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Background: Stroke leads tomotor impairment which reduces physical activity,

negatively affects social participation, and increases the risk of secondary

cardiovascular events. Continuous monitoring of physical activity with

motion sensors is promising to allow the prescription of tailored treatments

in a timely manner. Accurate classification of gait activities and body posture is

necessary to extract actionable information for outcome measures from

unstructured motion data. We here develop and validate a solution for

various sensor configurations specifically for a stroke population.

Methods: Video and movement sensor data (locations: wrists, ankles, and

chest) were collected from fourteen stroke survivors with motor impairment

who performed real-life activities in their home environment. Video data were

labeled for five classes of gait and body postures and three classes of transitions

that served as ground truth. We trained support vector machine (SVM), logistic

regression (LR), and k-nearest neighbor (kNN)models to identify gait bouts only

or gait and posture. Model performance was assessed by the nested leave-one-

subject-out protocol and compared across five different sensor placement

configurations.

Results: Our method achieved very good performance when predicting real-

life gait versus non-gait (Gait classification) with an accuracy between 85% and

93% across sensor configurations, using SVM and LR modeling. On the much

more challenging task of discriminating between the body postures lying,

sitting, and standing as well as walking, and stair ascent/descent (Gait and

postures classification), ourmethod achieves accuracies between 80% and 86%

with at least one ankle and wrist sensor attached unilaterally. The Gait and

postures classification performance between SVM and LR was equivalent but

superior to kNN.

Conclusion: This work presents a comparison of performance when classifying

Gait and body postures in post-stroke individuals with different sensor

configurations, which provide options for subsequent outcome evaluation.
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We achieved accurate classification of gait and postures performed in a real-life

setting by individuals with a wide range of motor impairments due to stroke.

This validated classifier will hopefully prove a useful resource to researchers and

clinicians in the increasingly important field of digital health in the form of

remote movement monitoring using motion sensors.
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Introduction

Motor impairment after stroke reduces the level of daily

physical activities and mobility and negatively affects social

participation (de Rooij et al., 2021). In comparison to healthy

controls, stroke survivors show significantly lower energy

expenditure, more time spent sedentary, and less stepping

activity in the acute (Kramer et al., 2013; Moore et al., 2013),

subacute and chronic phases of motor recovery after stroke

(Rand et al., 2009; English et al., 2016; Ezeugwu and Manns,

2017). Continuous inactivity and sedentary behavior are

associated with an increased risk of recurrent stroke events

(Wendel-Vos, 2004). Consequently, monitoring physical

activities and implementing secondary prevention strategies

are one of the main targets of health care providers.

According to the World Health Organization, daily physical

activity measures should be structured in four components:

frequency, intensity, time, and type (FITT) (Cavill et al.,

2006). The quantitative and qualitative analysis of physical

activities requires a hypothesis-driven set of outcome metrics

considered relevant for the studied population. Regarding

monitoring motor recovery and movement behavior in

individuals with stroke, a minimal set of relevant outcome

metrics which addresses upper and lower limb performance

was proposed by van Meulen et al. (2016). Sitting, standing,

and walking were considered types of physical activities of which

duration, intensity, and quality of movement should be analyzed

(van Meulen et al., 2016). Movement sensors are increasingly

used as an unobtrusive approach to continuously monitor real-

life physical activity in various populations with and without

neurologic diseases (Block et al., 2016; Del Din et al., 2016).

Especially neurologic populations returning from in-patient

rehabilitation are a prime target for monitoring daily physical

activity (Prajapati et al., 2011). Gains in motor function that are

achieved during in-patient therapy are frequently not

successfully translated into home routines (Thilarajah et al.,

2016, 2018). Many patients with persistent motor impairment

consult outpatient rehabilitation interventions that support them

in maintaining and successfully integrating new motor

capabilities into their home routine (Ostwald et al., 2009).

Early identification of a lack of transfer of in-patient motor

gains to home routine would allow for active referral of at-risk

patients to avoid long-term complications or functional decline.

Movement sensors deployed in home environments generate

large-scale unstructured and unlabeled time series data

(Ehatisham-ul-Haq and Azam, 2020). The extraction of

metrics corresponding to the most relevant outcomes

proposed by van Meulen is not trivial (van Meulen et al.,

2016). Thus, a significant body of research has emerged

dedicated to the automated classification of physical activity

types (e.g., walking and standing) and to calculating intensity

and movement quality metrics once the activity type is

determined (e.g., step count, energy expenditure, and stride

symmetry in a walking period). The accurate classification of

physical activity is paramount to analysis, as it provides metrics

of frequency and duration and identifies the data sequences that

enable subsequent evaluation of activity-specific metrics.

Although neurologic populations are a primary target group

for remote monitoring in home environments, most activity

classification algorithms have been developed and validated

for healthy populations within laboratory conditions

(Gyllensten and Bonomi, 2011; O’Brien et al., 2017). Healthy

populations arguably demonstrate a higher signal-to-noise ratio,

characterized by greater movement speeds and lower movement

variability (Balasubramanian et al., 2009; Stergiou and Decker,

2011; Atrsaei et al., 2020; Atrsaei et al., 2021). Applying these

algorithms to neurologic populations in home environments

substantially reduces activity classification accuracy

(Jayaraman et al., 2018). To our knowledge, only a few studies

have attempted to develop and validate physical activity

classification algorithms specifically for neurologic populations

such as stroke (Leuenberger et al., 2014; Massé et al., 2015;

Derungs et al., 2020). In these studies, movement tasks were

predefined and performed in standard clinical environments. To

confidently apply these classification algorithms in home

environments, the ecological validity must be demonstrated in

real-life settings.

Accuracy of activity classification depends heavily on the

sensor technology (e.g., modalities, dimensionality, sampling

rate), data processing (preprocessing and classification

algorithm), the number and location of sensors, and the

characteristics of targeted physical activity types (set of

activities, patient-specific movement characteristics,

environment) (Clark et al., 2017; Clark et al., 2018;

Allahbakhshi et al., 2019; Rast and Labruyère, 2020; Wu et al.,

2021; Boukhennoufa et al., 2022) Although all mentioned
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components are important, the optimal number and location

of sensors are essential to accurately detect diverse types of

physical activity. This is especially relevant as a low number of

sensors contributes strongly to participant comfort and

adherence in remote settings and reduces the technological

complexity of the recording setup. In healthy individuals, a

minimal sensor setup for basic activities such as sitting,

standing, and walking requires two sensors, ideally placed

on the waist and ankle (Allahbakhshi et al., 2019). However,

additional sensors are desirable to increase the number of

detectable activities and provide a basis for movement

intensity and quality, such as real-world gait analysis

(Renggli et al., 2020; Werner et al., 2021).

Accordingly, our study has the following objectives: firstly,

we compare the performance of three frequently used machine

learning algorithms to classify gait and posture in real-world

environments for subjects with motor impairment after stroke.

Secondly, we compare the performance across five typical sensor

configurations.

Materials and methods

Subjects

Subjects enrolled in a prospective observational study at

the University Hospital Zurich were invited to participate if

individuals met the following inclusion criteria: mono- or

hemiparesis after stroke, ability to walk independently (with

or without walking aid) with a Functional Ambulation

Categories (FAC) score ≥3/5, living at home, aged above

18 years. Subjects were informed regarding the goal and

procedure of the study and provided written informed

consent for their participation. Ethical clearance to

conduct the study was provided by the cantonal ethics

committee Zurich Switzerland (BASEC No. Req-2020-

00947).

Measurement device

Five movement sensors developed for research purposes

(https://zurichmove.com/) were attached with elastic straps,

one on the dorsal side of the wrists, at the lateral malleolus of

the ankles, and on the chest below the sternum (Figure 1A).

These inertial measurement units (IMU) include a 3-axis

accelerometer, a 3-axis gyroscope, a 3-axis digital compass, an

altimeter (10 cm resolution), a storage capacity of 4 GB, and a

rechargeable battery that enables recordings of up to 72 h. Sensor

configuration was adjusted to a sampling frequency of 50 Hz, and

synchronization between modules was achieved via a radio

frequency syncing protocol.

Procedure

A semi-structured protocol containing routine daily life

activities was developed following the recommendations for

standardized validation procedures for activity and posture

classification (Lindemann et al., 2014). The subjects were

visited at home, where they were asked to perform tasks that

they would typically perform throughout a regular day,

beginning with getting up (e.g., morning routine, grooming,

dressing). The activity plot started with an open question, e.g.,

“What do you typically do first after getting up in the morning?

Please proceed with this activity if I were not present.”

Individuals subsequently performed their routine activities

triggered by similar questions involving kitchen work, desk

work, setting up a table, eating, preparing coffee, and cleaning

up. These activities involved various uninstructed upper limb

activities, body postures, walking, and stair ascent/descent.

Participants were also asked to perform their typical leisure

activities, which included reading, writing, watching TV,

exercising, or playing a musical instrument. Thereby the

observers remained reserved, leaving the order of actions or

way how to perform a task to the individual’s preference.

FIGURE 1
Body scheme with hemi-paretic side symbolized by violet shade. Sensor configurations (A–D) with sensors locations: all sensors (A), no chest
sensor, bilateral wrist and ankle (B), unilateral wrist and ankle on the non-affected side (C), unilateral wrist and ankle on the affected side (D), and wrist
sensors only (E).
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Exceptionally for stair walking activities, instructions were given

to perform stair ascent and descent using both step-over-step and

step-by-step patterns if the participant was capable to perform

both patterns. Individuals with muscle weakness due to

hemiplegia typically adopt the step-by-step pattern. For safety

reasons, participants were supervised or assisted if they had

difficulties performing a step-over-step pattern. Physical

activities were recorded using a conventional video camera

(GoPro Hero7, GoPro. Inc., San Mateo, United States) with

30 frames per second (fps). Synchronization between video

and sensor data was obtained by video-recording an

instructed knocking and turning sequence of the unaffected

wrists, which provided salient signals in both systems.

Labeling and segmentation

Video data were recorded with a framerate of 30 fps, whereas

time-series from the IMU were collected with 50 fps. A single

experimenter labeled videos in a frame-by-frame manner, and

the labels were subsequently resampled to match the frequency of

the synchronized IMUs. For quality assessment, a random

sample of 33.3% of data was labeled by a second

experimenter. The labeling procedure and quality assessment

were conducted using Labelbox online software (https://

labelbox.com).

Labeling criteria were defined for start-to-end conditions of

three body postures (lying down, sitting, standing) and two gait

types (walking and stair ascent/descent). Additionally, we

annotated three transition labels between two corresponding

posture or gait types (lying down/sit, sit/stand, stand/walk)

without specifying directionality (e.g., sit-to-stand or stand-to-

sit). This labeling scheme resulted in a discrete label for every

frame of the recording. Labeling criteria are presented in detail in

the Supplementary Table S1.

Preprocessing

To remove noisy and irrelevant frequencies from the

collected IMU time-series, we incorporated the preprocessing

steps suggested in the work of Moncada-Torres et al. (2014). The

proposed collection of filter operations for IMU data suppress

noise and extract frequency bands corresponding to subject

posture and activity and can be found in full detail in the

original work (Moncada-Torres et al., 2014). This process

results in four types of time-series, namely the three triaxial

signals posture acceleration, activity acceleration, and gyroscope,

as well as the filtered barometric signal, containing data related to

posture/orientation, movement, position, and altitude,

respectively. Feature characteristics are presented in the

Supplementary Table S2. These signals were computed for

each sensor location and subsequently split into windows of

128 time samples with an overlap of 64 samples as described in

previous work (Bonomi et al., 2009; Preece et al., 2009). For

subsequent sliding-window-based analysis, the majority label

was assigned for each time window.

Feature extraction

To fit a model to the data, we extracted a series of features

from each of the four time-series. For each window of the posture

and activity acceleration, gyroscope, and barometric signals, we

extracted the features suggested by Moncada-Torres et al. (2014).

This amounted to 134 features per sensor, resulting in feature

vectors with 670 dimensions considering all sensors. To handle

intra-subject variability, we standardized each feature per subject

to zero mean and unit variance over each window, which was

previously shown to increase separability, repeatability, and

clustering (Krausz et al., 2019). This entails the advantage that

each feature’s magnitude is relative to its magnitudes in other

windows of the same subject, effectively negating the effect of

varying magnitude across subjects.

More specifically, for a subject with n windows and feature

vectors x(1), ..., x(n) ∈ Rd, we compute ~x(1), ..., ~x(n) ∈ Rd such that
~x(i)
j ~ N(0, 1), i.e., we standardize each feature with ~x(i)

j � x(i)j −μj
σj

where μj � 1
n∑

n
i�1x

(i)
j and σ2j � 1

n∑
n
i�1(μj − x(i)

j )2.

Classification tasks and performance
analysis

The labeled dataset described in the previous sections was

used to solve two classification tasks. First, we aggregated labels

for walking and stair ascent/descent as “gait,” whereas lying,

sitting, and standing were aggregated into the unified label “no

gait.” These aggregated labels were used to solve a binary

classification task, namely Gait classification. Our second

classification task was appointed Gait and posture

classification included all five gait activity and body posture

labels to solve a multiclass classification task. Note that for

both tasks, we removed all windows labeled with transition

classes from the training set but not from the validation set to

evaluate our method’s generalization to real-life data where

transitions are present. Validation, including transition done

as follows: Let A be a specific posture or activity and B the

posture or activity following A. The time window containing the

transition from class A to B is then correctly classified if a model

predicts either A or B. Evaluation of our method was done in a

nested leave-one-subject-out fashion. This protocol estimates

how well model scores generalize to unseen data by defining

two loops: the outer and inner loop. In every outer iteration, the

outer loop splits the dataset into an outer training and test set,

where the test set consists of the data of one patient, and the

training set contains the rest of the data. The inner loop then
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takes the outer training set and performs leave-one-subject-out

cross-validation. In every inner iteration, we defined an inner test

set over the data of one patient of the outer training set and

assigned the rest to the inner training set. Each model is fitted on

this training set multiple times with different hyperparameter

configurations, subsequently computing scores on the inner test

set. After we computed scores for each individual, we aggregated

scores across all inner splits and retrained the configuration with

the best scores on the whole outer training set. Finally, we

recomputed all scores on the outer test set with the retrained

models. We do this for every patient and report the results by

aggregating scores across all outer splits. We further compared

cross-validation performance between experiments when

including and excluding transitions from validation sets for

both classification tasks. Model performance was evaluated by

computing sensitivity, specificity, positive predictive value

(PPV), and accuracy in a one vs. rest fashion (Ballabio et al.,

2018). As these metrics are sensitive to class imbalance, we also

evaluated balanced accuracy, defined as the arithmetic mean

between sensitivity and specificity (Ballabio et al., 2018). A

potential relationship between classification performance and

functional motor impairment (Berg Balance Score; 10-m walking

speed) was analyzed for the full sensor setup, the unilateral setup

(non-affected side), and the wrists-only setup (see Figures 1A, C,

E). Normality was determined by the Shapiro-Wilks test, and

Pearson or Spearman correlation was applied accordingly.

Classification models

To solve the two classification tasks, we explored three

different classifiers, namely support vector machine (SVM),

logistic regression (LR), and k-nearest neighbor (kNN), for

comparison. Each of these methods required us to set a

combination of several hyperparameters, which is non-trivial,

as different sensor setups (Figures 1A–E) and classification tasks

require different settings. Consequently, we performed a cross-

validated grid search (Sunkad and Soujanya, 2016; Rabbi et al.,

2021). To this end, we defined a list of possible hyperparameters

for each model (Table 1) and sensor configuration within a

classification task. To evaluate the generalizability of the cross-

validated grid-search, we computed the nested leave-one-subject-

out cross-validation scores, where we performed the inner loop

using each hyperparameter combination. To decide which model

to retrain in the inner loop, we used the configuration achieving

the best balanced accuracy as it accounts for class imbalance, thus

ensuring that models that consistently predict the same class are

not selected. Optimal hyperparameters regarding classification

tasks and sensor configuration are presented in the

Supplementary Table S3.

TABLE 1 Cross-validated grid search hyperparameter combinations.

Model Parameter Values

SVM C 0.01, 0.1, 1, 10

Kernel Radial basis function

Class weight Balanced

LR C 0.001, 0.01, 0.1

l1 ratio 0.01, 0.1

Penalty Elastic Net

Intercept True

Class weight Balanced

kNN n 1, 2, 4, 8, 12, 16, 20, 24, 28, 32

Weights Uniform, distance

kNN, k-Nearest Neighbor; LR, logistic regression; SVM, Support Vector Machine.

TABLE 2 Participants’ demographic data (N = 14).

Characteristics Median (Range)

Age (years) 73 (50–91)

Gender (f, %) 50.0

Weight (kg) 75.5 (53–95)

Height (cm) 169.5 (152–186)

FAC (/5) 4 (3–5)

Walking aid (%) 21.0

BBS (/56) 51 (35–56)

TUG (s) 15.0 (10.8–68.6)

10MWT (m/s) 0.8 (0.3–1.4)

BBS, Berg Balance Scale; FAC, Functional Ambulation Categories; TUG, Timed-Up and

Go; 10 MWT, 10 Meter Walk Test; gender and walking are relative frequencies.

TABLE 3 Descriptive activity labels.

Class Type Duration

Bout (s) Total (%)

Posture Lying 30.3 4.8

Sitting 20.8 20.2

Standing 12.2 32.8

Gait Walk 19.8 19.5

Stairs 11.9 6.5

Transition Ly-sit 4.0 1.2

Sit-stand 2.7 4.5

Stand-walk 4.7 10.5

Average duration in seconds of start-to-end of class; frequency of class relative to total

recording length in %.

Frontiers in Physiology frontiersin.org05

Pohl et al. 10.3389/fphys.2022.933987

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.933987


To explore misclassification rates across classes for the optimal

classification setup, we mapped true classes versus predicted classes

by confusion matrices. All experiments were conducted using

Python (v3.7, Python Software Foundation, https://www.python.

org/), and model implementations were imported from the Scikit-

Learn library (https://scikit-learn.org/).

Results

Real-life data of fourteen individuals with mild-to-moderate

mobility impairments were visited and recorded in their home

environment. Participants’ characteristics and scores of

clinical gait and balance assessments can be seen in

Table 2. The agreement rate between labelers was 93.5%.

The total volume of labeled video data amounted to

379 min containing an imbalance of classes ranging from

4.8% (lying) to 32.8% (standing) of averaged cumulative

duration (Table 3). The average bout duration of activity

from start to end was shortest for transitions (range

2.7–4.7 s) and longest for lying.

Gait classification

Gait classification performed consistently well across the

classification models (Figure 2), achieving accuracy above 90%

in most configurations (Figure 3). Across sensor setups (Figures

1A–E), SVM achieved slightly superior performance, improving

in balanced accuracy over kNN by 0.9%–3.5% and over LR by

0.2%–1.0% (Table 4). Misclassifications were low using all

sensors (6%) and the unilateral configuration (7%) but were

increased to 15% using only wrist sensors (Figure 4).

Across classifiers, performance measures marginally

decreased when reducing the number of sensors, ranging

from best balanced accuracy of 92.6% (all sensors, SVM) to

63.9% balanced accuracy (wrists-only, kNN). Compared to

the wrists-only setup, balanced accuracy improved by 5%–8%

with a unilateral setup of one wrist and ankle sensor on the

affected side. Minor differences of 0.3%–0.8% within models

were found between the affected and non-affected unilateral

setup and between the full setup and the bilateral setup of

wrists and ankles (Table 4). Misclassification frequencies for a

bilateral unilateral and wrists-only setup are presented in

Figure 4. The correlation between gait classification

performance and functional impairment was non-

significant (p > 0.05) across sensor configurations. Gait

classification performance across classifiers on individual

participant level is presented for the all sensors setup

(Supplementary Figure S1; Supplementary Table S7),

unilateral non-affected (Supplementary Figure S2;

Supplementary Table S8), and the wrists-only setup

(Supplementary Figure S3; Supplementary Table S9) in the

supplement.

Model performance of the gait classification task was robust

across validation tasks, including and excluding transitions

(Figure 5). Gait classification performance validated with and

without transitions can be seen in the online Supplementary

Table S4.

Gait and posture classification

Best performance on Gait and Posture Classification was

obtained by SVM using the full sensor setup resulting in balanced

accuracy (SD) of 84.7% (9.2) followed by logistic regression with

82.9% (7.6). Performance varied considerably between models

where SVM and LR showed higher balanced accuracy by 10%–

14% compared to kNN across sensor configurations. Balanced

accuracy scores by the SVM classifier are presented in Table 5

and Figure 6, whereas a comparison of performance between

classifiers is presented in Figure 3. Detailed Gait and posture

performance measures of all classifiers are presented in the online

Supplementary Table S5.

Across sensor configurations, around 80% of balanced

accuracy was obtained when at least one wrist and one ankle

FIGURE 2
Distribution of balanced accuracy across models for Gait
classification and Gait and posture classification on the full sensor
setup.

FIGURE 3
Distributions of balanced accuracy of the SVM in Gait
classification across sensor setups.
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sensor were included, which was reduced by 12%–15% when

using only wrist sensor data. Compared to the affected side, the

unilateral configuration of the non-affected side improved

balanced accuracy by 0.1%–1.8%, whereas compared to both

unilateral setups, the bilateral setup (no chest) improved

balanced accuracy by 2%–5%. Within both bilateral sensor

configurations, there was no improvement in performance by

the chest sensor.

Regarding the prediction of Gait and posture classes, lying

was detected with the highest sensitivity (93%) and specificity

(99.0%), whereas stair walking showed the lowest sensitivity

(74.8%) using the full sensor configuration. When classifying

lying, sitting, and standing, positive predictive values ranged

from 80.8% to 78.8%. Classification of walking exhibited a

positive predictive value of 81.1%, whereas, for stair walking,

PPV was 68.7%. Robust performance was found in nested leave-

TABLE 4 Model performance for gait classification across sensor configurations (setup).

Setup Model Sens Spec Acc Accbal PPV

All SVM 90.7 ± 7.5 94.5 ± 4.2 93.3 ± 4.3 92.6 ± 5.5 85.6 ± 15.3

LR 92.1 ± 6.1 93.7 ± 4.8 93.1 ± 4.6 92.9 ± 5.1 84.5 ± 16

kNN 89.5 ± 6.3 94.4 ± 4.6 92.7 ± 4.3 91.9 ± 4.9 85.5 ± 15.4

No chest SVM 89.8 ± 7.3 94.2 ± 4.6 92.7 ± 4.5 92.0 ± 5.5 85.0 ± 15.7

LR 91.4 ± 6.5 93.5 ± 4.9 92.7 ± 4.7 92.5 ± 5.3 84.1 ± 15.9

kNN 88.5 ± 6.9 94.2 ± 4.5 92.3 ± 4.3 91.3 ± 5.3 85.0 ± 15.5

Non affected SVM 89.2 ± 7.2 94.2 ± 4 92.5 ± 3.9 91.7 ± 5 84.8 ± 15.1

LR 90.6 ± 6.2 93.1 ± 5.1 92.0 ± 4.8 91.8 ± 4.9 83.0 ± 16.8

kNN 86.9 ± 6.6 94.0 ± 4.2 91.5 ± 4 90.4 ± 4.9 84.4 ± 15

Affected SVM 89.5 ± 7.1 92.6 ± 4 91.6 ± 4.1 91.0 ± 5.1 82.0 ± 15.2

LR 90.4 ± 6.8 92.1 ± 4.9 91.3 ± 4.6 91.3 ± 5.2 81.3 ± 16.4

kNN 86.4 ± 8.1 93.7 ± 4.5 91.2 ± 4.3 90.0 ± 5.4 83.9 ± 15.5

Wrists-only SVM 79.9 ± 9.4 90.6 ± 4.3 87.1 ± 4.5 85.3 ± 6.1 76.7 ± 16.9

LR 82.8 ± 8 86.6 ± 5.4 84.9 ± 5.1 84.7 ± 5.5 71.8 ± 17.1

kNN 80.0 ± 9.1 83.8 ± 4.6 82.4 ± 5.1 81.9 ± 5.9 67.5 ± 16.4

Mean and standard deviations of performance measures in %. Accbal, balanced accuracy; kNN, k-Nearest Neighbor; LR, logistic regression; PPV, positive predictive value.

FIGURE 4
Confusionmatrix ofGait classification task for the three district sensor setups: bilateral setup all sensors, (A), unilateral setup non-affected ankle
and wrist sensor, (B), wrists-only setup (C).
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one-subject-out cross-validation of the Gait and posture

classification task irrespective of the inclusion or exclusion of

transitions in the validation data set (Figure 5). Detailed

performance across classifiers, excluding transitions, is shown

in the Supplementary Table S6.

Misclassification frequencies are displayed in Figure 7 for a

bilateral (A, all sensors), unilateral (B, non-affected), and

wrist-only setup (C). Regarding the full sensor

configuration, misclassifications were highest by predicting

standing instead of sitting (11.0%), sitting instead of

standing (9.4%), and walking instead of stair walking

(13.8%) but were low, when predicting walking instead of

standing (6.2%) and vice versa (6.2%). Using the unilateral

setup, misclassification increased by 3.0%–3.8% between

standing and walking and by 1.1%–2.4% between walking

and stair walking. By using the wrists-only setup,

misclassifications 11.2%–17.6% across the classed lying,

sitting, standing, and walking. Spearman correlations

between classification performance and impairment scores

were not statistically significant for the bilateral and

unilateral setup (p > 0.05). Using the wrists-only sensors, a

significant negative correlation was found between walking

speed and overall Gait and posture classification performance

(ρ = −0.54 to −0.76; p < 0.05) and classification of walking

(ρ = −0.53 to −0.60; p < 0.05). Relationships between

classification performance walking and walking speed are

presented across sensor setups in the Supplementary Figure

S1. Gait and posture classification performance across

classifiers on individual participant level is presented for the

all sensors setup (Supplementary Figure S4; Supplementary

Table S10), unilateral non-affected (Supplementary Figure S5;

Supplementary Table S11), and the wrists-only setup

(Supplementary Figure S6; Supplementary Table S12) in the

supplement.

Discussion

This study provides insight into real-life Gait and

Postures Classification accuracy in individuals with

varying motor impairment due to stroke. We compared

the performance of state-of-the-art machine learning

algorithms on Gait Classification and Gait and Posture

Classification including transitions across five sensor

configurations. All sensor configurations, including at

least one ankle sensor, resulted in high accuracy for both

classification tasks. The level of accuracy was consistent in

the nested cross-validation independent of the exclusion of

transitions, indicating that this algorithm is sufficiently

robust to handle comprehensive real-life data. In the

following section, we discuss the main performance

characteristics of each classification task and address their

practical implications for research and clinical rehabilitation

settings.

Gait and non-gait classification

Human movement behavior is complex and shows high

variability across age groups and health conditions (Stergiou

and Decker, 2011; König et al., 2016; Stergiou et al., 2016).

Despite this, we applied a severe simplification by dividing

basic activities into the two classes of walking and non-

walking. This distinction is especially relevant for activity

classification for two reasons: Firstly, it creates categories to

quantify physical activity by whole-body movements during

Gait as opposed to low activity/inactivity in static conditions

during Non-Gait bouts. Secondly, it enables the extraction of

walking periods for qualitative spatiotemporal gait analysis. The

distinction between walking and non-walking is one of the main

contributors to estimating energy expenditure, widely considered

a benchmark outcome for monitoring physical activities

(Kristoffersson and Lindén, 2020; Kristoffersson and Lindén,

2022; Boukhennoufa et al., 2022).

In our sample, a very high proportion, above 90% of

recordings, was correctly classified as walking and non-

walking using at least one ankle and wrist sensor. Similar

results were shown by Leuenberger et al. (2014), who achieved

equivalent sensitivity and specificity in detecting walking

activities with all sensors compared to ankle and chest sensors

(Moncada-Torres et al., 2014). Sensor location showed a clear

effect on performance measures. In particular, omitting ankle

sensors reduced accuracy, which plicates previous studies’

conclusions (Giggins et al., 2017). Real-life gait classification

accuracy relies on arm swing patterns which might have led to

a significant reduction in accuracy and precision in our sample

when using only wrist sensors. However, a still acceptable level

with a PPV of 73% was maintained compared to a PPV of 80%

recently achieved in free-living conditions of elderly

FIGURE 5
Distribution of balanced accuracy of the SVM with and
without transitions on the full sensor setup for both classification
tasks.
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individuals using wrist sensors (Soltani et al., 2020). The

overall lower accuracy and precision for the wrist-only

setup could be due to very slow walking speeds (median

0.8 m/s; range 0.3–1.4), using a walking aid, or having

severe arm paresis in three participants, affecting arm

swing patterns. It is important to note that our

classification task for Gait activities included overground

walking, stair ascent, and descent where arm swing was

absent due to asymmetric stepping pattern, holding on to

rail and walker, or even a very low cadence. These

pathognomonic movement patterns with hemiparesis have

likely reduced the classification performance of all sensor

configurations—especially the wrist-only configuration. In

line with this hypothesis, Fulk et al. (2014) found step

detection accuracy by wearing one wrist sensor to be

reduced when post-stroke individuals had higher levels of

motor impairment measured by the Berg Balance Scale (>49/
56 points) and gait speed (<0.7 m/s) measured by the 2 Minute

Walk Test. Using only a single sensor for gait classification has

been reported as a viable option in healthy populations

(Lee and Kwan, 2018); performance significantly degrades

when applied in neurological populations (Capela et al.,

2016) such as stroke.

The classification of Gait and Non-Gait is only considered a

first step in enabling a more detailed analysis of motion, which

often requires additional sensors. Detailed analysis of walking

motion in individuals with stroke and spinal cord injury using a

single sensor resulted in considerable measurement errors of

walking distance and step count when using wrist or arm-

mounted accelerometers (Jayaraman et al., 2018; Compagnat

et al., 2019). Measurement errors were smaller when locating the

sensor at the hips, at the ankles, or when applying multiple

sensors (Werner et al., 2021).

Our sample is small but comprises a wide range of motor and

mobility impairments ranging from dependency on supervision

for overground walking and dependency on walking aids to

normal walking ability. With most PPVs above 80%, the

FIGURE 6
Distribution of balanced accuracy of the SVM in Gait and
posture classification across sensor configurations.
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proportion of false-positive detected walking remains small,

which is essential when investigating gait bout frequency

throughout the day or creating summary intensity and quality

metrics from gait sequences.

Gait and posture classification

The full sensor configuration achieved the best classification

performance across all Gait and Posture classes was achieved

using the full sensor configuration. The classes lying, sitting,

standing, and walking were classified with a good overall

accuracy of 85%. The performance was relatively robust and

remained independent from functional impairment when using

at least one ankle and wrist sensor. When reducing the sensor

configuration to wrists-only, the overall accuracy declined to

about 70% and showed an interrelation with individual

impairment levels (see Supplementary Figure S1).

Consequently, using our algorithm for the wrist-only setup,

performance might be more susceptive to functional impairment.

Accurate classification of body postures and physical activity

types allows valuable insight into profiles of individual behavior

and lays a crucial foundation for type quantification and

subsequent qualitative analysis of human movement behavior.

Walking and stair walking are two critical activities that define

independent mobility and are associated with higher levels of

physical activity and energy expenditure than static postures

(Pinheiro MB et al., 2013; Creasy et al., 2016). Using the bilateral

and unilateral sensor setups, walking was detected in about 87%,

whereas the sensitivity for stair walking was lower. Accurately

predicting walking activities by only wrist sensors remains highly

challenging since hemiparetic arm swing patterns, even in

standardized conditions, show great variability (Kahn et al.,

2019) on one hand, and voluntary arm activity (such as

grasping, transporting, and gesticulating) are present during

walking in real life conditions. This mixture of walking-related

and task-related upper limb movements might differ by

individual ability and hence the level of functional

impairment after stroke. We found an inverse relationship

using only wrist sensor data, indicating higher classification

performance in participants with lower self-selected walking

speeds. One possible explanation for this phenomenon could

be that participants with higher functional impairment were

rarely able to perform upper limb tasks during gait but

performed a distinguishable arm swing pattern to maintain

dynamic balance. Arm swing during hemiplegic gait is highly

relevant for stride synchronization (Kloter et al., 2011; Ustinova

et al., 2017) and associated with increased angular motion in the

mediolateral and front dorsal plane (Kahn et al., 2019), which

could have generated discriminative sensor signals by wrist

sensors. However, it is advisable to increase classification

performance by adding at least one ankle sensor to obtain a

walking-characteristic reference.

The stair walking class was generally underrepresented, and

its slightly lower sensitivity might be due to the variability in

stepping patterns (e.g., step-by-step and step-over-step patterns)

performed by all participants. Detecting stair ascent and stair

descent in participants with stroke seems to be a persisting

challenge, as previous studies also reported low sensitivities,

around 70%, with a full sensor configuration (Leuenberger

et al., 2014). Specified mobility impairment modifies

movement behavior and is highly relevant to achieving

generalizability but is often underreported in activity

classification studies. In some participants of our sample,

impairment-associated stair walking behavior was present: low

stepping speeds ascending or descending, longer pauses between

steps, and holding onto the rail bilaterally. However, across

sensor setups, we did not find a relationship between

FIGURE 7
Confusion matrix Gait and Posture classification task for the three district sensor setups: bilateral setup all sensors, (A), unilateral setup (non-
affected ankle and wrist sensor, (B), wrists-only setup (C).

Frontiers in Physiology frontiersin.org10

Pohl et al. 10.3389/fphys.2022.933987

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.933987


classification performance of stair walking and functional

impairment, which might be the abovementioned variability

of stepping patterns within participants.

It is a significant advantage for the discrimination

between body postures when distinct sensor orientation by

a key sensor location is typical for that posture. In our study,

the horizontal orientation of one axis of at least one ankle and

the chest sensor might have led to a sensitivity above 90% for

detecting the horizontal body position while lying down. The

observed slight increase of sensitivity in the classification of

lying, which occurs when the chest sensor is omitted, may

seem paradoxical initially. We consider the increased noise

introduced by the chest due to changes in lying position or

misclassification as sitting when the trunk is inclined to

sitting or lying as one reasonable explanation. In our

clinical experience, the application of chest sensors has

been associated with discomfort and requires higher levels

of patient supervision to maintain wearing compliance.

Therefore, we consider it a meaningful advantage to omit

the chest sensor while still maintaining excellent performance

when discriminating between lying and sitting. Compared to

our results, other studies in healthy adults (Horemans et al.,

2020) and individuals with stroke (Fanchamps et al., 2018)

have reported lower performance discriminate the two

classes sitting and lying with a single thigh-mounted sensor

because thigh orientation is similar in both postures. We

explored misclassification incidences between postures and

walking activities and found the highest misclassifications

between sitting/standing and standing/walking. Although

classification accuracy is high, specific information on false-

positive proportions is valuable in the context of outcome

interpretation. Accurate classification of physical activity

types in real-life environments remains challenging because

the distinction of predefined classes is impeded in natural

movement containing a continuous flow of physical activities

and transitions. Our results showed good performance for

classifying lying, sitting, and walking, including movement

transitions in a real-life environment, which is essential for

further analysis and valid outcome measures.

Clinical implications

The quantification of physical activity can be split into

classification methods that categorize physical activity into

discrete classes allowing for a more detailed level of physical

activity and posture analysis. We introduced two classification

tasks that can reliably extract specified physical activities from a

continuous IMU time-series acquired from stroke patients. Both

classification tasks can be applied to enable a quantitative and

qualitative analysis of mobility and upper limb activities.

The first classification task broadly categorizes sensor data

into walking and non-walking activities serving two purposes.

Firstly, it can be used to extract walking sequences to quantify

spatiotemporal gait parameters. Reduced walking speed,

deviations in stride length, and stride asymmetry are

characteristic of hemiplegic Gait (Viccaro et al., 2011; Mohan

et al., 2021) and are associated with fall events (Moreira et al.,

2015). Our highly accurate walking classification algorithm,

validated under real-life conditions, might increase the

reliability of step detection-based gait analysis algorithms

primarily developed under laboratory-based conditions

(Renggli et al., 2020; Felius et al., 2022). Secondly, our

algorithm shows very low misclassification rates and can be

implemented for walking exclusion to quantify upper limb

movement during more static body postures. Gait-related

whole-body movement was recently shown to account for

30%–40% of changes in sensor-based upper limb outcomes

(Regterschot et al., 2021b). Therefore, correcting upper limb

outcomes for gait-related whole-body movement is essential to

increasing content validity.

Our second classification scheme branches out the classes of

lying, sitting, standing, walking, and stair walking, which is

opportune for two purposes. Firstly, it discriminates walking

from stair walking featuring district demands on energy

expenditure and energy cost in individuals with stroke (Polese

et al., 2017). Since sensitivity was low for the classification of stair

walking, only walking classification might be used for subsequent

spatiotemporal analysis as described above. Secondly, this

classification scheme allows for quantifying upper limb

activity, differentiating body postures, and excluding whole-

body movements. Post-stroke arm use patterns differ between

sitting and standing postures (Michielsen et al., 2012), but

evidence is scarce, and mechanisms remain unclear.

Regterschot et al. (2021a) recently investigated longitudinal

trajectories of upper limb outcome during sitting and

standing, which resulted in lower change rates than studies

that included whole-body movements. In the Gait and posture

task, misclassification occurred mainly between sitting and

standing but was low between static and dynamic conditions.

Therefore, this algorithm can be implemented for the

computation of continuous real-life measurements to analyze

outcome of the time, frequency, and intensity domain.

Implementation of physical activity classification algorithms is

needed to expand the knowledge of motor recovery and

movement behavior after stroke.

In a clinical setting, the location and number of sensors to

wear might also influence patients’ compliance and wear

time. Skin-mounted sensors attached to the trunk, thigh,

or hip have been reported as less comfortable and are

associated with increased proportions of missing data

(Duncan and Murray, 2012; Troiano et al., 2014; Howie

and Straker, 2016). The presented comparison of sensor

configurations provides a basis for selecting a minimal yet

sufficient sensing configuration for a given clinical

application. We only present accuracies for classifying
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types of specific physical activities—sensing configurations

will take into account the full analysis pipeline and the

clinical end goal. For instance, although we compared

bilateral and unilateral sensor configurations to classify

body postures and physical activities, quantifying

movement symmetry in hemiplegic individuals requires a

bilateral sensor configuration.

Limitations

This study has several limitations. Firstly, the sample was

relatively small for its heterogeneity in age and motor

impairment, which might have expanded the dispersion of

performance metrics. A larger sample might have generated

more robust results. Secondly, we included only basic physical

activities in our protocol. Classification of transportation such as

taking an elevator, riding by car, or public transport occurs in

static body positions, although whole-body movement is

detected by movement sensors which could lead to

misclassification. Thirdly, we are not able to automatically

predict transitions based on the IMU data. This is typically

not a requirement but may be desirable in cases where

transition periods need to be removed from a time-series or

where the transition itself is the label of interest (Novak et al.,

2013). Nevertheless, we observed that transitions in continuous

data can be handled well by our method when only labels of the

adjoining classes are defined to be correct.

Conclusion

This work compares the performance of two Gait and

Posture classification tasks with different levels of complexity

that are ecologically validated in stroke survivors and real-life

conditions. We achieved accurate classification of naturalistic

body postures and walking activities performed by individuals

with a wide range of motor impairment after stroke, representing

a target population for the deployment of remote monitoring.

This not only enables the determination of activity bout

frequency, duration and intensity but also allows an in-depth

analysis of movement quality. The provided classification

performances across different sensor configurations enable

clinicians and researchers to make informed choices using our

algorithm to optimally adapt the sensor configuration to their

targeted outcome of interest. The implementation of our

algorithms to identify physical activity classes accurately and

reliably provides a cornerstone for the research community to

apply more detailed analysis algorithms to continuous data

collected without contextual information. We herewith hope

to contribute to the establishment of digital biomarkers

derived from continuous sensing of movement with wearables

for individuals with stroke.
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