be inte-

grated into the dynamic hybrid semi-parametric model

framework, where they proved valuable for assessing the

generalization properties of the model. An additional

exploratory test set was used with HM1, which comprised

all fermentations not used during training or validation, to

compare HM1 performance to HM2.

In the case of HM2, experiments for which acetate

measurements were available were split between the

training (2/3 of the data) and validation partition (1/3 of the

data) and the remaining data of experiments for which

acetate measurements were not available were joined in the

test partition. The training set covers different levels of

excitation in all process parameters and the validation set

contains, repetitions, interpolation and extrapolation cases

(Table 1).

Parameter identification/weights training

Parameter identification (typically referred to as training in

neural network literature) was performed by minimization

of the weighted residual of the model estimates, c, and the

experimental data points cexp:

min
w

X ðcexp � cðt;wÞÞ2

rc

( )

; ð7Þ

where rc is the variance calculated from the experimental

values. The gradient-based minimization algorithm,

lsqnonlin (Matlab Toolbox) was used. The analytical
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gradients were obtained using the sensitivity method [20,

22]. The sensitivity equations were integrated along with

Eqs. (1–6) using an Euler forward integration method with

a fixed step size of 0.25 h. Since a gradient-based identi-

fication method was used, the parameter identification was

initiated from random weight values at least ten times to

find parameter values that approximate the data well.

Table 2 summarizes the total number of off-line and on-

line data points considered during parameter identification.

Results and discussion

Performance of HM1 and HM2

The regression plots of HM1 (Fig. 1a–d, left side) show a

significant agreement between measured and estimated

biomass and product values for the training, validation as

well as for the test partition. The significance of agreement

for specific and volumetric productivity appears slightly

lower than for biomass and is likely caused by (1) a dif-

ference in analytical error (biomass measurement requires

a single-step dilution vs. multi-step sample treatment for

measurement of productivity) and (2) the available high

resolution base consumption data correlated directly with

biomass formation. The gap in the biomass data between

OD 80–100 reflects an absence of overnight sampling.

A significant agreement between measured and esti-

mated points can be observed for the correlation of biomass

increase with accumulated base addition for training and

validation partitions of HM1 (Fig. 1d), which affirms the

model performance for biomass. Due to the strong corre-

lation between biomass and frequently logged base con-

sumption, the process dynamics could be captured despite

the limited off-line samples taken during each batch.

However, one of the batches in the test partition was sub-

ject to uncontrolled feed fluctuations outside of the

experimental region that caused a deviation in base con-

sumption with respect to biomass growth (see section

‘‘Analysis of step-changes on model performance’’).

While HM2 biomass measurements and estimates are in

good agreement (Fig. 1e–h, right side), a deterioration of

productivity regression is clearly visible for higher pro-

ductivity values (P/X[ 0.375 OD-1). To understand the

reason for the greater product concentration variance, the

(statistical) residual between the measured and predicted

product concentration was analyzed, which is described in

the next section.

Product residual analysis

The residuals of the product concentration (difference

between measured and predicted concentration) were ana-

lyzed using a partial least square (PLS) method, assessing

whether another functional dependency between product

concentration and process parameters exists. Besides the

ANN inputs T, pH and uc, the following variables were also

used as input to the PLS: the base addition rate uBase, the

agitation rate, the acetate concentration as well as the

square values of these variables. The residuals of product

concentrations obtained for training and validation parti-

tions of the HM2 data set were joined in one data set and

randomly partitioned 20 times in sets with 2/3 and 1/3 of

the data, each time determining the best number of latent

variables using cross-validation. Since acetate concentra-

tions were only measured for experiments included in

training and validation partitions of HM2, data from the test

partition were not included in the analysis. Over 20 repe-

titions, the number of latent variables that most frequently

delivered the best performance was four and subsequently

a final PLS model with four latent variables was imple-

mented. The estimation of the PLS for the residuals over

the calculated residuals is shown in Fig. 2 together with the

impact of the mean centered and standard deviation scaled

input variables. It can be seen that the PLS estimates cor-

respond little to the HM2 residuals, since only 4.4 % of the

variance in product concentration residual can be corre-

lated with tested variables. Thus, (1) most of the functional

dependence of the residuals on the included variables is

captured by the hybrid model and (2) the following

Table 2 Number of data points

of state variables in training,

validation and test partitions of

HM1 and HM2

State variable Property Hybrid model dataset 1 Hybrid model dataset 2

tr val tst tr val tst

Off-line data

X # of points 50 21 17 102 43 43

Avg # of points/batch 3.1 2.6 3.4 3.5 3.6 3.9

P/X and P # of points 40 17 13 95 42 33

Avg # of points/batch 2.5 2.1 2.6 3.3 3.5 3.0

On-line data

uC # of points 884 411 267 1685 661 653

Avg # of points/batch 55 51 53 58 55 59
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analysis of the impact of the input variables on the resid-

uals must be prudent and supported by additional obser-

vations. It can be seen in Fig. 2 that acetate concentration,

agitation rate and base addition rate have the greatest

impact. These variables were intentionally not included in

the nonparametric part (ANN) of the hybrid model. Agi-

tation and base addition rates cannot be independently set

as they are implicated in the control of dissolved oxygen

concentration and pH, respectively, and acetate is a

byproduct of E. coli metabolism. Therefore, they are not

suitable hybrid model input parameters for process opti-

mization purposes.

Furthermore, measured acetate concentrations are con-

sidered to have a relatively high standard variation and

were not available for all experiments. High acetate con-

centrations have been described to affect product formation

[32, 39] and several of our cultivations conducted at higher

feeding rates were subject to an accumulation of acetate,

Fig. 1 Left side a–d HM1 regression plots for biomass, specific and

volumetric productivity and for accumulated base addition. Right side

e–h HM2 regression plots for biomass concentration, specific and

volumetric productivity and for the accumulated base addition.

Specific and volumetric productivity as well as accumulated base

addition were scaled for confidentiality reasons. The training partition

is displayed as red stars, the validation partition as blue crosses and

the test partition points are represented by a green x. Mathematical

symbols as in the text

Fig. 2 Left side Regression plot

for residual of the product

concentration for HM2. Right

side Regression coefficients that

correlate the mean centered and

standard deviation scaled

process variables to the residual
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which might suggest an overflow-like metabolism, similar

to the one described by [40]. Additionally, a sudden drop in

the stirring rate has been observed during the induction

phase of several cultivations (data not shown). The oxygen

transfer coefficient (kLa) depends on the stirring rate [41,

42] among other factors, and for constant dissolved oxygen

concentrations, pressure and temperature the kLa is

approximately equal to the oxygen uptake rate [43, 44].

This sudden drop in oxygen uptake is likely related to a

shift in the physiological state of the cell towards lower

oxygen consumption.

Process model discussion

Model validity

Dynamic hybrid model profiles of biomass concentration

and specific productivity are shown in Fig. 3 for selected

process conditions. Batches in Fig. 3a–d are DoE 1

experiments and have close agreement between measured

and estimated X and P/X for both HM1 and HM2. When

moving outside this initial design space to lower temper-

atures, higher pH and higher feed rate, HM1 predicts higher

specific productivity (Fig. 3e–h), a similar result extrapo-

lated from the RSM analysis on DoE 1 (see ‘‘Design of

experiments’’ section). However, batches performed in this

extended region did not establish the predicted

productivity, hence the creation of HM2 that performs

better in this region. Due to the respectable modeling

performance, the models can be used to analyze the impact

of the control degrees of freedom (Xind; T ; pH and uc) on the

process performance.

Analysis of process conditions

Rate dependencies were analyzed to obtain a more detailed

view on how process dynamics change with variations in

the control degrees of freedom. The impact of changes in

temperature, pH and feeding rate on specific biomass

growth rate and on specific productivity rate for different

biomass concentration and P/X levels is shown in Fig. 4.

During fed-batch mode, the carbon source is present in

concentrations that are growth rate limiting. This is well

illustrated by the increasing specific biomass growth rate

with increasing feed rate, and the decrease in growth rate

with increasing biomass (Fig. 4a–c), which is a common

characteristic of fed-batch processes [45]. Temperature

does not affect growth significantly which is also plausible

under substrate limiting conditions.

Early induction phase conditions are determining pro-

duct formation; i.e. the specific productivity rate increases

with decreasing pH, increasing feed rate and increasing

temperature [P/X = 0.125 OD-1; X = 50 (OD) and P/

X = 0.25 OD-1; X = 80 (OD), Fig. 4d, e, respectively].

Fig. 3 Dynamic profiles for HM1 (dashed lines) and HM2 (contin-

uous lines) model estimates for biomass and scaled specific produc-

tivity and their respective experimental data points (squares biomass,

diamonds P/X). Selected batches at different process conditions that

are indicated above the graphs. Biomass at induction can be derived

from the graph. Top row conditions within DoE 1 design space.

Bottom row conditions outside DoE 1 design space. Note that due to

variation in induction periods and sampling frequencies, different

time spans are covered for different batches

780 Bioprocess Biosyst Eng (2016) 39:773–784

123



However, with the increase of cytoplasmic expression, the

mechanism for product formation seems to be altered [P/

X = 0.5 OD-1; X = 100 (OD), Fig. 4f]. According to

Glick et al. [46], the metabolism of the host cell can change

significantly during heterologous gene expression, often a

result of many physiological changes. In our case, specific

product formation seems to be negatively affected by the

heterologous protein in the cells: i.e. specific productivity

rate decreases quickly when specific productivity approa-

ches a concentration of 0.5 OD-1 (Fig. 3a–h). Acetate

metabolism plays an important role in E. coli physiology

and high concentrations of this by-product are known to

affect recombinant protein production [32, 39, 47]. This

may suggest that accumulation of acetate is influencing

production kinetics, which would be in agreement with the

findings from the residual analysis.

An interesting observation from a process control

perspective is that variations in the feeding rate might be

compensated by changing parameters such as temperature

or pH to yield similar specific productivity kinetics. Thus,

multivariate control could help to ensure more consistent

process performance.

Analysis of step-changes on model performance

The presented modeling approach allows assessment of the

impact of temporal process deviations in process variables,

in this case temperature, pH, and the feeding rate. Four

Fig. 4 HM2 model estimates for specific biomass growth rate (left

side) and specific productivity rate (right side) as function of

temperature, pH (-1 to 1 with step size 0.5, the arrow indicates

increasing pH) and feeding rate at different stages of the process.

A&D, early induction: OD 50, P/X = 0.125 OD-1; B&E, mid

induction: OD 80, P/X = 0.25 OD-1; and C&F, late induction: OD

100, P/X = 0.5 OD-1. Note that for visibility reasons the x- and y-

axis in F are switched and the direction in which feeding rate

increases is inverted
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batches were subject to a process control failure that caused

feed rates to fluctuate (Dataset 2 in Table 1). Despite feed

rate fluctuations that exceeded the DoE 1 region, biomass

and productivity were still estimated well by HM1 (illus-

trated by test partition results in Fig. 1: HM1: A–C). For

one of these batches, the feed fluctuation led to a pH rise,

likely caused by exhaustion of the carbon source causing a

similar effect as at the end-of-batch phase (see ‘‘Meth-

ods’’). The increase in pH stopped base consumption,

impacting the correlation with biomass growth (Fig. 1:

HM1: D).

In Fig. 5 the time profiles for biomass and product

concentrations and formation rates are displayed for an

investigative batch, in which temperature, pH and feeding

rate were varied as shown. This batch was included as test

batch in both HM1 and HM2.

Biomass estimates for both HM1 and HM2 are similar

and in agreement with measured biomass values. HM1

shows good agreement for the specific productivity: a

quick increase in specific productivity followed by a

decrease in the specific productivity rate when P/X

approaches 0.75 OD-1. The HM2 estimate follows the

same trend up to 35 h, after which the estimate moves

away from the experimental results, consistent with the

observation of higher productivity variability described

earlier for HM2 (Fig. 1).

The two models suggest that biomass growth rate and

specific productivity rate are affected by changes in the

process conditions to varying degrees, but the trends of the

rates remain the same for both models: i.e. the specific

biomass growth rate follows a declining profile that is

characteristic for fed-batch cultures and the specific pro-

ductivity rate is relatively constant at a level of

0.1 OD-1 h-1 up to a specific productivity of 0.5 OD-1

after which it decreases to a second plateau around

0 OD-1 h-1. Both models show that specific productivity

rate turns negative at the end of batch, which could be

explained if biomass formation is greater than product

formation. The results demonstrate that although the hybrid

models were developed for and trained with constant

induction set points, they are able to account for changes in

conditions.

Analysis of the results in relation to PAT and QbD

Understanding the relation between the control parameters

and process performance is essential for designing quality

into the process. Currently the most wide spread approach

in bioprocess development comprises the application of

design of experiment methods in combination with

response surface type models [15, 17, 18]. The model

obtained from this approach, which describes the relation

between the control degrees of freedom and process per-

formance, is typically static, assuming that the process

parameters are constant throughout the process. Due to the

inherent dynamic structure of the described hybrid model,

it becomes possible to evaluate the impact of temporal

deviations in the control degrees of freedom on the process

performance, without performing additional experiments.

The increased insight can result in a better understanding of

the source and impact of variations, aligning with the call

for increased process understanding made in the PAT and

Fig. 5 Dynamic batch profiles

of a fermentation performed at

variable conditions (Dataset #4

in Table 1). Upper left side

biomass concentration and

specific biomass growth rate.

Upper right side specific

productivity and specific

productivity rate. Lower left

side process temperature and

pH. Lower right side feeding

rate
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QbD approaches. Better understanding of process sensi-

tivities might result in the development of an improved

control strategy and/or a strategy for scale-up that accounts

for the limitations.

Process time, which becomes available as a control

variable with the applied modeling approach, can be taken

into consideration when integrating the upstream and

downstream processes. This has the potential to mitigate

the impact of variations on the overall process

performance.

Conclusions

A hybrid model was developed to describe dynamic bio-

mass growth and recombinant product formation in E. coli

high cell density fermentation. The model takes into

account available theoretical knowledge and experimental

data. Two hybrid modeling datasets were generated from

53 E. coli high cell density fermentations: a subset of

experiments which formed part of a four-factor DoE design

(HM1) and a set comprising all cultivations (HM2). Both

models could accurately predict base addition, biomass

and product concentrations; however, HM2 was less

accurate in predicting high product concentrations (P/

X[ 0.375 OD-1). An analysis of residuals between mea-

sured and predicted productivity did not reveal significant

additional functional dependencies, though physiological

changes associated with acetate accumulation could have

an effect. The correlation between base addition and bio-

mass concentration was beneficial for capturing dynamics

of biomass growth, since base consumption data was

recorded on-line at high frequency. If off-gas analysis data

was available it could similarly be used to correlate with

biomass growth and potentially product formation kinetics

[27], though as oxygen uptake rate control is less directly

achievable, this is less useful for process optimization.

The applied modeling approach enables analysis of

impact of control parameters, namely temperature, pH,

biomass concentration at induction and feeding rate, on (1)

biomass growth and specific productivity rates; and (2)

dynamic process profiles. We found that the different

process conditions have a significant impact on biomass

growth and specific productivity. A change in dependen-

cies of specific productivity rate on process parameters

were observed over time, likely a result of physiological

changes [46], which could include inhibition at higher

specific productivity levels ([0.5 OD-1) and acetate

accumulation.

With respect to upstream process development and

optimization, application of a hybrid modeling approach

provides a valuable alternative to conventional statistical

analysis. Incorporation of material balances into the hybrid

modeling framework provides access to dynamic profiles,

which offers the developer the opportunity to take rational

decisions with regard to process timings. Functional

dependencies of dynamic rates can then be modeled by

data-driven methods using data that is typically ignored

when applying DoEs with statistical analysis (base accu-

mulation data in our case). The process could be under-

stood in more detail, without the execution of additional

experiments, process understanding being at the heart of

the PAT and QbD strategy. The possibility to model pro-

cess performance between offline measurements may be

valuable for the improved integration of upstream and

downstream processes.

Another benefit of the dynamic approach is that the

impact of temporal variations in induction conditions on

specific productivity kinetics can be studied and under-

stood, which is a foundational element of PAT. It was, for

instance, observed that changes in feeding rate could be

compensated by manipulating temperature and/or pH,

which in principle enables multivariate process control, and

as such fosters progression towards the PAT objective of

closed-loop product quality control.
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