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Abstract: This study combines the radiation transfer process with the thermodynamic second law
to achieve more accurate results for the energy quality and its variability in the spectral radiation
transfer process. First, the core ideas of the monochromatic photon exergy theory based on the
equivalent temperature and the infinite-staged Carnot model are reviewed and discussed. Next,
this theory is combined with the radiation transfer equation and thus the spectral radiative entropy
and the radiative exergy transfer equations are established and verified based on the second law of
thermodynamics. Finally, one-dimensional furnace case calculations are performed to determine
the applicability to engineering applications. It is found that the distribution and variability of
the spectral radiative exergy flux in the radiation transfer process can be obtained using numerical
calculations and the scatter media could slightly improve the proportion of short-wavelength radiative
exergy during the radiation transfer process. This has application value for research on flame energy
spectrum-splitting conversion systems.
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1. Introduction

Thermal radiation is the main energy transfer method in high-temperature energy conversion
systems; it plays an important role in combustion boilers, solar energy systems, and aerospace power
equipment [1]. The analysis of the thermal radiation process using the second law of thermodynamics
has unique significance. On the one hand, radiation is important in high-temperature conditions.
The second law analysis of the radiation heat transfer process allows for the estimation of the entropy
generation and exergy loss in furnaces [2] or high-temperature equipment [3] so that more reasonable
evaluations and optimizations can be conducted for energy conversion systems. On the other hand, in
order to achieve an effective utilization of high-temperature radiative energy in combustion energy
conversion system, radiative energy spectrum-splitting conversion [4] in combustion progress is
required [5]; that is, radiative energy from combustion flame is separated [6,7], the short-wavelength
radiation could be used for photovoltaic conversion, and the remaining thermal radiation is converted
through traditional thermal power cycles, this constitutes to a combustion flame grading power
generation system [5]. Thus, this requires the thermodynamic second law for an accurate analysis
of the spectral exergy in radiation transfer processes; it further guides the energy management with
regard to quality and achieves exergy efficient conversion. Therefore, second law analysis of spectral
radiative transfer is very important for the combustion flame grading power generation system.

To date, scholars have conducted research on the radiative thermodynamics and the application
of the second law in radiation transfer calculations. The following sections introduce these two topics
and make some comments.
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1.1. Radiative Thermodynamics

Radiation is an electromagnetic wave, which possesses the characteristics of wavelength and
frequency; as a means of heat transfer, however, radiation has entropy and exergy characteristics
similar to thermal energy. It is evident that radiative energy has unique characteristics; therefore,
there is a certain difference between radiative energy and thermal energy. Wright [8] investigated
the entropy of radiative heat transfer and the entropy of the heat conduction process and described
their differences. Liu and Chu [9] examined the expression of entropy generation in heat transfer and
demonstrated that the traditional equation for the entropy generation rate of conduction is not suitable
for the local entropy generation rate of the radiative heat transfer.

There are various equations for the exergy of blackbody radiation [10–12] and these have been
discussed by Bejan [13]. At present, scholars recognize and accept the exergy equation of blackbody
radiation proposed by Petela [10]; many researchers amended or expanded this equation [14–18] and it
was also used in solar energy system analysis [19–21]. Recently, we discussed different equations and
explained the rationality of Petela’s equation by establishing a radiation machine model [22]. For the
spectral radiative exergy, Candau [23] performed a derivation of the spectral exergy intensity based
on Planck’s equation of spectral radiative entropy intensity and the radiation temperature concept;
however, this study is also designed for the whole total spectrum radiation analysis. Chen et al. [24,25]
proposed a corresponding expression of spectral radiative exergy based on the concept of equivalent
temperature; however, these studies treated radiative energy as thermal energy. In order to analyze
spectrum-splitting energy conversion system appropriately, there needs to be a spectral exergy theory
based on the ability of a monochromatic photon itself to do work. Therefore, an infinite-staged Carnot
heat engine model was established in our previous study [22] to investigate the spectral radiative
exergy based on the concept of equivalent temperature and the differences between radiative energy
and thermal energy. This theory represents the available energy of monochromatic radiation and
corresponds to Petela’s equations macroscopically.

1.2. Second Law in Radiation Transfer Calculations

Lior et al. [26] reviewed the exergy calculations in the transfer process but radiation exergy was
rarely considered in earlier studies. Caldas and Semiao [27] first considered the entropy generation in
the radiation transfer calculations and analyzed the entropy generated by the emission, absorption,
and scattering processes in the media independently. It was determined that the entropy calculation is
entirely compatible with the typical radiative transfer calculation method. Later, the authors further
discussed the effect of the interaction between turbulence and radiation on the entropy transfer in the
media [28]. Liu and Chu [9] discussed the entropy generation of the radiation process and pointed out
that it was a mistake to use the equation of conduction entropy generation to calculate the radiation
transfer entropy generation. In addition, the calculation method of the radiative entropy generation
proposed by Caldas and Semiao was verified using several examples. Subsequently, Liu and Chu [29]
also extended this method to analyze the radiative entropy generation in enclosures filled with a
semitransparent media and conducted verifications using two examples. Furthermore, Liu and
Chu [30] developed a radiative exergy transfer equation based on the radiative exergy theory of
Candau [23].

These studies on the theory of radiative exergy and the corresponding radiative exergy equations
are based on the classical thermodynamic theory and they have focused on total spectral radiation
engineering calculations such as the processes of flow, heat transfer, and combustion [31–33]. We do not
disagree with these studies; however, they are not focused on analyzing the ability of monochromatic
radiation to do work in spectral radiative transfer. In order to calculate the available energy of spectral
radiation in a high-temperature energy conversion system, some problems need to be considered.
First, the concept of radiation temperature [34] was used to represent the spectrum temperature;
subsequently, the spectral radiative exergy was expressed. However, it is believed that the radiation
temperature is a relatively macroscopic concept, which is not suitable to directly characterize the ability
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of the monochromatic radiation to do work. Second, both the spectral radiative entropy and the exergy
in the radiation field have the same form of expression as the thermal energy, i.e., the exergy expression
is similar to the Carnot efficiency expression. However, the thermal entropy or exergy form based on
Carnot’s law is not suitable for characterizing the radiative entropy or the exergy. That is to say, it may
be not appropriate to use the radiation temperature directly to calculate the spectral radiative exergy
in the form of Carnot’s efficiency. Therefore, it is necessary to use a new spectral radiative exergy
theory to perform a second law analysis in the spectral radiative transfer process based on the ability
of the spectral radiation itself to do work; this is very important for flame energy quality-splitting
conversion systems.

1.3. Summary

In order to better analyze the energy quality and its characteristics in the spectral radiation transfer
for flame energy quality-splitting conversion systems, we use the more suitable monochromatic
photon exergy theory [22] in the current research. The core ideas and equations of the monochromatic
photon exergy theory presented in our previous study [22] are reviewed first based on the equivalent
temperature and the infinite-staged Carnot model; subsequently, we provide a new discussion on
this topic. Next, the spectral radiative entropy and exergy transfer equations are established based
on the monochromatic photon exergy theory and both thermodynamic and numerical verifications
are performed. Finally, some simplified one-dimensional furnace case calculations are provided to
illustrate the application value of the new analysis method in engineering.

The main innovations and significance of this research include the following. (1) A new set of
spectral radiative entropy and exergy transfer equations in participating media are established based
on monochromatic photon exergy theory. (2) Spectral radiative exergy distribution characteristics are
first studied and analyzed in one-dimensional furnace case. (3) Second law analytical and calculate
methods are provided for the radiation transfer in flame energy gradient-utilization systems.

2. Spectral Radiative Exergy Theories Review and Comments

Recently, we have established a monochromatic spectral radiative exergy theory [22] to characterize
the ability to do work for monochromatic radiation; this is an extremely delicate model. The current
study relies on this important idea to establish a spectral radiative exergy transfer equation; therefore,
it is necessary to review and comment on this topic in this section.

2.1. Equivalent Temperature

It is considered that the monochromatic radiation is composed of many monochromatic photons;
in the past, scholars have proposed a method to express photon exergy as photon energy multiplied by a
Carnot efficiency coefficient [35,36] according to the second law of thermodynamics. However, the most
representative concept is the equivalent temperature proposed by scholars such as Meszen et al. [37]
and Chen et al. [24,25]. It is believed that the equivalent temperature should have the dimension of
temperature and it is defined to express the quality of energy.

2.2. Previous Research Review

Based on the concept of equivalent temperature and the differences between the radiative
energy and thermal energy, an infinite-staged Carnot heat engine model was established to derive
monochromatic photon exergy [22]. The model is shown in Figure 1, a radiation photon with a
frequency ν and an equivalent temperature of Tν enters into an ideal absorption model, which emits a
radiation photon with the frequency ν′ and energy hν′. Moreover, an infinitely small thermal energy
hdν is generated at the same time and enters the Carnot heat engine with the equivalent temperature
Tν and outputs work. After infinite times of such processes, the frequency drops to ν0 and the
corresponding equivalent temperature becomes Tv0, which is the same as the ambient temperature



Entropy 2019, 21, 461 4 of 19

T0 to achieve equilibrium. It is appropriate to use the output work to represent the monochromatic
photon exergy [22].
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Figure 1. The infinite-staged Carnot engine model for the analysis of the monochromatic photon
exergy [22].

The monochromatic photon exergy derived from the above-mentioned processes can be expressed
as an integral form [22]:

Eν =
∫ ν

ν0

h
(
1−

T0

Tν

)
dν. (1)

It is considered that Tν in Equation (1) is related to the emission temperature and the frequency or
the wavelength according to the relevant theory. If the equivalent temperature is expressed using
the wavelength and Equation (1) is integrated to correspond to the macroscopic blackbody radiation
exergy as described in Petela’s theory, the following equation is obtained [22]:

T4
λ =

f T3

λ
. (2)

Furthermore, the corresponding spectral radiative exergy–energy coefficient can be obtained using a
comparison with the photon energy [22]:

ηλ =
Eν
hν

= 1−
4
3

T0

Tλ
+

1
3

(
T0

Tλ

)4

. (3)

This coefficient form is similar to that in Petela’s expression [6] for blackbody radiation exergy.
Furthermore, based on actual engineering applications, an approximate equation was proposed to
calculate the monochromatic photon equivalent temperature Tλ from the radiation temperature T and
wavelength λ [22]. When T > T0: 4.5638× 10−3T3 = λT4

λ; when T < T0: 5.33× 10−3T3 = λT4
λ.

In addition, the entropy of a monochromatic photon was also analyzed using the infinite-staged
Carnot heat engine model and the entropy of the photon with frequency ν is [22]:

Sν =
∫ ν

0

hdν
Tν

. (4)

After substituting Equation (2) into Equation (4), the coefficient of the spectral radiative entropy
to the energy can be obtained using a comparison with the photon energy [22]:

ξν =
Sν
hν

=
4

3Tλ
. (5)
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2.3. Comments

Section 2.2 provides a brief review of the core ideas and main results of the monochromatic photon
exergy theory [22]. Some new comments are provided in this section.

First, according to [22], the relationship between the monochromatic photon exergy and entropy
represented by Equations (1) and (4) was proved to be in agreement with the Gouy–Stodola theorem:

E = H −H0 − T0(S− S0). (6)

Therefore, it indicates that the proposed entropy theory and exergy theory are intrinsically
harmonious [22]. Moreover, the new spectral radiative exergy theory focuses on the ability of
monochromatic radiation to do work and this ability is greater for shorter wavelength radiation.
The radiative exergy in the whole blackbody spectrum corresponds to the blackbody radiative exergy
expression proposed by Petela [10].

Second, it is evident that the equivalent temperature is explicitly defined to characterize the spectral
radiative energy quality; this is different from the concept of radiation temperature, which is only related
to the spectral radiation intensity. Moreover, the spectral radiative exergy coefficient derived from the
infinite-staged Carnot heat engine model is different from the Carnot efficiency; this appropriately
reflects the differences between the radiation and thermal energy. Therefore, the approach suggested
in [22] seems to be more appropriate for the theoretical characterization of the spectral radiative exergy.

Finally, a special relationship between the monochromatic photons and spectral radiation is
investigated from the perspective of radiative exergy. According to the infinite-staged Carnot engine
model, for a photon of hν, hν0 is the reference state for calculating its radiative exergy. In addition, for
black-body spectral radiation Ib,λ, Ib,λ(T0) is the reference state for calculating its radiation exergy [23,30].
It is believed that there should be a corresponding relationship between the macro and micro scales.
Therefore, Equations (1) and (2) indicate the following relationship between the photons and the
spectral radiation:

Ib,λ(T0)

Ib,λ
=

hν0

hν
=

T4
0

T4
λ

. (7)

3. Thermodynamic Analysis of Spectral Radiation Transfer

3.1. Spectral Radiative Exergy Transfer

A spectral radiation transfer equation with emission, absorption, and scattering can be expressed
as follows [1]:

dIλ(s)
ds

= −(κa,λ + κs,λ)Iλ(s) + κa,λIb,λ +
κs,λ

4π

∫
4π

Iλ(s′)Φ(s′, s)dΩ′, (8)

where κa,λ is the spectral absorption coefficient; κs,λ is the scattering coefficient, and Φ(s′,s) is the
scattering phase function.

According to the spectral radiative exergy theory [22], the spectral radiative exergy transfer
equation can be directly obtained:

dEλ(s)
ds

= −(κa,λ + κs,λ)Eλ(s) + κa,λIb,λ

1−
4
3

T0

Tλ
+

T4
0

3T4
λ

+ κs,λ

4π

∫
4π

Eλ(s′)Φ(s′, s)dΩ′. (9)

The first term on the right side of the equation represents the exergy intensity reduction due to
absorption and scattering, the second term is the exergy of the emission, and the third term is the exergy
enhancement in the direction of radiation transfer from the spatial scattering. Equation (9) reflects the
spatial propagation process of the spectral radiative exergy. It can be seen in Figure 2 that the transfer
process for the radiative exergy is very similar to the radiative energy transfer process. For radiation
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transfer in a participating media, the exergy is generated and it varies mainly in the radiation field, as
well as in the media [30]. Therefore, the exergy loss in the participating media radiation transfer mainly
includes the exergy loss in the radiation field and the exergy loss in the media because of radiation.
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In order to determine the variation of the radiative exergy in the radiation field, the local net
exergy loss of the radiation with a spectrum interval dλ after passing through the differential unit dV
can be obtained by integrating Equation (9) over the entire solid angle of the space.

dEV
R,λ = −κa,λdVdλ

∫
4π

[
Eλ(s) − Ib,λ

(
1− 4

3
T0
Tλ

+
T4

0
3T4
λ

)]
dΩ

−κs,λdVdλ
∫

4π

[
Eλ(s) − 1

4π

∫
4π Eλ(s′)Φ(s′, s)dΩ′

]
dΩ

. (10)

Due to the radiation transfer in the participating media, the media also obtain or lose energy
through radiation absorption or emission; thus, the exergy of the media varies [30]. As shown in
Figure 2b, the local net exergy increment of the media due to the radiation heat flux can be calculated
according to the definition of thermal exergy [30]:

dEV
M,λ = dQλ

(
1−

T0

TM

)
= κa,λdVdλ

(
1−

T0

TM

)∫
4π

[
Iλ(s) − Ib,λ

]
dΩ. (11)

Therefore, Equations (10) and (11) are combined. After the radiation of wavelength λ passes
through a differential unit dV within the spectral interval dλ, the radiation exergy loss in the whole
system is:

dEV
RM,λ = −dEV

R,λ − dEV
M,λ

= κa,λdVdλ
∫

4π

[
Eλ(s) − Iλ(s)

(
1− T0

TM

)
− Ib,λ

(
T0
TM
−

4
3

T0
Tλ

+
T4

0
3T4
λ

)]
dΩ

+κs,λdVdλ
∫

4π

[
Eλ(s) − 1

4π

∫
4π Eλ(s′)Φ(s′, s)dΩ′

]
dΩ

. (12)

Because Ib,λ
T4

0
3T4
λ

= 1
3 Ib,λ(T0), according to Equation (7), which is constant for a radiation with

wavelength λ in a spectrum of dλ; that is, its value does not change after passing through a differential
unit dV; therefore:

dVdλ
∫

4π
Ib,λ

T4
0

3T4
λ

dΩ = dVdλ
∫

4π

1
3

Ib,λ(T0)dΩ = 0. (13)

Therefore, Equation (12) is rewritten as:

dEV
RM,λ = −dEV

R,λ − dEV
M,λ

= κa,λdVdλ
∫

4π

[
Eλ(s) − Iλ(s)

(
1− T0

TM

)
− Ib,λ

( T0
TM
−

4
3

T0
Tλ

)]
dΩ

+κs,λdVdλ
∫

4π

[
Eλ(s) − 1

4π

∫
4π Eλ(s′)Φ(s′, s)dΩ′

]
dΩ

. (14)
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The first term on the right side of the equation is the radiative exergy loss caused by the absorption
and emission process and the second term is the exergy loss caused by the scattering process.

3.2. Spectral Radiative Entropy Transfer

According to the monochromatic photon entropy expression described in Section 2, a spectral
radiative entropy transfer equation can be derived by analogy with the radiative exergy transfer
Equation (9):

dSλ(s)
ds

= −(κa,λ + κs,λ)Sλ(s) + κa,λ
4Ib,λ

3Tλ
+
κs,λ

4π

∫
4π

Sλ(s′)Φ(s′, s)dΩ′. (15)

The first term on the right side of the equation represents the entropy intensity reduction due to
absorption and scattering, the second term is the entropy of the emission, and the third term is the
entropy enhancement in the direction of radiation transfer from the spatial scattering. Equation (15)
reflects the spatial transfer process of radiative entropy. It can be seen in Figure 2 that the transfer
process for the radiative entropy is very similar to the radiative energy and exergy transfer processes.
Therefore, the entropy generation in the participating media radiation transfer also includes the
entropy generation in the radiation field and the entropy generation in the medium caused by the
radiation [27,29].

For the radiative entropy generation in the radiation field, the local net entropy increment of the
radiation with the spectrum interval dλ after passing through the differential unit dV can be obtained
by integrating Equation (15) over the entire solid angle of the space:

dSV
R,λ = −κa,λdVdλ

∫
4π

[
Sλ(s) −

4Ib,λ
3Tλ

]
dΩ

−κs,λdVdλ
∫

4π

[
Sλ(s) − 1

4π

∫
4π Sλ(s′)Φ(s′, s)dΩ′

]
dΩ

. (16)

Due to the radiation transfer in the participating media, the media also obtain or lose energy
through radiation absorption or emission; thus, the entropy of the media varies [27,29]. As shown in
Figure 2c, the local net entropy increment of the media due to the radiation heat flux can be calculated
according to the definition of thermal entropy [27,29]:

dSV
M,λ =

dQλ
TM

= κa,λdVdλ
∫

4π

Iλ(s) − Ib,λ

TM
dΩ. (17)

Therefore, Equations (16) and (17) are combined. After the radiation of wavelength λ passes
through a differential unit dV within the spectral interval dλ, the radiative entropy generation in the
whole system is:

dSV
RM,λ = dSV

R,λ + dSV
M,λ

= −κa,λdVdλ
∫

4π

[
Sλ(s) −

4Ib,λ
3Tλ
−

Iλ(s)
TM

+
Ib,λ
TM

]
dΩ

−κs,λdVdλ
∫

4π

[
Sλ(s) − 1

4π

∫
4π Sλ(s′)Φ(s′, s)dΩ′

]
dΩ

. (18)

The first term on the right side of the equation is the radiative entropy generation caused by
the absorption and emission processes and the second term is the entropy generation caused by the
scattering process.

The spectral radiative exergy transfer equation (Equation (9)), the entropy transfer equation
(Equation (15)), and the exergy loss or entropy generation in the radiation transfer process can be
combined with various radiation transfer numerical calculation methods, such as the discrete ordinate
method (DOM), finite volume method (FVM), discrete transfer method, and spherical harmonics
method [1]. In this study, some examples are analyzed using the widely applicable DOM.
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3.3. Verification

3.3.1. Thermodynamic Relationship Verification

According to the Gouy–Stodola theorem in Equation (6), the relationship between the radiative
entropy and exergy could be verified.

First, for the spectral radiative entropy transfer equation and exergy transfer equation, according
to Gouy–Stodola theorem, there is:

Eλ = Iλ − Ib,λ(T0) − T0
[
Sλ − Sb,λ(T0)

]
, (19)

and:
dEλ
ds

=
d
[
Iλ − Ib,λ(T0)

]
ds

− T0
d
[
Sλ − Sb,λ(T0)

]
ds

. (20)

After substituting the radiation transfer equation (Equation (8)) and the spectral radiative entropy
transfer equation (Equation (15)) into the right side of the Equation (20), the following is obtained:

d[Iλ−Ib,λ(T0)]
ds − T0

d[Sλ−Sb,λ(T0)]
ds

= −(κa,λ + κs,λ)
{
Iλ(s) − Ib,λ(T0) − T0

[
Sλ(s) − Sb,λ(T0)

]}
+κa,λ

{
Ib,λ − Ib,λ(T0) − T0

[
4Ib,λ
3Tλ
−

4Ib,λ(T0)
3T0

]}
+
κs,λ
4π

∫
4π

{
Iλ(s′) − Ib,λ(T0) − T0

[
Sλ(s′) − Sb,λ(T0)

]}
Φ(s′, s)dΩ′

. (21)

Consider the second item on the right side of Equation (21):

Ib,λ − Ib,λ(T0) − T0

[
4Ib,λ

3Tλ
−

4Ib,λ(T0)

3T0

]
= Ib,λ

[
1−

4T0

3Tλ
+

Ib,λ(T0)

3Ib,λ

]
. (22)

According to Equation (7), there is:

Ib,λ

[
1−

4T0

3Tλ
+

Ib,λ(T0)

3Ib,λ

]
= Ib,λ

1−
4T0

3Tλ
+

T4
0

3T4
λ

. (23)

Therefore, Equation (21) could be written as:

d[Iλ−Ib,λ(T0)]
ds − T0

d[Sλ−Sb,λ(T0)]
ds

= −(κa,λ + κs,λ)Eλ(s) + κa,λIb,λ

(
1− 4T0

3Tλ
+

T4
0

3T4
λ

)
+
κs,λ
4π

∫
4π Eλ(s′)Φ(s′, s)dΩ′

=
dE(s)

ds

. (24)

This corresponds to the Gouy–Stodola theorem defined in Equation (19).
The relationship between the spectral radiative entropy generation and exergy loss according to

the Gouy–Stodola theorem is:

dEV
RM,λ = dIV

R,λ + dQV
M,λ − T0dSV

RM,λ. (25)
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Using Equation (8) for the radiative intensity and Equation (18) for entropy and considering
Equation (7), the following is obtained:

dIV
R,λ + dQV

M,λ − T0dSV
RM,λ

= −κa,λdVdλ
∫

4π

[
Iλ(s) − Ib,λ − Iλ(s) + Ib,λ

]
dΩ

−κs,λdVdλ
∫

4π

[
Iλ(s) − 1

4π

∫
4π Iλ(s′)Φ(s′, s)dΩ′

]
dΩ

−κa,λdVdλ
∫

4π

[
T0Sλ(s) − Ib,λ

4T0
3Tλ
− Iλ(s)

T0
TM

+ Ib,λ
T0
TM

]
dΩ

−κs,λdVdλ
∫

4π

[
T0Sλ(s) − 1

4π

∫
4π T0Sλ(s′)Φ(s′, s)dΩ′

]
dΩ

= κa,λdVdλ
∫

4π

[
Eλ(s) − Iλ(s)

(
1− T0

TM

)
− Ib,λ

( T0
TM
−

4
3

T0
Tλ

)]
dΩ

+κs,λdVdλ
∫

4π

[
Eλ(s) − 1

4π

∫
4π Eλ(s′)Φ(s′, s)dΩ′

]
dΩ

= dEV
RM,λ

. (26)

It can be seen that the entropy generation and exergy loss in the radiation process agree with the
laws of thermodynamics, demonstrating that the entropy generation and the exergy loss are uniform
and in internal harmony in the radiation transfer process.

3.3.2. Numerical Verification

Here we reference the numerical verification method proposed by Liu and Chu [29] to verify
the new radiative entropy transfer equation. A one-dimensional case is used with equally high
temperatures of the two boundary walls; the wall temperatures are set to 3500 K, 2500 K, and 1750 K.
The temperature of the absorbing and emission media is constant at 350 K, the absorption coefficient is
set to 0.5, and the length is 1 m. The DOM is used for the calculation and the discrete format is S8.
This method has been applied in the calculation of the one-dimensional radiative heat flux. [38,39]

By integrating Equation (18) on a one-dimensional space and the whole spectrum, we can obtain
the entropy generation of the radiation transfer in a one-dimensional space [29]:

ΓG =

∫
V

∫
λ

dSV
RM,λdλdV. (27)

The dimensionless entropy generation in a one-dimensional space is defined as [29]:

ΠG =
ΓGTL

Q
. (28)

The numerical results of the dimensionless entropy generation in the one-dimensional space are
shown in Figure 3. It can be seen from Figure 3 that the dimensionless entropy production at different
coordinates in the one-dimensional space was stable at 0.9, 0.86, and 0.8.

On the other hand, as demonstrated in [29], the whole system does not output work; therefore,
the entropy generation can be predicted by the theoretical method:

ΠG =
( Q

TL
−

Q
TH

)TL

Q
= 1−

TL

TH
. (29)

The results of the theoretical calculation (Equation (29)) indicate that the dimensionless entropy
generation in the one-dimensional space is 0.9, 0.86, and 0.8 for the wall temperatures of 3500 K,
2500 K, and 1750 K, respectively. A comparison between theoretical results and numerical results
in Figure 3 shows that the numerical entropy production in the whole space is very similar to the
theoretical results. According to [29], this approach verifies the new spectral radiative exergy theory
and numerical calculation method of the second law calculation for the spectral radiation transfer.
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4. One-Dimensional Cases Studies

4.1. Cases and Calculation Method

4.1.1. One-Dimensional Cases

In this study, one-dimensional infinite large parallel plates are selected to represent different
high-temperature combustion engineering applications.

(1) Case 1 is a one-dimensional furnace temperature field, representing a gas-burning furnace.
The one-dimensional length L is 1 m and is divided into 100 grids. The plate is a black body wall with
a temperature of 1000 K; the one-dimensional temperature distribution is [38]:

T = 1400− 400 cos
(2πx

L

)
(K). (30)

The temperature distribution is shown in Figure 4; the absorption coefficient κa is 0.43 [31] and
ambient temperature T0 is 300 K for the exergy calculation.
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(2) Case 2 is a one-dimensional scattering furnace temperature field that represents a heavy
oil- or coal-burning furnace. The temperature field and absorption coefficient are the same as in
case 1. In [27], the scattering coefficient κs is in the range of 0.01–0.2 to model a two-dimensional
furnace; thus, the κs is simplified as 0.1 in the current study. Moreover, the scattering phase function
is set as Φ(θi,θs) = 1 + 0.6 cosθi cosθs [27], where θ is the zenith angle of incident direction or
scattering direction.

4.1.2. Calculation Method

The DOM is used for the radiative exergy transfer calculation. The S8 discrete format is used
for the one-dimensional case, the detail of this method is introduced in [1]. The radiative exergy
represented by the transfer Equation (9) is discretely solved at each grid point. The specific process
is same as the solution of the one-dimensional radiation transfer equation in our latest published
research [38,39] and the procedure is written by Fortran code. The radiation exergy flux in the radiation
field is calculated according to the radiative exergy transfer equation:

e =
∫

4π

∫
∞

0

(
E+
λ
(s) − E−λ(s)

)
dλdΩ. (31)

The ‘+’ and ‘−’ symbols indicate the two directions of transmission, i.e., right and left, respectively;
this is similar to the calculation of the radiative heat flux [38,39].

According to the black body radiation distribution, most of the radiation occurs in the near-infrared
region in the high-temperature furnace and the radiation intensity is weak for the wavelength above
50 µm. Therefore, the radiation intensity in the range of 0–50 µm wavelength is used to represent the
entire radiation intensity in the calculation. The wavelength interval is 25 nm. The spectral radiative
exergy distribution in the 0–50 µm wavelength range is investigated according to the distribution of
the spectral radiation intensity of natural gas combustion [40,41].

4.2. Calculation Results

4.2.1. Results of the Temperature Field without Scattering

The non-scattering results are shown in Figures 5–7. Moreover, Figure 5 shows the radiative exergy
flux at each point in the transfer process; the positive values represent the rightward transmission
and the negative values represent the leftward transmission. It can be seen that the radiative exergy
flux at the midpoint was 0 in Figure 5 and the exergy flux increased in the left and right directions.
The temperature distribution (Figure 4) shows that the radiative exergy flux in the high-temperature
furnace is transferred from the high-temperature flue gas media to the furnace wall surfaces on each
side; this is the same direction as that of the radiative heat flux [39]. The maximum radiative exergy
flux of 308.3 kW/m2 occurred at the 1/4 width point from the left or right wall. It occurs at this location
because this is where the temperature change is largest.

In addition, Figure 5 also shows the radiative exergy flux in the different spectral bands. The exergy
flux in the 0–1 µm band is small and its maximum value was 9.78 kW/m2. The maximum radiative
exergy flux in the 0–2 µm band reached 121.84 kW/m2, whereas the value increased to 214.3 kW/m2 in
the 0–3 µm band. The exergy flux continues to increase as the spectral range increases but the rate of
increase decreases significantly. Figure 6 further shows the proportional distribution of the radiative
exergy flux in the different spectral bands near the wall. It can be seen that the radiative exergy flux in
the 0–1 µm band was relatively small with a proportion of 2.85%, whereas the 1–2 µm band had the
largest proportion of 35.1%. Furthermore, the 2–3 µm band represented 30.32%, which ranks second
after the 1–2 µm band. After that, the proportion gradually decreased and the bands above 10 µm
had a proportion of only 1.52%. In general engineering application, the bands below 1 µm are in
the visible light range and directly stimulate the photoelectric effect of silicon cells; moreover, visible
light promotes photosynthesis and some photochemical reactions. However, the results show that the
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exergy flux of this band is low in the high-temperature combustion. It can also be seen from Figure 6
that the radiative exergy flux in the 1–3 µm band accounted for more than 60%; therefore, the effective
utilization of this band will directly improve the conversion efficiency of the combustion radiation
exergy. For a combustion flame grading power generation system, the infrared radiation below 3 µm
could be used for photovoltaic conversion and it matches the thermo-photovoltaic cells of materials
such as GaSb, InGaSb, and InGaAsSb, but these materials are costly or are still in the research stage.
For infrared radiation above 3 µm, thermal utilization seems to be a suitable conversion route, this
corresponds to the thermal power cycle conversion.
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Figure 7 shows the 0–50 µm full-spectrum band radiative exergy flux versus the radiative energy
flux and the exergy-energy ratio is also investigated. The results indicate that the difference between
the energy flux and the exergy flux is small in the central section and the difference increases toward the
walls. This occurs mainly because the absolute values of the energy flux and the exergy flux increase
toward the walls. Moreover, the exergy–energy ratio was approximately 0.85 near the midpoint and it
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gradually decreased toward both walls; the ratio near the two walls was 0.835. This occurs mainly
because the intermediate temperature is high and the temperatures near the walls are low. According to
Equations (2) and (3), the exergy–energy ratio is related to the temperature. In general, the radiative
exergy–energy ratio is greater at a higher temperature.
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4.2.2. Results of the Temperature Field with Scattering

Figures 8 and 9 show the calculation results of the radiative exergy flux of the scattering case 2.
It can be seen from Figure 8 that the results were similar to those of the non-scattering case; the radiative
exergy flux was propagated from the center to the two walls. The radiative exergy flux in the
different bands was similar to that of the non-scattering case. The maximum radiative exergy flux
was 297.4 kW/m2, which was slightly smaller than the value of 308.3 kW/m2 for the non-scattering
case. In addition, the exergy flux in the different spectral bands was also lower. This indicates that the
scattering condition weakens the radiation transfer intensity, thereby reducing the exergy flux.
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Figure 9. The proportion of the radiative exergy flux in different spectral bands near the wall
(scattering condition).

Figure 9 further shows the proportional distribution of the radiative exergy flux in different
spectral bands near the wall under the scattering condition. The results were similar to those of the
no-scattering condition shown in Figure 6. The exergy flux in the 0–1 µm band accounted for only
2.91%, whereas the largest proportion of 35.72% occurred in the 1–2 µm band; moreover, the exergy
flux in the 2–3 µm band represented 30.50%. It should be noted that the radiative exergy flux in the
0–3 µm band constituted 0.86% higher than that in the non-scattering condition, whereas the spectral
radiative exergy above 3 µm was slightly less than that in the non-scattering condition.

It can be seen that the scattering improves the proportion of the short wavelength radiative exergy
in the radiation transfer process (Figure 9). Furthermore, we changed the scattering and absorbing
coefficient to investigate this phenomenon and the results are shown in Figure 10. It can be seen in
Figure 10a that after the scattering coefficient becoming 0.2, the radiative exergy flux in the 0–3 µm band
is 1.77% higher than that in the non-scattering condition (case 1 in Figure 6). Figure 10b shows that the
radiative exergy flux in the 0–3 µm band with scattering is 0.62% higher than that without scattering
after the absorption coefficient becoming 0.6. In addition, we also found that the exergy flux was
lower in the scattering condition than the non-scattering condition after the scattering and absorption
coefficients had changed. Therefore, these results imply that scattering could slightly improve the
proportion of radiative exergy below 3 µm in the radiation transfer process. This indicates that the
use of solid fuel in the combustion chamber might improve the proportion of the short wavelength
radiative exergy, thereby providing guidance for improving the combustion flame grading power
generation system. However, since the proportion improvement is small and the model is relatively
simplified, further experiments and detailed numerical simulation analysis are needed in the future.

Figure 11 shows the total radiative energy and exergy flux in the spectral range of 0–50 µm under
scattering conditions (case 2); the exergy–energy ratio is also illustrated. The exergy–energy ratio was
approximately 0.851 near the midpoint and the ratio was lower towards the walls; thus, there was a
minimum ratio of 0.838 near the wall surface. A comparison with the non-scattering results (Figure 7)
shows that, when scattering occurred, the radiative exergy to energy ratio was about 0.003 higher than
without scattering. This indicates that scattering might have the effect to improve the exergy–energy
ratio; however, this is a very small improvement, further research is also needed to verify this effect.
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5. Conclusions 

By considering the second law of thermodynamics, this study combines the radiation transfer 
equation with the theory of the monochromatic photon exergy developed in previous research [18]. 
The spectral radiative entropy transfer equation and radiative exergy transfer equation are 
established based on the second law; this process can be used to numerically analyze the variability 
of the energy quality more appropriately and accurately during the spectral radiation transfer 
process. It is found that the radiative entropy and the radiative exergy are consistent with the 
thermodynamic Gouy–Stodola law.  

The distribution and variation of the radiation spectral exergy flux during the radiation 
transfer process can be obtained using numerical calculations of the spectral radiative exergy 
transfer equation. It is also possible to calculate the distribution of the spectral radiative exergy, 
which is of great significance for the analysis of the flame energy spectrum-splitting conversion 
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scattering condition).
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The results for the one-dimensional furnace cases show that the radiative exergy flux in the
radiation transfer process can be numerically calculated using Equation (9) and combining the second
law and the radiation transfer process. Furthermore, the influences of different conditions on the
energy and exergy distribution in the radiation transfer process can be investigated, which has practical
application value for the combustion flame grading power generation system.

5. Conclusions

By considering the second law of thermodynamics, this study combines the radiation transfer
equation with the theory of the monochromatic photon exergy developed in previous research [18].
The spectral radiative entropy transfer equation and radiative exergy transfer equation are established
based on the second law; this process can be used to numerically analyze the variability of the
energy quality more appropriately and accurately during the spectral radiation transfer process. It is
found that the radiative entropy and the radiative exergy are consistent with the thermodynamic
Gouy–Stodola law.

The distribution and variation of the radiation spectral exergy flux during the radiation transfer
process can be obtained using numerical calculations of the spectral radiative exergy transfer
equation. It is also possible to calculate the distribution of the spectral radiative exergy, which is
of great significance for the analysis of the flame energy spectrum-splitting conversion system in
high-temperature engineering. The calculation results of one-dimensional furnace cases show that the
radiative exergy in the 1–3 µm band accounts for the largest proportion. The presence of scattering
reduces the radiative exergy flux but could slightly increase the proportion of the radiative exergy flux
at short wavelengths below 3 µm to some extent.
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Nomenclature

e radiative exergy flux
E radiative exergy intensity
Ev exergy of monochromatic photon
f coefficient of equivalent temperature
h Planck constant
H enthalpy
I radiative intensity
L distance between one dimensional parallel infinite plates
Q thermal energy
s direction of radiation transfer
s′ direction of incident scattering radiation
S radiative entropy intensity
Sv entropy of monochromatic photon
T temperature
T0 ambient temperature
V volume
x length coordinate
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Geek symbols
ΓG radiative entropy generation in one-dimensional space
η exergy-to-energy coefficient
θ zenith angle
κ absorption coefficient
λ Wavelength
ν Frequency
ξ entropy-to-energy coefficient
ΠG dimensionless radiative entropy generation in one-dimensional space
Φ scattering phase function
Ω solid angle
Ω′ solid angle of incident scattering
Subscripts
a absorption
b blackbody
H high
L low
M media
R radiation field
s scattering
0 reference state
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