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ABSTRACT

While G/U pairs are present in many RNAs, the lack
of molecular studies to characterize the roles of mul-
tiple G/U pairs within a single RNA limits our under-
standing of their biological significance. From known
RNA 3D structures, we observed that the probabil-
ity a G/U will form a Watson–Crick (WC) base pair
depends on sequence context. We analyzed 17 G/U
pairs in the 359-nucleotide genome of Potato spindle
tuber viroid (PSTVd), a circular non-coding RNA that
replicates and spreads systemically in host plants.
Most putative G/U base pairs were experimentally
supported by selective 2′-hydroxyl acylation ana-
lyzed by primer extension (SHAPE). Deep sequenc-
ing PSTVd genomes from plants inoculated with a
cloned master sequence revealed naturally occurring
variants, and showed that G/U pairs are maintained
to the same extent as canonical WC base pairs. Com-
prehensive mutational analysis demonstrated that
nearly all G/U pairs are critical for replication and/or
systemic spread. Two selected G/U pairs were found
to be required for PSTVd entry into, but not for exit
from, the host vascular system. This study identi-
fies critical roles for G/U pairs in the survival of
an infectious RNA, and increases understanding of
structure-based regulation of replication and traffick-
ing of pathogen and cellular RNAs.

INTRODUCTION

In addition to its roles in translating genetic information
into protein, the discovery of diverse regulatory functions
has firmly established RNA as a central player in biology.
RNA molecules can fold into a multitude of conforma-
tions that often constitute the basis of their function. The
major elements of RNA secondary structure can be de-
scribed as simple loops connecting helical base paired stems.
Cis Watson–Crick (WC) G/U base pairs, also called G/U
wobble pairs, are the most common non-canonical pairs
found in RNA. G/U base pairs usually reside in stem re-
gions where they can substitute for classical WC A/U or
G/C base pairs due to their comparable thermodynamic
stability and near isosteric structure (1). However, their
unique geometry and structural flexibility furnish greater
potential for RNA-protein and RNA–RNA interaction (2).
G/U wobble was first recognized in the context of de-
coding mRNA codons (3). Additional functions for spe-
cific G/U base pairs have since been uncovered, for exam-
ple, in alanine tRNA synthetase recognition (4–7), group I
and group II introns (8–10), hepatitis delta virus ribozyme
(11,12), and the human immunodeficiency virus-1 intron
splicing silencer (13). G/U base pairs also uniquely form
tertiary structure along-groove helix-packing motifs in ri-
bosomal RNA (14–16). However, to our knowledge, a sys-
tematic functional analysis of multiple G/U pairs at a whole
molecule level has not been performed.

We selected Potato spindle tuber viroid (PSTVd) as a
model to approach a more comprehensive understanding of
G/U pairing status and function. The PSTVd genome is a
circular, non-coding RNA of 359 nucleotides that replicates
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and spreads systemically in infected host plants (17,18).
Rolling circle replication occurs in the nucleus where, with
the aid of a variant Transcription Factor IIIA, the circu-
lar plus-strand genome is transcribed by host RNA poly-
merase II to generate linear single-stranded (minus strand)
concatemers (19). These in turn serve as template for single-
stranded (plus strand) concatemers that are subsequently
processed to unit length and circularized between posi-
tions G95 and G96 by DNA ligase I (20). Circular progeny
genomes are then transported out of the nucleus for cell-
to-cell and long-distance systemic spread (21–24). Because
PSTVd does not encode protein, successful infection of ne-
cessity relies on interactions between viroid RNA sequence
and/or structure elements and specific host factors, such as
proteins and RNAs. These unique biological features make
PSTVd an exceptional model to investigate the functional
roles of G/U pairs in RNA replication and trafficking.

The PSTVd genome (intermediate strain, PSTVd-I) has
been proposed to fold into a rod-shaped structure (referred
to here as the canonical structure) (25), which is supported
by biochemical and genetic analyses and is thought to be
critical for infectivity (26–29). The canonical secondary
structure has 17 places where G occurs opposite U in a he-
lix, which we refer to as G/U pairs. However, no atomic-
resolution three-dimensional (3D) structure is available, so
we do not have confirmation that these 17 G/U pairs ac-
tually form G/U base pairs. Moreover, as we show below,
G/U and A/U pairs at the ends of helices often do not form
WC base pairs. Therefore, one goal of this study was to as-
sess the base pairing status of each of the 17 G/U pairs.

Selective 2′-hydroxyl acylation analyzed by primer ex-
tension (SHAPE) (30), combined with RNAstructure soft-
ware (31), has been used to derive high quality secondary
structure predictions for many RNAs, including several vi-
roid genomes (32–35). However, a recent whole molecule
SHAPE analysis generated a solution structure for PSTVd-
I that contains only 13 of the 17 predicted G/U pairs (36),
raising questions about the true nature of PSTVd secondary
structure and the ability of whole molecule SHAPE to dis-
cern certain structural features.

Here, we report a structural and functional analy-
sis of G/U pairs in PSTVd-I. SHAPE analysis of full-
length genomes, and of fragments that collectively span
the genome, supported the presence of 14 and 16 of the
17 predicted G/U pairs in the canonical secondary struc-
ture, respectively. Using a novel strategy to obtain full-
length genome sequences, deep sequencing of progeny pop-
ulations (quasispecies) derived from wild type PSTVd infec-
tion of Nicotiana benthamiana revealed that base substitu-
tions at the 17 G/U pairs occurred with a frequency simi-
lar to substitutions at canonical WC pairs, and were con-
siderably less frequent than expected by chance. Further,
G/U pairs were, on the whole, more likely to be replaced
by A/U or G/C pairs than non-canonical base combina-
tions. Mutational analysis of G/U pairs showed that most
are essential for PSTVd replication and/or trafficking in N.
benthamiana plants and protoplasts. We also found that for
many positions, A/U and U/U are better able to compen-
sate G/U function than G/C pairs, and that UG could sub-
stitute for GU at only two positions without loss of func-
tion. Two specific G/U pairs selected for additional analysis

were found to be essential for PSTVd trafficking from bun-
dle sheath cells into the vascular system, but not for transit
in the opposite direction. In addition, an examination of
solved RNA 3D structures showed that G/U pairs in a spe-
cific context most often form non-wobble base pairs or no
base pair at all. Nevertheless, we observed that PSTVd G/U
pairs in this context could have essential functions.

These studies confirm the presence of most G/U pairs in
PSTVd, and show that most are important or essential for
successful infection. They also suggest that requirements for
RNA transit between bundle sheath and phloem cells are
unique and directional. Our findings have significant impli-
cations for understanding the role of RNA structure in reg-
ulating RNA replication and trafficking of both viroid and
cellular RNAs.

MATERIALS AND METHODS

Plant and protoplast inoculation

Nicotiana benthamiana plants were grown in the Biotech-
nology Support Facility greenhouse at The Ohio State Uni-
versity. The intermediate strain of PSTVd (PSTVd-I) (Gen-
Bank accession number NC 002030) was used in these ex-
periments (25). The PSTVd-NB variant used for compar-
ison (GenBank accession number: AJ634596.1) is derived
from PSTVd-I and differs by only six nucleotide substitu-
tions (37). Infection was achieved by mechanically inocu-
lating 300 ng of linear plus-strand (+)-PSTVd in vitro tran-
scripts onto the upper surface of the first two true leaves of
two-week old N. benthamiana plants that were previously
dusted with carborundum powder. In some experiments,
plants were inoculated with circular (+)-PSTVd RNA by
needle puncture of stems, petioles, and midveins using a 10
�l syringe (Kloehn #1010, IMI Precision Engineering, Las
Vegas, NV, USA). Diethylpyrocarbonate (DEPC) treated
water was used for mock inoculation. Nicotiana benthami-
ana protoplasts were prepared and transfected in the pres-
ence of polyethylene glycol (PEG) as described (38). Inocula
consisted of 6 �g of (+)-PSTVd transcripts mixed with 20
�g of a GFP-encoding plasmid, which served as an indica-
tor of PEG-mediated transformation efficiency.

RNA preparation

(+)-PSTVd transcripts used to inoculate plants and pro-
toplasts were prepared from pRZ-Int (pRZ6-2-Int) and
mutant derivatives. This plasmid, which contains a cDNA
copy of PSTVd-I, was a gift of Dr. Robert Owens (39).
HindIII-linearized plasmids were used as template for in
vitro transcription with T7 Megascript (ThermoFisher Sci-
entific, Waltham, MA) according to the manufacturer’s in-
structions. DNase I was used to degrade template DNA,
and PSTVd transcripts were purified using the MEGAClear
kit (ThermoFisher Scientific). To prepare inoculum for nee-
dle puncture, PSTVd transcripts were circularized with T4
RNA ligase according to the method of Beaudry and Per-
rault (40).

Antisense PSTVd riboprobes used for RNA blot hy-
bridization were prepared and labeled with [�-32P]-UTP
or digoxigenin (DIG) by in vitro transcription using the
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T7 Maxiscript kit (ThermoFisher Scientific) with SpeI-
linearized pInter(–) plasmid (41). Unincorporated UTP was
removed using Sephadex G-25 columns (GE Healthcare
Life Sciences, Chicago, IL, USA).

SHAPE experiments

RNA preparation and SHAPE reactions were performed
essentially as described (34). Briefly, the circular (+)-PSTVd
genome was reverse transcribed from infected plant ex-
tracts with two different primers designed to produce
monomeric cDNAs beginning at nucleotides 175 or 321.
RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi)
and Mfold (http://unafold.rna.albany?q=mfold) predicted
that monomeric RNAs generated from these cDNAs form
similar rod-shaped structures based on minimal free en-
ergy. The RT primers contained a T7 RNA polymerase
promoter to allow synthesis of full-length genomic RNA,
which was dissolved in 0.5× TE, pH 8.0, heated to 95◦C for
3 min, and cooled on ice for 5 min. RNA was then incu-
bated at 37◦C for 5 min in folding buffer (500 mM Tris–
HCl, pH 7.5, 500 mM NaCl) and, following addition of
MgCl2 to 10 mM, incubated a further 30 min. After fold-
ing, a native polyacrylamide gel electrophoresis step was
added to ensure homogeneity. The folded genomic RNAs
were run on a 5% native gel for 3 h at 45 V in ice cold
0.5× TBE running buffer, with MgCl2 (10 mM) added to
both the gel and running buffer. To ensure functionality, in-
fectivity was determined by infecting 10 plants with each
transcript, followed by RNA extraction and blot analy-
sis to monitor the infection rate. Once transcript homo-
geneity and infectivity were validated, RNAs were incu-
bated with SHAPE reagent (benzoyl cyanide, BzCN, 600
mM in dimethyl sulfoxide, DMSO) and nucleotide reactiv-
ity was assessed by primer extension catalyzed by reverse
transcriptase (SuperScript Reverse Transcriptase III, Ther-
moFisher Scientific). DMSO without BzCN was added to
negative control reactions. Experiments were performed in
triplicate for each transcript. Electropherograms were ana-
lyzed using QuSHAPE (42), and normalized and averaged
data were evaluated using RNAstructure (Fold tool, soft
thermodynamic constraints) (31). SHAPE analysis of par-
tial PSTVd-I genome sequences using N-methylisatoic an-
hydride (NMIA) as probing chemical was performed in col-
laboration with the EteRNA project (43).

Deep sequencing PSTVd quasispecies

Progeny populations obtained from N. benthamiana plants
inoculated with RNA generated from a cloned wild type
PSTVd-I master sequence were profiled using a novel ap-
proach that allowed deep sequencing of complete unit-
length progeny genomes. RNA samples were obtained from
two groups of four plants each and pooled samples were
used as biological replicates for deep sequencing. RNA was
extracted using RiboZol (VWR Life Science, Radnor, PA,
USA) according to the manufacturer’s instructions. One
pool consisted of RNA obtained from inoculated (local)
leaves harvested eight days and ten days post-inoculation
(dpi), and another from systemically infected leaves har-
vested 14 and 21 dpi. Reverse transcription of circular

genomes was conducted with a PSTVd-specific primer and
SuperScript Reverse Transcriptase III (ThermoFisher Sci-
entific), which has strand-displacement activity. Strand dis-
placement permitted reverse transcription of greater than
unit-length cDNAs, which were then used for PCR ampli-
fication. A pair of primers was designed to amplify unit-
length PSTVd cDNA (359 bp) between the forward and re-
verse primers. Adaptors were added using NEBNext Ultra
Directional RNA Library Kit for Illumina (New England
Biolabs, Ipswich, MA), and PCR with primers containing
barcode and sequencing primer binding site sequences was
then performed. Final products had adaptors and binding
sites for sequencing primers on both ends and a barcode on
one end.

Sequencing was performed using the MiSeq platform (Il-
lumina, San Diego, CA, USA). This technology sequences
greater than 250 bp from each end, so that together paired
end sequences spanned entire unit-length PSTVd cDNAs.
For this analysis, only sequences longer than 250 nt were
used. Raw sequencing data was processed using a Python-
based pipeline and analyzed using the Mothur software
package as described (44). Briefly, the ‘make.contigs’ func-
tion was used to build contigs after removing adaptor se-
quences. In addition, primer sequences (first 20 and last 19
bases) were removed. The ‘screen.seqs’ function was used
to remove sequences with ambiguous bases and sequences
that were longer than desired length. The ‘unique.seqs’
and ‘count.seqs’ methods were used to identify unique se-
quences in each dataset. The 17 G/U sites were taken from
sequences in each of the libraries and recorded into 17 indi-
vidual output files. Unique base combinations at these G/U
sites were recorded and listed.

Construction of G/U mutants

PSTVd mutants were generated by site-directed mutage-
nesis using a plasmid pRZ6-2 as template (39). Methods
for site-directed mutagenesis have been previously described
(45). All mutant constructs were sequenced to verify the in-
troduced mutations.

RNA extraction and RNA blots

Inoculated (local) and systemically infected leaves were
sampled for RNA extraction 10 and 28 dpi, respectively.
Transfected protoplasts were collected for RNA extraction
at 3 dpi. RNAzol reagent (Sigma-Aldrich, St. Louis, MO,
USA) was used to extract total RNA from PSTVd- and
mock-inoculated N. benthamiana plants and protoplasts
following instructions from the manufacturer. RNA blot-
ting was performed essentially as described (27).

Sequencing PSTVd progeny

RNA was obtained from systemically infected leaves us-
ing RNAzol (Sigma-Aldrich). Protocols used to synthe-
size cDNAs have been described (41). Briefly, Super-
Script III Reverse Transcriptase (ThermoFisher Scientific)
was used to prepare the first cDNA strand with two
primers: PSTVd1S (5′-AGGAACCAACTGCGGTTCCA-
3′) or PSTVd95S (5′-GGGGATCCCTGAAGCGCTCC-
3′), to cover the entire genome. The second cDNA strand

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
http://unafold.rna.albany?q=mfold
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was synthesized using the HotStart-IT Taq DNA Poly-
merase PCR system (ThermoFisher Scientific) with two
primer pairs: PSTVd1F (CGGAACTAAACTCGTGGT
TCCT) and PSTVd1S; or PSTVd95F (GGGGAAACCT
GGAGCGA) and PSTVd95S, following the manufacturer’s
instructions. PCR cycling conditions were as follows: 40 cy-
cles at 95◦C for 30 s, 55.4◦C for 30 s, and 72◦C for 40 s,
with a final extension step at 72◦C for 10 min. PCR prod-
ucts were analyzed by electrophoresis on a 1.5% agarose gel
and cloned into a pGEM-T vector (Promega Life Sciences,
Madison, WI, USA) for sequencing.

RNA degradation assay

The relative stabilities of wild type PSTVd and mutant
G76A and G156A in vitro transcripts were assessed in buffer
or N. benthamiana leaf extracts as previously described (46).
Briefly, extracts were prepared by grinding young leaf tis-
sue (100 mg) in 1 ml buffer (20 mM Tris–HCl, pH 7.5,
150 mM NaCl, 10 mM phenylmethanesulfonyl fluoride)
(PMSF, Sigma-Aldrich). The supernatant was collected fol-
lowing centrifugation to remove debris. RNA degradation
assays were performed by mixing wild type and mutant
transcripts (10 ng) with the supernatant (90 �l), or buffer
only as a control, at 28◦C. Samples were taken at 0, 15,
30, 60, 120 and 180 min and immediately frozen with liq-
uid nitrogen. RNA blot analysis was performed and sig-
nals were quantified using Quantity One software (Bio-Rad,
Hercules, CA, USA). Degradation curves were prepared us-
ing the quantified data.

In situ hybridization

Samples were prepared as previously described (37,47,48),
with slight modifications. The main differences were
that samples were fixed in 3.7% FAA solution (50%
ethanol/3.7% formaldehyde/5% acetic acid) overnight at
4◦C, and hybridization with DIG-labeled PSTVd antisense
riboprobes was carried out at 55◦C overnight. Whole-
mount in situ hybridization was performed following the
protocol described by Traas (2008) (49).

RESULTS

G/U base combinations in RNA 3D structures according to
secondary structure context

PSTVd has a known sequence and predicted secondary
structure, as we will describe below, but no atomic-
resolution 3D structure, so we must rely on inferences about
the detailed structure of G/U and other base pairs in the
molecule. (Throughout, G/U is used to indicate either GU
or UG pairs, and this notation also applies to other types
of pairs.) We used 3D structures of other RNA molecules
to learn how often it happens that G and U nucleotides
that are opposite each other in the secondary structure ac-
tually form G/U wobble base pairs using their WC edges.
We refer to these as cWW base pairs, short for cis Watson–
Crick/Watson–Crick in the Leontis/Westhof nomenclature
(50). We investigate three secondary structure contexts:
Case 0, Case 1 and Case 2.

Figure 1. G/U pairs in different secondary structure contexts. (A) Case 0,
G opposite U, sandwiched between canonical A/U or G/C WC base pairs.
The abbreviation N stands for any RNA base, and N-bar for its WC com-
plementary base. (B) Case 1, positions 1 and 6 are WC paired, representing
the end of a helix, U is at the 3′ end of one helix strand, G is at the 5′ end of
the other helix strand, positions 3 and 4 are WC base paired, and positions
3 and 4 are separated from 2 and 5 by a single-stranded region (red dashed
lines) so that they enclose an internal loop. (C) Case 2, like Case 1, except
that G is at the 3′ end of the helix strand and U is at the 5′ end, positions
3 and 4 are WC base paired, and positions 3 and 4 are separated from 2
and 5 by a single-stranded region (blue dashed lines) so that they enclose
an internal loop.

Case 0 is when G and U are opposite each other within
the secondary structure, sandwiched between canonical
G/C or A/U WC base pairs, as shown in Figure 1A. The
program FR3D (Find RNA 3D) (51) was used to find six-
nucleotide motifs with positions 1 and 6 making a canon-
ical WC pair, positions 3 and 4 doing the same, position
2 being G, position 5 being U, positions 1, 2, 3 being se-
quentially adjacent, and positions 4, 5, 6 being sequen-
tially adjacent. We searched a representative set of 1146
RNA-containing 3D structures of all sizes, release 3.48,
resolution threshold 3.0 Å (http://rna.bgsu.edu/rna3dhub/
nrlist/release/3.48/3.0A) and found 387 instances of the mo-
tif, of which 374 (96.6%) had an annotated cWW base
pair (or near base pair) between G in position 2 and U
in position 5. The exceptions were one instance of a near
cis Hoogsteen/Watson–Crick interaction and 12 instances
with a near or true cis Watson–Crick/Sugar edge base pair
between positions 2 and 5; this change in annotation re-
quires just a small rotation of the U, and these dynamic
molecules can switch between cWW and cWS fairly easily.
For comparison, in the same context, G/C forms a cWW
base pair in 99.66% of the instances, A/U forms a cWW
base pair in 99.50% of the instances, and U/U forms a cWW
base pair in 95.2% of the instances (Table 1). Thus, all of
these base combinations can be expected to form a cWW
base pair in the interior of a helix.

http://rna.bgsu.edu/rna3dhub/nrlist/release/3.48/3.0A


3138 Nucleic Acids Research, 2020, Vol. 48, No. 6

Table 1. Base combinations in RNA 3D structures according to secondary structure context

Case 0 Case 1 Case 2

Instances % cWW % no bp Instances % cWW % no bp Instances % cWW % no bp

GC 3237 99.66% 0.15% 673 97.5% 1.9% 602 96.5% 2.5%
AU 1804 99.50% 0% 277 74.3% 18.1% 261 86.6% 8.4%
GU 387 96.6% 0% 239 86.2% 9.6% 85 22.4% 51.8%
UU 21 95.2% 0% 259 82.6% 16.2% Same as case 1 by symmetry

Results of RNA 3D structure search for base combinations GC, AU, GU, and UU found in release 3.48 of the representative sets in the three secondary
structure contexts Case 0 (helix interior), Case 1 (A or G on 5′ end of a helix strand), and Case 2 (U or C on 3′ end of a helix strand). Counts of total
instances are given, then the percentage of instances in which the bases in positions 2 and 5 make a cWW or near cWW base pair, and the percentage of
instances in which they make no base pair or near base pair of any type. UU Case 2 is the same as UU Case 1, so only one set of numbers is given.

Case 1 is when U and G occur opposite one another at
the end of a helix, next to an internal loop, with the U at
the 3′ end of one helix strand, and the G at the 5′ end, as
shown in Figure 1B. We used FR3D to search for instances
where the nucleotides at positions 1 and 6 and 3 and 4 form
canonical WC base pairs, 2 is U, 5 is G, positions 1, 2, 3
are in increasing nucleotide order and 1 and 2 are adjacent,
and positions 4, 5, 6 are in increasing nucleotide order and
5 and 6 are adjacent, and any nucleotides between positions
2 and 3 and between 4 and 5 do not make WC base pairs,
and so are interior to an internal loop. FR3D found 239
instances of this motif, and in 206 cases (86.2%), the G and
U made a cWW base pair or near base pair. In 10 cases
(4.2%), the G and U make a cWS base pair or near base
pair, and in 23 cases (9.6%), they make no base pair. Thus,
a large majority of Case 1 G/U pairs form a cWW base pair.
For comparison, replacing U/G with C/G in this context,
97.47% of instances have a cWW base pair, for U/A, 74.3%
make a cWW base pair and 18.1% make no base pair, and
for U/U, 82.6% make a cWW base pair and 16.2% make no
base pair (Table 1). Thus, C/G reliably makes a cWW base
pair in this context, U/G next, then U/U, and then U/A.

Case 2 is the same as Case 1, except with the positions
of G and U reversed, so G is at the 3′ end of one helix
strand and U is at the 5′ end, as shown in Figure 1C. FR3D
found just 85 instances of this motif, many fewer than Case
1, with just 19 instances (22.4%) making a cWW base pair
or near base pair, 15 instances (17.6%) of a G/U cWS base
pair or near base pair, 7 instances (8.1%) of a G/U trans
Sugar/Hoogsteen base pair or near base pair and 44 in-
stances (51.8%) of no base pair at all. Thus, in just over half
of the observed instances in high-resolution RNA 3D struc-
tures, G/U in Case 2 does not make a base pair. For com-
parison, replacing G/U with G/C in this context, 96.5%
make a cWW base pair, and for A/U, 86.6% make a cWW
base pair. U/U is the same in Case 1 and Case 2 due to sym-
metry (Table 1). Thus, G/C reliably makes a cWW base pair
in this context, A/U next and G/U forms a cWW base pair
at a very low rate.

In summary, base combinations GC, AU, GU and UU
almost always make cWW base pairs in the interior of a he-
lix (Case 0). At the end of a helix in Case 1 context, GU is
very likely to make a cWW base pair. GU at the end of a
helix in Case 2 context is uncommon and when it occurs,
it only makes a cWW base pair in 22% of the instances,
with no base pair at all in 52% of the instances. These obser-
vations are consistent with the contributions of G/U pairs

Table 2. Free energy parameters for G/U pairs

5′U-3′G 5′G-3′U
(akin to Case 1) (akin to Case 2)

5′G-C3′ −2.5 −1.5
5′C-G3′ −2.1 −1.4
5′A-U3′ −1.4 −0.6
5′U-A3′ −1.3 −1.0

General contributions of G/U pairs to overall helix free energy (�G◦
37

kcal/mol) with respect to adjacent WC base pairs indicated to the left. Val-
ues applicable to Case 1 and Case 2 contexts are indicated.

to overall helix free energy based on nearest-neighbor pa-
rameters (https://rna.urmc.rochester.edu/NNDB/turner04/
gu-references.html) (52). As shown in Table 2, the contri-
bution of Case 2 context G/U is weaker than Case 1, and
thus Case 2 G/U combinations are less likely to form base
pairs.

SHAPE confirms most G/U pairs in PSTVd

The canonical secondary structure of PSTVd-I (interme-
diate strain, hereafter PSTVd) is believed to contain 17
G/U juxtapositions (Figure 2A). To confirm they are base
paired, two full-length PSTVd RNA strands, beginning
at nucleotide positions 175 and 321, were generated in
vitro and used for whole molecule SHAPE (30,34). These
RNAs formed similar homogeneous structures in solu-
tion as judged by native polyacrylamide gel electrophore-
sis (Figure 2B). To verify their functionality, infectivity
was assessed by inoculating 10 N. benthamiana plants with
each RNA. As PSTVd generates asymptomatic infections
in this host, infectivity was confirmed by blot analysis of
RNA isolated from upper, non-inoculated leaves (system-
ically infected leaves) using a PSTVd specific probe. Both
RNAs achieved a 100% systemic infection rate (Figure
2C). SHAPE experiments were then performed in tripli-
cate with each of the RNAs. Electropherograms were an-
alyzed using QuSHAPE (42), and the normalized and av-
eraged data were evaluated using RNAstructure software
(31).

The most stable predicted PSTVd secondary structure,
constructed using the averaged and similar SHAPE reac-
tivity data obtained from the 175 and 321 genome strands,
is presented in Figure 2D. Following whole molecule anal-
ysis, 14 of the 17 G/U pairs in the canonical structure
showed relatively low reactivity to benzoyl cyanide (BzCN)

https://rna.urmc.rochester.edu/NNDB/turner04/gu-references.html
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Figure 2. Analysis of PSTVd G/U pairs by whole molecule SHAPE. (A) The canonical secondary structure of PSTVd containing 17 G/U pairs (red boxes)
is shown. Red asterisks indicate G/U pairs not supported by whole molecule SHAPE (see 1D). (B) Folded, full-length PSTVd in vitro transcripts prepared
for SHAPE, beginning at nucleotide positions 175 or 321, were tested for homogeneity by native polyacrylamide gel electrophoresis. A gel stained with
ethidium bromide is shown. The positions of 250 bp and 500 bp size markers are indicated. (C) The infectivity of PSTVd-175 and PSTVd-321 transcripts
was tested by inoculating 10 N. benthamiana plants with each RNA. Blots of RNA prepared from systemically infected leaves hybridized with a PSTVd-
specific probe are shown. No signal was observed in RNA preparations from mock-inoculated plants (M). A full-length linear PSTVd in vitro transcript
served as inoculum (I). Circular (C) and linear (L) forms of PSTVd RNAs are indicated. rRNA stained with ethidium bromide was a loading control. (D)
The PSTVd secondary structure obtained by whole molecule SHAPE and folded with RNAstructure software is shown. Experiments were performed in
triplicate with each RNA, and the averaged and similar data were used to derive the structure. The 14 G/U pairs predicted by this analysis are indicated
by red boxes. SHAPE reactivity is indicated by nucleotide color: red = high reactivity (>0.85), orange = intermediate (0.40–0.85), black = low (0–0.40).

and were predicted to be base paired (Table 3). Reactiv-
ities for all PSTVd nucleotides are listed in Supplemen-
tary Table S1. G/U pairs at nucleotide positions 49:312,
61:299 and 114:246 in the canonical structure were not sup-
ported by this analysis. Two of these, 49:312 and 114:246,
are in Case 2 context, while 61:299 is Case 0. Our structure
largely agrees with an earlier BzCN-derived whole molecule
SHAPE study of PSTVd-I that supported 13 of the 17 G/U
pairs (36), lacking one at position 115:245 in our struc-
ture. A more recent study used N-methylisatoic anhydride
(NMIA) and 2-methylnicotininc acid imidazolide (NAI) to
perform whole molecule SHAPE of the PSTVd-NB vari-
ant, which is derived from PSTVd-I and differs by only
six nucleotide substitutions (53). Interestingly, one of these
substitutions converts the G/U pair at 44:317 in PSTVd-I
to a G/C pair. Apart from this, the NMIA-derived struc-
ture also did not support G/U pairs at positions 49:312,
61:299 and 114:246. A similar outcome was obtained with
NIA, except a G/U pair was observed at 61:299. Thus,
despite the use of three different SHAPE probing chemi-
cals, there is remarkable agreement between the four struc-
tures. All four did not discern G/U base pairs at positions
49:312 and 114:246 (both Case 2 context), while three did

not detect G/U pair 61:299 (Case 0). A comparison of these
PSTVd-I and PSTVd-NB whole molecule SHAPE struc-
tures is presented in Supplementary Figure S1.

In a complementary approach, SHAPE was performed
with NMIA on nine fragments that collectively encompass
most of the PSTVd genome (Supplementary Figure S2;
Supplementary Table S2). In this study, done in collabo-
ration with the EteRNA project (43), 16 of the 17 G/U
pairs in the canonical structure displayed low SHAPE re-
activity and were likely base paired (Table 4). The reactivi-
ties of nucleotides at the remaining position (61:299) could
not be determined due to its location at the junction be-
tween two fragments. Overall, reactivities obtained from
whole molecule SHAPE using BzCN and partial fragment
SHAPE using NMIA were similar, although in general val-
ues from partial fragments were somewhat lower (Supple-
mentary Tables S1 and S2). However, large differences (ap-
proaching one unit) were not common, and occurred at
fewer than 10% of total nucleotides. The sizeable differences
noted at nucleotides involved in G/U pairs 35:326, 49:312,
114:246 and 115:245 (Tables 3 and 4) may be due to the use
of different SHAPE chemicals and/or differences in fold-
ing between whole genomes and fragments. In any event,
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Table 3. Normalized reactivities for PSTVd G/U pairs determined by whole molecule SHAPE

Positions Nucleotides SHAPE reactivity Positions Nucleotides SHAPE reactivity

7 U 0.77 353 G 0.05 

15 U 0.07 347 G 0.13 

27 U 0.77 335 G 0.38 

35 U 0.12 326 G 0.85§ 

40 U 0.07 321 G 0.29 

44 G 0.15 317 U 0.18 

*49 G 0.57 *312 U 2.36§

*61 G 0.05 *299 U 0.68

64 G 0.03 296 U 0.10 

76 G 0.20 283 U 0.01 

104 U 0.56 254 G 0.17 

106 G 0.12 252 U 0.10 

*114 U 6.82§ *246 G 0.07 

115 G 1.06§ 245 U 0.01 

130 U 0.14 232 G 0.02 

132 G 0.00 230 U 0.25 

156 G 0.13 205 U 0.76 

Whole molecule SHAPE was performed with BzCN in triplicate on two full-length PSTVd RNA 
strands beginning at nucleotides 175 and 321.  Averaged values are shown for the 17 G/U 
pairs annotated in the canonical structure.  G/U pairs (juxtaposed nucleotides, e.g. 7:353) are 
color coded according to context.  Black, Case 0; Red, Case 1; Blue, Case 2.  Asterisks 
indicate G/U nucleotides that are base paired in the canonical PSTVd structure but judged 
not to be base paired by this analysis.  SHAPE reactivities:  High = >0.85, Intermediate = 
0.40-0.85, Low = 0-0.40.  Reactivities substantially different (>0.75 units) between whole 
molecule and partial sequence SHAPE (Table 4) are indicated§.  

SHAPE using PSTVd genome fragments further supported
annotation of the 17 G/U pairs in the canonical structure.

Overall, the SHAPE results suggest that 14 of the G/U
pairs form stable structures under different experimental
conditions, while the remaining three show variable results
that may be indicative of weaker, more transient base pair-
ing. On this basis, we concluded that further study of all 17
PSTVd G/U pairs was warranted.

Deep sequencing PSTVd progeny derived from a master se-
quence reveals conservation of G/U pairs

To assess the type and frequency of natural sequence vari-
ation at G/U pairs that might occur during infection, N.
benthamiana plants were inoculated with in vitro transcripts
derived from cloned PSTVd. Progeny genome populations,
which can be considered quasispecies, were sequenced to
identify variants. Deep sequencing was accomplished us-
ing a novel approach that takes advantage of a reverse
transcriptase capable of strand displacement to prepare
greater than full-length cDNA copies from circular (+)-
strand PSTVd RNA genomes, the predominant form found
in infected cells. Following amplification of unit-length
cDNA by PCR, the MiSeq platform (Illumina) was used for
paired-end sequencing. This technology allows more than
250 bp to be sequenced from each end, so that paired-end
sequences spanned complete PSTVd genomes embedded

within the original cDNAs. The procedure is outlined in
Figure 3 and further described in Materials and Methods.

In an effort to capture the greatest number of possible
variants, extracts were prepared from pooled inoculated (lo-
cal) leaves harvested at 8 and 10 dpi. Similarly, extracts were
prepared from pooled systemically infected leaves collected
at 14 and 21 dpi. RNA isolated from the pools was used
to prepare local (L) and systemic (S) deep sequencing li-
braries. Two independent experiments were conducted, and
the four libraries (L-1 and S-1, L-2 and S-2) generated more
than 2.2 × 106, 2.5 × 106, 1.5 × 106 and 2.5 × 106 complete
PSTVd sequences without insertions or deletions, respec-
tively. From these more than 4.9 × 104, 6.0 × 104, 1.1 ×
105 and 1.3 × 104 unique sequences were identified. To min-
imize errors resulting from library preparation, sequences
with fewer than 30 reads per million were eliminated, and
of the remaining reads ∼89% were wild type PSTVd and
∼11% were variants. Variants with more than one substitu-
tion were rare (<3%), and molecules with two substitutions
at the same base pair, e.g. GU to UG, were not observed.
Nevertheless, to minimize the possibility that one muta-
tion might compensate for another, only variant sequences
with one base substitution were used for further analysis.
A total of 545 (L-1), 567 (S-1), 262 (L-2) and 726 (S-2) se-
quences met these criteria. In addition, as previous studies
have shown that non-functional variants can be maintained
by wild type genomes in plant virus populations (54), only
unique sequences shared by cognate local and systemic leaf
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Table 4. Normalized reactivities for PSTVd G/U pairs from fragments spanning the genome

Positions Nucleotides SHAPE reactivity Positions Nucleotides SHAPE reactivity

7 U 0.99 353 G 0.12 

15 U 0.08 347 G 0.00 

27 U 0.12 335 G 0.23 

35 U 0.05 326 G 0.09§

40 U 0.10 321 G 0.08 

44 G 0.05 317 U 0.18 

49 G 0.22 312 U 0.58§

61 G -ND- 299 U -ND-

64 G 0.24 296 U 0.17 

76 G 0.35 283 U 0.05 

104 U 0.20 254 G 0.06 

106 G 0.10 252 U 0.00 

114 U 0.45§ 246 G 0.22 

115 G 0.20§ 245 U 0.06 

130 U 0.19 232 G 0.02 

132 G 0.01 230 U 0.03 

156 G 0.28 205 U 0.32 

SHAPE was performed with NMIA in collaboration with the EteRNA Project on nine 
fragments (chunks) spanning the PSTVd genome (Supplementary Figure S2).   Reactivities 
reported for the 17 G/U pairs annotated in the canonical structure are averaged values from 
five replicate experiments.  G/U pairs (juxtaposed nucleotides, e.g. 7:353) are color coded 
according to context.  Black, Case 0; Red, Case 1; Blue, Case 2.  All G/U combinations in the 
canonical structure were judged to be base paired by this analysis except 61:299, where 
reactivities were not determined (ND) due to location at the junction between fragments 3 and 
4.  SHAPE reactivities:  High = >0.85, Intermediate = 0.40-0.85, Low = 0-0.40.  Reactivities 
that are substantially different (by > 0.75 units) between this analysis and whole molecule 
SHAPE (Table 3) are indicated§. 

libraries, which were considered more likely to retain both
replication and trafficking functions, were included in the
sequence pool used to analyze variation at G/U pairs, leav-
ing 346 L-1+S-1 and 88 L-2+S-2 sequences.

A summary of the types of substitutions observed at G/U
pairs in progeny genomes is presented in Table 5. Libraries
from systemically infected leaves (S-1 and S-2) generally ex-
hibited a larger number of variant types than those prepared
from inoculated local leaves (L-1 and L-2), likely due to the
longer time mutations were allowed to accumulate. How-
ever, reflecting their stochastic nature, specific substitutions
were not always observed in replicate libraries (i.e. L-1 and
L-2; S-1 and S-2). Nevertheless, even when only mutations
shared by cognate local and systemic libraries (i.e. L-1 and
S-1 or L-2 and S-2) are considered, sequence variation was
evident at all G/U pairs, except one at position 106:252.

Consistent with a previous report (15), substitution of
G/U pairs with G/C or A/U pairs proved to be the dom-
inant type of substitution shared in local and systemic li-
braries (27 of 37) (Table 5). Substitution by non-canonical
base pairs was less common (10 of 37), even though the ran-
dom probability of a non-WC substitution is greater by 2:1.
When considered by context, the nine Case 0 and four Case
1 G/U pairs were about twice as likely to be replaced by
WC pairs than non-WC pairs (13:6 and 7:3, respectively).
However, substitutions at the four Case 2 G/U pairs nearly

always resulted in WC pairs (7:1). Again, no G/U to U/G
substitutions were observed.

Three types of potential non-canonical base pair sub-
stitutions were shared in cognate L and S libraries:
G/U to U/U at five positions (7:353, 35:256, 44:317,
130:232 and 132:230), G/U to G/G at three positions
(27:235, 114:246 and 130:232), and G/U to A/G at two po-
sitions (15:347 and 130:232). Local and systemic libraries
did not share a G/U to C/U substitution, which has the
same nominal probability as other non-canonical types.
Only one GU to CU substitution was found in one local
leaf library (L1) at position 44:317 (Table 5).

We also assessed variation at each individual nucleotide
in PSTVd quasispecies, using unique sequences with reads
greater than 30 per million and with only one base substi-
tution (∼150,000 reads from the four libraries). Interest-
ingly, substitutions affecting nucleotides in G/C or A/U
pairs, and G/U pairs, were under-represented to a sim-
ilar extent (Table 6). Both types were considerably less
frequent than expected by chance (observed/theoretical
= 0.574 and 0.546, respectively), suggesting substitutions
that disrupt canonical WC or G/U pairs are more likely
to have an adverse impact on PSTVd infectivity. Inter-
estingly, G/U combinations in Case 1 and Case 2 con-
texts, which reside at the ends of base-paired stems and
serve to close loops, were least likely to suffer substitutions
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Figure 3. Strategy for deep sequencing full-length PSTVd progeny genomes. (A) RNA was extracted from pooled leaves harvested 8- and 10 dpi for
local (inoculated) leaf libraries, and 14 and 21 dpi for systemic leaf libraries. (B) RT-PCR was conducted with a sequence specific primer (green) and
reverse transcriptase (RT) with strand displacement activity, allowing transcription of greater than full-length cDNA (blue) from circular (+)-PSTVd
RNA (orange). (C) Greater than full-length cDNA was used for PCR amplification. A primer pair (green) was designed to amplify full-length PSTVd
cDNA (359 bp). (D) Adaptors (black), barcode (brown), and sequencing primer binding sites (yellow) were added by PCR. The final products contained
sequencing primer binding sites and adaptors on both ends and a barcode on one end.

(observed/theoretical = 0.417 and 0.358, respectively). By
contrast, substitutions in loops occurred twice as often as
expected (observed/theoretical = 2.012).

In summary, we observed that while mutations can oc-
cur at almost all PSTVd G/U pairs in natural populations,
most often they were replaced by A/U or G/C pairs. In ad-
dition, like canonical WC base pairs, nucleotides in G/U
pairs were less likely to be replaced than nucleotides in loop
regions. Thus, our analysis of PSTVd quasispecies provides
additional support for the presence and importance of G/U
base pairs in the PSTVd secondary structure.

Functional analysis identifies PSTVd G/U pairs essential for
replication and systemic spread

To assess their biological significance, the 17 G/U pairs
in the canonical PSTVd structure were subjected to muta-
tional analysis. G/U and classical Watson–Crick base pairs
share similar structures, but the former have greater con-
formational flexibility. Thus, we replaced each G/U pair
with A/U and G/C, with A/U pairs being more flexible
than G/C pairs (two versus three hydrogen bonds). In ad-
dition, each G/U pair was substituted with U/U, a non-
canonical pair that has a different structure and greater flex-
ibility than G/U (55,56). The hydrogen bonding properties
of these cWW base pairs are illustrated in Supplementary
Figure S3. Finally, because GU and UG pairs are not self-
isosteric (15), G/U pairs were replaced with U/G by dou-
ble mutation to assess the importance of orientation. Each
mutant was tested for infectivity on ten N. benthamiana
plants. As PSTVd causes asymptomatic infections in this

host, RNA extracts from harvested leaves were analyzed by
blot hybridization with a PSTVd-specific probe. RNA sam-
ples were obtained 10 dpi from inoculated (local) leaves,
where positive signals for PSTVd were taken to indicate
successful replication. It should be noted that in local leaf
samples, circular progeny genomes are easily distinguished
from linear residual inoculum due to their much slower mo-
bility in polyacrylamide gels (39). RNA was isolated from
systemically infected leaves at 28 dpi, where positive sig-
nals potentially indicate successful replication and traffick-
ing. To confirm successful infection, the maintenance of
each introduced mutation was evaluated by sequencing one
or two full-length PSTVd progeny cloned from extracts of
pooled systemically infected leaves. In control inoculations
performed with each experiment, a 100% systemic infec-
tion rate (10/10 plants) was invariably achieved with wild
type PSTVd (positive control), whereas no evidence of in-
fection was observed in mock-inoculated plants (negative
control).

PSTVd G/U pairs involved in replication. The outcome
of infectivity experiments with all 68 mutants is summa-
rized in Figure 4. The majority of the mutants (49 of 68)
were capable of replicating in inoculated leaves (indicated
by grids below the canonical PSTVd structure in Figure
4), and only one G/U pair (7:353) did not replicate with
any of the introduced mutations. Conversely, at ten G/U
pairs (40:321, 44:317, 49:312, 76:283, 104:254, 106:252,
114:246, 115:245, 130:232 and 132:230) three or more mu-
tation types were able to replicate in inoculated leaves.
These more permissive G/U pairs were mainly clustered in
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Table 5. Variants for each PSTVd G/U pair in quasispecies

 Libraries Mutation typeG/U positions on 
PSTVd genome L-1 S-1 L-2 S-2

Mutations shared by 
cognate L and S libraries WC non-WC

Case 0

15:347  UG UU, CG, UA, AG AG, UA, CG, GG UA CG, UU, UA AG, UA, CG 2 1

27:335  UG GG, CG UA, UU, CG, GG, AG UU CG, UA, GG GG, CG 1 1

40:321  UG CG, GG UA, AG, CG CG UA, CG, UU CG 1 0

61:299  GU AU, GC GC, AU UU GC, GG AU, GC 2 0

64:296  GU GC AU, UU, GC GC GG, GC GC 1 0

104:254  UG CG, UA CG, UU, AG, GG, UA CG, GG UA, CG CG, UA 2 0

106:252  GU ND GC, AU ND GC, AU ND 0 0

130:232  UG GG, AG, UA, CG AG, CG, UA, GG UU, AG CG, AG, UA, GG, UU UU, GG, AG, UA, CG 2 3

132:230  GU AU, UU, GC GC, GG, UU, AU, GA ND GG, GA, GC AU, UU, GC 2 1

13 6

Case 1

7:353  UG UU, UA UA, UU, CG, GG UU UU, CG UU, UA 1 1

35:326  UG  UU, UA, CG UU, UA, AG, CG GG, CG UA, UU, CG UU, UA, CG 2 1

44:317  GU UU, GC, AU, CU GC, UU, GA, AU ND AU, GA, GG GC, AU, UU 2 1

115:245  GU GC, AU GC, AU AU AU GC, AU 2 0

7 3

Case 2

49:312  GU GC, AU, UU GC, AU AU, UU AU, GG AU, GC 2 0

76:283  GU GC, AU AU, GG, GC AU, GC GC, GA, GG AU, GC 2 0

156:205  GU GC GC, UU, AU AU GG, AU, UU, GC GC, AU 2 0

114:246  UG UA UA, GG, CG, UU GG, AG CG, UA, GG GG, UA 1 1

7 1

27 10

N. benthamiana plants were inoculated with PSTVd transcripts derived from a cloned master sequence, 
and full-length progeny genomes were sequenced.  Sequencing was performed with libraries prepared 
from local (L) and systemically (S) infected leaves in two independent experiments.  Only mutations 
shared by cognate local and systemic libraries are included in total mutation types detected (i.e. L-1 + S-
1; L-2 + S-2).  G/U combinations are grouped by context and indicated by color: Case 0 black; Case 1 
red; Case 2 blue.  ND: no mutations meeting defined criteria were detected.  Mutations were predicted to 
result in canonical Watson-Crick base pairs or non-canonical pairs.

two regions of the secondary structure, with three between
40:321 to 49:312 and six between 104:254 and 132:230,
with an additional site (76:283) between the two clusters.
Eight of these G/U pairs are next to or near another
G/U pair in the same WC base-paired stem (44:317/49:312,
104:254/106:252, 114:246/115:245 and 130:232/132:230),
suggesting that mutations in one pair might be mitigated to
some extent by the other. At the remaining six G/U pairs,
only mutations to A/U (35:326) or A/U and U/U (15:347,
27:235, 61:299, 64:296 and 156:205) were tolerated. Only
two of these pairs (61:299/64:296) are located in the same
base-paired stem.

While replication was not detected for any of the tested
mutation types at 7:353, G/U to A/U substitutions at any
of the other 16 G/U pairs did not significantly impair repli-

cation (Figure 4). Surprisingly, while one might expect mu-
tations to WC base pairs to have the least impact on phe-
notype, we found that U/U mutants were functional in
nearly as many sites as A/U mutants. Most U/U mutants
(14 of 17) were able to replicate, and at the six G/U pairs
noted above U/U and/or A/U were the only replication-
competent mutants. By comparison, nine of 17 G/U to G/C
and ten of 17 G/U to U/G mutants could replicate, and
these were always found together at permissive G/U pairs
that allowed replication of multiple mutation types, includ-
ing A/U and U/U. No clear correlation between G/U con-
text (Case 0, 1 or 2) and replication of a particular mutation
type was observed.

In summary, we observed that one G/U pair (7:353,
discussed further below) is essential for PSTVd replica-



3144 Nucleic Acids Research, 2020, Vol. 48, No. 6

Table 6. Comparison of nucleotide substitution frequencies in PSTVd quasispecies

G/U

A/U or G/C Loop Total G/U Case 0 Case 1 Case 2

Theoretical 0.607 0.298 0.095 0.050 0.022 0.022
Observed 0.349 0.600 0.052 0.034 0.009 0.008
Observed/theoretical 0.574 2.012 0.546 0.688 0.417 0.358

The proportion of nucleotides involved in A/U or G/C base pairs, G/U pairs, and loops in the PSTVd secondary structure (Theoretical) are compared with
the proportion of substitutions detected at these nucleotides (Observed) in the sequenced population derived from a cloned Master sequence. Substitution
frequencies for G/U nucleotides in different contexts (Case 0, Case 1 and Case 2) are also indicated.

Figure 4. Replication and trafficking rates for PSTVd G/U mutants. The nucleotide coordinates for each G/U pair is given below the diagram of the
canonical PSTVd secondary structure, with sequence context indicated by color: Case 0 (black), Case 1 (red), Case 2 (blue). Ten N. benthamiana plants
were inoculated with each mutant and RNA from inoculated (local) and systemically infected leaves was evaluated for the presence of PSTVd by RNA
blot analysis. For each mutation type, 10 boxes within a grid represent 10 inoculated plants. Lower grids show data for local inoculated leaves, where
positive signals indicate replication. Upper grids show data for systemically infected leaves, where positive signals indicate potential systemic trafficking.
Colored circles represent infected plants. Four different mutants were generated for each pair: G/U to U/U (red circles); G/U to G/C (blue), G/U to
U/G (black) and G/U to A/U (brown). Symbols above the diagram represent results of progeny sequencing from systemically infected leaves. Red arrow:
retained the introduced mutation without acquiring new mutations. Black square: introduced mutation(s) reverted to wild type. Black triangle: introduced
mutation retained and new mutations acquired. Red square: introduced mutation(s) reverted to wild type and new mutations acquired. Red triangle: for
G/U to U/G, retained one of the two introduced mutations and acquired new mutations.

tion. In addition, six G/U pairs (15:347, 27:335, 35:326,
61:299, 64:296 and 156:205) tolerated substitutions result-
ing in A/U or A/U and U/U pairs, but not more rigid G/C
pairs or non-isosteric G/U to U/G, suggesting that a par-
ticular conformation and flexibility at these locations might
have some role in replication.

PSTVd G/U pairs essential for systemic trafficking. A ma-
jority of the mutants (43 of 68) also appeared to be capable
of systemic spread (indicated in grids above the PSTVd se-
quence in Figure 4). Based on RNA blot analysis, only two
G/U pairs (27:335 and 156:205) did not tolerate any of the
introduced mutations. However, upon sequencing progeny
from systemically infected leaves it was found that original
mutant genomes were maintained intact in only 22 of 68
cases (i.e. retained the introduced mutation and did not ac-
quire new ones, indicated by red arrows in Figure 4) (Sup-
plementary Table S3). In five of these cases systemic infec-
tion rate was very low, with fewer than 4/10 plants infected

(64:296 GU to UU, 76:283 GU to GC, 106:252 GU to UU,
114:246 UG to UU, 130:232 UG to GU). Thus, 22 mutants
were genetically stable and capable of systemic spread, al-
though five of these were impaired in this respect.

Of the remaining 21 mutants that were not genetically sta-
ble, 15 exhibited a poor systemic infection rate (fewer than
4/10 plants infected). Further, progeny recovered from sys-
temic leaves had either reverted to wild type (8 cases, in-
dicated by black squares in Figure 4), retained the intro-
duced mutation but introduced new and possibly compen-
satory mutations (3 cases, indicated by black triangles), or
the introduced mutation reverted to wild type and new mu-
tations were acquired (8 cases, indicated by red squares).
In two G/U to U/G double mutants (44:317 and 114:246),
progeny retained only one of the original mutations and ac-
quired new mutations at other sites (indicated by red tri-
angles). Surprisingly, at three locations (15:347, 49:312 and
104:254), introduced GU to UG double mutations reverted
to wild type (Supplementary Table S3). Similar double mu-
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tations at the same base pair were not observed in natural
variants.

The 22 mutants that were genetically stable and capa-
ble of at least limited systemic trafficking were distributed
among 12 of the 17 PSTVd G/U pairs. However, distri-
bution was not even. As was noted for replication, G/U
pairs present in a base-paired stem with another G/U pair
were more permissive of mutation. Seven of these G/U pairs
(49:312, 104:254, 106:252, 114:246, 115:245, 130:232 and
132:230) accounted for 17 of the 22 mutants capable of sys-
temic spread, and all tolerated at least two mutation types.
Five additional G/U pairs allowed spread of a single muta-
tion type (15:347, 35:326, 40:321, 64:296, 76:283). However,
as noted below, several mutants exhibited impaired systemic
spread.

Analysis of mutations by type again revealed that G/U
to U/U mutants were as likely or more likely to be viable
than mutants having a canonical WC base pair in place
of G/U. Of the U/U mutants tested, eight of 17 were vi-
able, although three were impaired for systemic spread (in-
dicated by an asterisk*) (15:347, 49:312, 64:296*, 104:254,
106:252*, 114:246*, 115:245 and 130:232). By comparison,
seven of 17 G/U to A/U mutants (35:326, 49:312, 104:254,
106:252, 115:245, 130:232, and 132:230) and five of 17 G/U
to G/C mutants proved viable, with one severely impaired
for systemic spread (40:231, 76:283*, 114:246, 115:245 and
130:232). By contrast, only two G/U to U/G mutants were
viable, and one of these was impaired for systemic spread
(130:232* and 132:230). No correlation between mutation
type and context of G/U pairs was evident.

In summary, applying stringent criteria of replication, ef-
ficient systemic trafficking, and maintenance of intact mu-
tant genomes, 10 of the 17 G/U pairs could tolerate at least
one type of mutation. Of the remaining seven pairs, mu-
tations at one (7:353) abolished replication, mutations at
four (27:335, 44:317, 61:299 and 156:205) blocked systemic
spread, and mutations at two additional G/U pairs (64:296
and 76:283) greatly impaired systemic spread. Thus, from
this analysis of single mutants (and GU to UG double mu-
tants), these seven G/U pairs appear to be essential for in-
fectivity.

UG pair 7:353 is essential for PSTVd replication

The 7:353 UG pair lies within a region known to bind
DNA-dependent RNA polymerase II (Pol II) and its co-
factor, a seven zinc finger splice variant of Transcrip-
tion Factor IIIA (TFIIIA-7ZF) (19,57), which together
transcribe (+)-PSTVd RNA to initiate the replication
process. SHAPE reactivity for this pair was 0.77/0.05
(whole molecule SHAPE) and 0.99/0.12 (genome fragment
SHAPE), supporting a possible base pair. While UU and
UA variants were identified from deep sequencing (Table
5), these and all other tested mutant types failed to repli-
cate. Thus, a UG pair at this position is likely required for
replication.

The surprising appearance of progeny in systemically in-
fected leaves (indicated in 7:353 grids above the canonical
PSTVd secondary structure in Figure 4) in the apparent ab-
sence of replication in inoculated leaves can be attributed to
reversion of the UU mutation to wild type UG in one in-

fected plant, and reversion of the UA mutation with intro-
duction of new mutations in another infected plant. In these
plants, revertants and sequence variants likely arose late in
an inoculated leaf, perhaps just prior to harvest. Similar un-
usual outcomes, where a particular mutant was detected in
systemic but not in local inoculated leaves, were observed
at six G/U pairs (7:353, 15:347, 35:326, 44:317, 61:299 and
104:254), and in all cases similar explanations apply.

While none of the introduced mutations at 7:353 UG ap-
peared to replicate, we considered the possibility that at
least some of the mutants might be replication competent
but unable to spread cell-to-cell in the inoculated leaf. As
a result, these mutants may not generate sufficient signal
for detection by RNA blot. To test this possibility, the four
7:353 mutants were tested in a single cell replication assay
using N. benthamiana protoplasts. In three independent ex-
periments, no signal indicating replication was detected by
blot analysis of RNA from protoplasts inoculated with any
of the mutants. By contrast, wild type PSTVd replication
(positive control) was readily apparent (Supplementary Fig-
ure S4). This indicates that the mutations introduced at UG
pair 7:353 blocked replication.

In addition to 7:353 UG, another 14 mutants distributed
among eight G/U pairs also did not appear to replicate
in inoculated leaves (Figure 4). Six of these mutants were
selected for analysis in the N. benthamiana protoplast as-
say: 35:326 UG to UU, CG, and GU; 104:254 UG to CG;
and 156:205 GU to GC and UG. Wild type PSTVd and
35:326 UG to UA, which was able to infect inoculated
leaves, were included as positive controls. In contrast to re-
sults with 7:353 UG mutants, RNA blot analysis suggested
that all of the mutants in this group were able to repli-
cate in transfected protoplasts (Supplementary Figure S4).
However, progeny sequencing indicated that the 35:326 UG
to UA positive control was the only case where the intro-
duced mutation was retained. All other mutant progeny re-
verted to G/U base pairs. Similar protoplast assay results
were obtained in a separate study of five PSTVd loop re-
gion mutants that also failed to replicate in inoculated leaves
(46). We concluded that mutants that did not produce a
detectable signal in inoculated leaves were not replication
competent, and that local leaf infection is a valid replica-
tion assay. However, for all tested mutants other than those
at position 7:353, some limited but undetectable replica-
tion must have been possible, after which revertants rapidly
dominated the progeny population.

Analysis of double mutants reveals additional G/U pairs re-
quired for PSTVd replication or trafficking

We observed that most G/U pairs next to or near another
in the same base-paired stem region were more permissive
of mutation (Figure 4), suggesting that the function of one
might be compensated by the other. To test this possibil-
ity, we separately combined G/U to U/U and G/U to G/C
single mutants at adjacent G/U pairs within the same stem
to generate double mutants (i.e. U/U + U/U and G/C +
G/C). We selected U/U because this base combination is
the most flexible of the pairs tested, while G/C is the more
rigid of the two canonical WC base pairs. The double mu-
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tants were analyzed for replication in local leaves and sys-
temic trafficking as described above.

As expected, in all cases where one of the single mu-
tants was non-functional, combined mutants also proved
non-functional, and mutants that did not replicate in in-
oculated leaves could not spread to systemic leaves. How-
ever, while single G/U to G/C mutants at 44:317 and 49:312
were able to replicate in local inoculated leaves, combining
the two mutations abolished local leaf infectivity, suggest-
ing that the presence of at least one G/U pair in the stem
bordered by nucleotides 44 and 49 is required for replica-
tion (compare grids below the PSTVd structure in Figures
4 and 5). Similarly, single G/U to U/U mutants at 61:299
and 64:296 were replication competent but the double mu-
tant was not, suggesting that at least one G/U pair in the
stem spanning nucleotides 60–68 is essential for replication.
The same outcome was observed with a 104:254/106:252
G/U to U/U double mutant, located in the stem encom-
passing nucleotides 103 to 111.

Different results were obtained with combined mu-
tations at adjacent G/U pairs 114:246/115:245 in a
short stem spanning nucleotides 114–117, and G/U pairs
130:232/132:230 in the stem between nucleotides 128–134.
At these sites, G/U to U/U and G/U to G/C double mu-
tations had no impact on local leaf infectivity, suggesting
that the presence of a G/U pair in these stems is not neces-
sary for replication (compare grids below the PSTVd struc-
ture in Figures 4 and 5). However, while the single mutants
at 114:246/115:245 were capable of systemic spread, both
G/U to U/U and G/U to G/C double mutants were unable
to traffic to systemic leaves (compare grids above the canon-
ical PSTVd structure in Figures 4 and 5). Although RNA
blot analysis suggested an 8/10 systemic infection rate for
the 114:246/115:245 G/U to G/C double mutant (Figure
5), sequencing revealed that progeny retained only 115:245
G/C while 114:246 reverted to G/U. These results suggest
that the presence of at least one G/U pair in the stem ex-
tending from 114–117 is required for systemic trafficking.
Due to the inability of 132:230 G/U to U/U and G/U to
G/C single mutants to spread systemically without loss of
the introduced mutation (Figure 4), 130:232/132:230 dou-
ble mutants did not provide additional information about
systemic spread. In the lone plant that appeared to be sys-
temically infected, progeny had lost both introduced mu-
tations (reverted to G/U) and acquired a new mutation
(C259U).

We concluded that the presence of two G/U pairs in
the same stem region can obscure their individual impor-
tance, providing an explanation for their apparent toler-
ance to single mutations. Moreover, this analysis yielded ev-
idence suggesting that coupled G/U pairs 44:317/49:312,
61:299/64:296 and 104:254/106:252 are required for repli-
cation, while 114:246/115:245 and 130:232/132:230 likely
are not. On the other hand, G/U pairs 114:246/115:245 ap-
pear to be necessary for systemic trafficking.

Location and context of G/U pairs is important for function

We observed that when a G/U pair is present alone in a
stem region, mutations to G/C resulted in failure to repli-
cate (7:353, 15:347, 27:335, 35:326, 156:205) or in severe im-

pairment of systemic trafficking (76:283) (Figure 4). A pos-
sible explanation is that G/C pairs reduce local flexibility,
which in turn might inhibit induced conformation recogni-
tion between PSTVd RNA and a binding partner. In order
to test this possibility, we attempted to restore function. Be-
ginning with the original G/U to G/C mutation that abol-
ished function, new G/U pairs were introduced in the same
orientation at other locations within the same stem. Because
two G/U pairs in the same stem can functionally compen-
sate, this was not attempted with 61:299, 64:296 or 104:254,
where mutations to G/C also abolished replication.

Mutation of the UG pair (Case 0) at 15:347 to CG abol-
ished replication. In addition to this original CG mutation,
new UG pairs were introduced at 14:348, 16:346, 17:345,
18:344, 19:343, and 20:342. All new pairs were also Case 0
except 14:348, which is in the Case 2 context. Remarkably,
the new UG pair at 18:344 restored the ability to replicate
and partially restored systemic spread (Figure 6). Similarly,
mutation of the UG pair at 27:335 (Case 0) to CG also re-
sulted in loss of replication. In this instance, a new UG pair
at 26:336 (Case 0), but not 25:337 (Case 2) or 28:334 (Case
1), nearly completely restored both replication and systemic
spread. Mutation of the UG pair at 35:326 (Case 1) de-
stroyed replication, which could not be restored by adding
UG pairs at 31:329 or 33:328 (both Case 0). However, repli-
cation and trafficking were almost completely recovered by
introduction of a UG pair at 34:327 (Case 0). In all cases,
progeny obtained from systemically infected leaves retained
both the original G/C mutation as well as the new restora-
tive G/U pair, and did not acquire additional mutations.

The UG pair 7:353 (Case 1) differed from other Case 0
or Case 1 G/U pairs tested. Here, restoration of function
lost by mutation to a CG pair did not occur when new UG
pairs were introduced at the other four sites in the same stem
(data not shown). As this region binds Pol II and is essential
for replication, it may be that sequence alterations at or near
this location are lethal.

Unlike Case 0 and Case 1 G/U pairs, the functionality
of two Case 2 G/U to G/C mutants was not restored by
addition of new Case 0 or Case 1 G/U pairs. Mutation of
the GU pair at 76:283 to GC reduced replication efficiency
and severely impaired systemic spread, but addition of a
new GU pair (Case 1) at 75:284 had the effect of abolish-
ing replication (Figure 6). Mutation of GU pair 156:205 to
GC blocked replication, which could not be restored by new
Case 0 GU pairs at 153:208, 154:207 or 155:206.

In summary, with the exception of 7:335 UG which did
not tolerate any tested mutation at or near this site, a new
G/U pair within one to three bases in the same stem par-
tially or completely restored both replication and traffick-
ing to non-functional G/C mutants at 15:347, 27:335 and
35:326. Gain-of-function provides powerful evidence that
a G/U pair in their respective stems is critical for replica-
tion and trafficking, and further indicates it is possible to
restore function to Case 0 and Case 1 G/U to G/C mutants
by introducing new Case 0 G/U pairs. G/U pairs in Case 0
and Case 1 contexts are most likely cis WC/WC base pairs.
On the other hand, Case 2 G/U pairs 76:283 and 156:205
were not functionally restored by new Case 0 or Case 1 G/U
pairs, suggesting that Case 2 conformation imparts a unique
property. Possibly at some point in the PSTVd replication
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Figure 5. Replication and trafficking rates for PSTVd G/U double mutants. For each stem region containing two G/U pairs, G/U to U/U and G/U to G/C
single mutants were separately combined to generate double mutants. The nucleotide coordinates for the coupled G/U pairs are given below the diagram of
the canonical PSTVd secondary structure. Ten N. benthamiana plants were inoculated with each mutant and RNA from inoculated (local) and systemically
infected leaves was evaluated for the presence of PSTVd by RNA blot analysis. For each mutation type, 10 boxes within a grid represent 10 inoculated
plants. Lower grids show data for local inoculated leaves, where positive signals indicate replication. Upper grids show data for systemically infected leaves,
where positive signals indicate potential systemic trafficking. Colored circles represent infected plants: double G/U to U/U (red); double G/U to G/C
(blue). Symbols above the diagram represent results of progeny sequencing from systemically infected leaves. Red cross: retained one introduced mutation,
one reverted to G/U. Red square: lost both introduced mutations (reverted to G/U) and acquired a new mutation. For single mutant data, see Figure 4.

cycle these positions require the flexibility to not form a base
pair, as Case 2 G/U pairs are known to do from 3D struc-
tures.

G/U pairs 76:283 and 156:205 are required for PSTVd to
enter vascular tissue

Because GU to GC mutants at 76:283 and 156:205, which
are in the Case 2 context, could not be functionally restored
by addition of new GU pairs, we decided to further investi-
gate their biological functions. When these GU pairs were
mutated to AU pairs, both mutants (G76A and G156A)
were able to replicate in inoculated leaves but were unable
to spread to systemic leaves above the inoculation site (Fig-
ure 4). We first verified these results in multiple repeat ex-
periments. Again, with each mutant a 100% infection rate
(10/10 plants) was invariably observed in inoculated leaves
(Figure 7A), but PSTVd RNA was not detected in sys-
temic leaves (Figure 7B). We also performed RT-PCR with
PSTVd-specific primers using RNA obtained from the peti-
oles of leaves harvested 10 dpi. While a product of expected
size was observed when RNA was obtained from wild type
PSTVd-infected plants (positive control), no products were
detected from plants inoculated with G76A or G156A (Fig-

ure 7C), indicating that the mutants failed to traffic out of
inoculated leaves.

Degradation of PSTVd RNA can result in loss of sys-
temic infectivity. To assess their stability, in vitro transcripts
of G76A and G156A mutants and wild type PSTVd were
incubated in buffer or in extracts prepared from uninfected
N. benthamiana leaves. The amount of RNA remaining over
time was determined by RNA blot analysis. We found that
while degradation was more rapid in leaf extracts, decay
rates for all of the RNAs were similar (Supplementary Fig-
ure S5). While this assay does not mimic conditions in cells
where PSTVd replicates, it nevertheless demonstrates that
the mutant RNAs are reasonably stable. Thus, it is unlikely
that reduced stability is responsible for the failure of G76A
and G156A to spread to upper leaves.

Local cell-to-cell spread of viruses and viroids occurs
through plasmodesmata that interconnect adjacent cells,
and long-distance systemic transport occurs in vascular
tissue, typically the phloem. As PSTVd RNA was rub-
inoculated onto the upper surfaces of N. benthamiana leaves,
failure of cell-to-cell transport might prevent a mutant vi-
roid from reaching the vascular tissue, which typically is
three to four cell layers beneath the epidermis. To ad-
dress this question, we first performed whole mount in situ
hybridization using digoxygenin (DIG)-labeled PSTVd ri-
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Figure 6. Replication and trafficking rates for PSTVd G/U to G/C mutants with new G/U pairs. Left: secondary structure of wild type PSTVd, with
nucleotide coordinates for G/U pairs and sequence context indicated by color. Case 0 (black), Case 1 (red), Case 2 (blue). Middle: G/U to G/C mutant
data from Figure 3 showing seriously impaired function. The introduced C nucleotide is highlighted in blue. Right: Bases introduced to generate new G/U
pairs are indicated in purple, with the existing G/U to G/C mutation (blue) in the same stem. As in Figures 4 and 5, boxes and solid circles are used to show
replication and replication rates for each mutant. Lower horizontal grids show data for local inoculated leaves (replication assay), and upper horizontal
grids show data for systemic leaves (potential trafficking). Red arrow: retained introduced mutations without acquiring additional mutations. Red square:
did not retain the introduced mutation and acquired new mutations. Black square: reverted to wild type.

boprobes with tissue from inoculated leaves harvested 8,
10 and 12 dpi. Whole mount in this case means examin-
ing the upper surfaces of small pieces of leaf tissue, rather
than thin sections. This method of observation does not per-
mit unambiguous identification of cell types, but most nu-
clei containing PSTVd signals are likely in epidermal cells.
More than 200 visual fields (∼1 mm × 1 mm) randomly
selected from the inoculated leaves of 10 plants were ex-
amined for each time point. Positive PSTVd hybridization
signals were apparent in nuclei of cells infected with wild
type PSTVd as well as the G76A and G156A mutants (Fig-
ure 8A). For all three, an increase in the number of infected
cells per visual field was observed with increased time post-
inoculation, indicating successful cell-to-cell spread (Figure

8B). G76A and G156A infected a similar number of cells,
which approached or exceeded 50% of the number infected
by wild type PSTVd at each time point, an amount more
than sufficient to support systemic spread. In a previous
study, PSTVd mutants with infection efficiencies as low as
10% of wild type were shown to achieve systemic infection
(48).

Spread through cell types lying between the upper epider-
mis and vascular tissue is also required for systemic trans-
port. We addressed this question by performing in situ
hybridization with transverse sections prepared from rub-
inoculated leaves. Representative images from 60 sections
obtained from 20 plants at 12 dpi are presented in Figure 9.
Our rub inoculation method involves abrasive mechanical
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Figure 7. PSTVd G76A and G156A mutants fail to exit rub-inoculated leaves. RNA was collected from (A) rub-inoculated leaves, (B) systemically infected
leaves, or (C) petioles of inoculated leaves of 10 plants infected with G76A or G156A. Wild type PSTVd (WT) was a positive control, and mock inoculation
(M) was a negative control. (A) RNA blots show a 100% infection rate (10/10 plants) for both mutants in rub-inoculated leaves. (B) Absence of signal on
RNA blots indicates both mutants are unable to traffic to upper leaves following rub inoculation. (C) Absence of detectable RT-PCR products indicates
that G76A and G156A fail to exit inoculated leaves. Loading controls were ribosomal RNA (A and B) and RT-PCR of actin mRNA (C), detected by
ethidium bromide staining. Images are representative of eight (A and B) and three (C) independent experiments.

inoculation of PSTVd in vitro transcripts onto the first two
true leaves of N. benthamiana plants that were previously
dusted with carborundum powder. Transverse sectioning of
these young inoculated leaves is difficult and most sections
do not contain visible vascular tissue, so it was not possible
to draw firm conclusions about vascular cell types. However,
this analysis clearly showed that wild type PSTVd, G76A
and G156A were able to infect cells of the upper epidermis
(inoculation site) as well as underlying palisade and spongy
mesophyll cells, and so were able to traffic between these cell
types. Further, G76A and G156A infected a similar number
of cells in each cell type, which in all cases approached or
exceeded 50% of the number infected by wild type PSTVd.

To directly observe vascular tissue, paradermal sections
(i.e. parallel to the leaf surface) were prepared for in situ
hybridization. Approximately 150 sections taken from 60
plants were examined for each treatment. About one-third
of these sections contained vascular tissue, and images pre-
sented in Figure 10 are representative of 51, 43 and 44 infor-
mative sections for wild type PSTVd, G76A, and G156A,
respectively. As expected, wild type PSTVd was detected in
all cell types, including phloem cells and bundle sheath cells
that surround the phloem. By contrast, while PSTVd G76A
and G156A were frequently found in bundle sheath cells,
they were never observed in phloem cells. We concluded that
G76A and G156A are unable to traffic systemically because
they likely cannot transit from bundle sheath into phloem
cells.

PSTVd trafficking across the bundle sheath-phloem bound-
ary can be unidirectional

PSTVd moves between cells through plasmodesmata which
differ between cell types, leading to fine regulation of
RNA trafficking. Therefore, we investigated the outcome of
PSTVd G76A and G156A infections that bypass the bundle
sheath-phloem cell boundary. This was done by delivering
circularized G76A and G156A in vitro transcripts directly
into vascular tissue by needle puncture inoculation of stems
and petioles of six week-old plants (46). Leaves above the in-
oculation sites were harvested after 28 days, and subsequent
RNA blot analysis indicated that both mutants were sys-
temically infectious when introduced by this method (Fig-
ure 11A). Most of the harvested leaves were formed before
inoculation, thus cell types were likely differentiated prior
to the arrival of PSTVd. Overall infection rates were low:
∼25% for wild type PSTVd, 12.5% for G76A and 15% for
G156A over the course of four experiments. Sequencing full
length clones recovered from upper leaf extracts indicated
that all G76A and G156A progeny (eight each) retained
their original mutations, although for both mutants, half of
the progeny also acquired one or more additional mutations
at other sites (Table 7). However, as most of the new mu-
tations are unique, they are likely stochastic in nature and
unlikely to have compensatory functions. Thus, the G76A
and G156A mutants are largely stable.

That G76A and G156A are systemically infectious fol-
lowing delivery to vascular tissue by needle puncture implies
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Table 7. Sequences of progeny from plants inoculated with G76A or G156A by needle puncture

WT G76A G76A progeny sequences G156A G156A progeny sequences

Experiment 1 2/10 1/10 G76A (2) 0/10 N/A
G76A/A63U (1)

Experiment 2 4/10 2/10 G76A (1) 4/10 G156A (1)
G76A/G68A/C69A (1) G156A/�89A (1)

Experiment 3 1/10 0/10 N/A 2/10 G156A (2)
G156A/U157C (1)

Experiment 4 3/10 2/10 G76A (1) 1/10 G156A (1)
G76A/G97U (1) G156A/C259U (2)
G76A/C151G (1)

In each experiment, 10 plants were inoculated by needle puncture with wild type PSTVd (WT), G76A, or G156A. The number of systemically infected
plants, determined by blot assay of RNA collected from upper leaves 28 dpi, is indicated. Sixteen mutant progeny were sequenced, and all retained the
introduced mutation (bold). However, for each mutant half of the progeny (4/8) also acquired new and mostly unique mutations.

Figure 8. G76A and G156A mutants replicate and spread in rub-
inoculated leaves. (A) Infection was monitored by whole mount in situ hy-
bridization in leaves rub-inoculated with wild type PSTVd (WT), G76A,
or G156A at 8, 10 and 12 dpi. Mock inoculation was a negative control.
Purple dots (some indicated by red arrows) are viroid hybridization signals
in nuclei. Bars = 100 �m. Images for PSTVd WT, G76A, and G156A are
representative of >200 visual fields. (B). Mean numbers of infected cells
per visual field. Asterisks indicate significant differences (P < 0.05) as de-
termined by Student’s t test. Bars indicate standard error of the mean.

that they are capable of moving from phloem cells into bun-
dle sheath cells. To confirm this, we examined transverse sec-
tions by in situ hybridization to monitor the spread of G76A
and G156A mutants. Upper systemically infected leaves are

Figure 9. G76A and G156A mutants can spread from epidermal cells into
mesophyll cells. (A) In situ hybridization was performed with transverse
sections (12 �m) obtained from mock inoculated leaves (negative control)
or leaves rub-inoculated with wild type PSTVd (WT), G76A or G156A.
Images are representative of more than 60 sections. Purple dots (red ar-
rows) are viroid hybridization signals in nuclei. uEp, upper epidermis; Pm,
palisade mesophyll; Sm, spongy mesophyll. Bars = 100 �m. (B) Number
of infected cells per leaf section (∼1 × 0.15 mm) in the upper epidermis
(uEp), palisade mesophyll (Pm) or spongy mesophyll (Pm) of plants inoc-
ulated with WT PSTVd (black), G76A (red) G156A (blue) at 12 dpi. Data
were compiled from 40 sections obtained from 20 infected plants. Asterisks
indicate significant differences (P < 0.01**) as determined by Student’s t
test. Bars indicate standard error of the mean.

easier to section than inoculated leaves, and sections often
contain vascular tissue. Remarkably, we found that sections
from plants infected with G76A or G156A were virtually
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Figure 10. Mutants G76A and G156A fail to traffic into vascular tissue.
In situ hybridization was carried out with paradermal sections obtained 12
dpi from mock inoculated leaves or leaves rub-inoculated with wild type
PSTVd (WT), G76A or G156A. Purple dots are viroid hybridization sig-
nals. Note that WT PSTVd accumulates in bundle sheath (BS) and phloem
cells (Ph) (red arrows), while the two mutants are found in bundle sheath
cells but are absent from the phloem. Images shown are representative of
more than 40 sections for each treatment. Bars = 10 �m.

identical to those obtained from plants infected with wild
type PSTVd. Hybridization signals indicating the presence
of G76A and G156A were present in all cell types, including
phloem (Figure 11B).

Considered together, our results suggest that PSTVd
G76A and G156A mutants are able to traffic from phloem
into bundle sheath cells, mesophyll cells, and epidermal cells
when delivered to vascular tissue by needle puncture inocu-
lation. However, they cannot transit in the reverse direction,
from bundle sheath into phloem cells, when delivered by rub
inoculation. We conclude that requirements for RNA traf-
ficking between bundle sheath and phloem are unique and
directional, and that G76A and G156A are specifically de-
fective for phloem entry. Although a previous study identi-
fied a PSTVd motif necessary for vascular entry (58), to our
knowledge this is the first observation of directional traf-
ficking between bundle sheath and phloem cells, and the
first instance where defined roles in RNA trafficking have
been described for specific G/U pairs.

DISCUSSION

The role of G/U pairs in the viroid infection cycle has not
been extensively explored, and the potential presence of 17
G/U pairs in the canonical PSTVd (intermediate strain)
secondary structure offered an opportunity to address this
issue as well as how multiple G/U pairs might function-
ally interact. Although PSTVd secondary structure is well
established, a recent whole molecule SHAPE study raised
some questions about its true nature and, most relevant to
this report, the identity and number of G/U pairs present
in the genome (36). Consequently, we began our investiga-
tion by performing whole molecule SHAPE with PSTVd-I
using the same SHAPE reagent (BzCN) and RNAstructure

Figure 11. Needle puncture inoculation allows trafficking of G76A and
G156A to all cell types in upper leaves. (A) RNA was collected from upper
leaves of 10 plants 28 days after needle puncture inoculation with G76A
and G156A. Linear PSTVd transcript (positive control, L) and RNA from
mock inoculated plants (negative control, M) are indicated. Linear PSTVd
migrates faster than the circular form that predominates in infected cells.
Ribosomal RNA (loading control) was visualized by ethidium bromide
staining. RNA blot is from Table 3, experiment 2 (of four). (B) In situ hy-
bridization was performed with 12 �m transverse sections collected from
upper N. benthamiana leaves 28 days after needle puncture inoculation
with wild type PSTVd (WT), G76A, or G156A. Images for each are rep-
resentative of >100 sections. Purple dots are viroid hybridization signals.
uEp, upper epidermis; Pm, palisade mesophyII; Sm, spongy mesophyII;
Ph, phloem. Bars = 100 �m.

software. Similar to the previous study, we found that three
of the 17 G/U base pairs were not supported. Two of these
pairs (49:312 and 114:246), which are in the Case 2 context,
exhibited high reactivity to SHAPE reagent (BzCN) (Table
3). Whole molecule SHAPE experiments using NMIA or
NAI to probe the highly similar PSTVd-NB variant also did
not support G/U base pairs at 49:312 and 114:246 (53). Our
analysis of G/U pairs from a very large number of atomic-
resolution 3D structures showed that G/U combinations in
Case 2 context form cWW wobble base pairs less than 25%
of the time, and no base pair >50% of the time (Table 1).
Thus, the 49:312 and 114:246 Case 2 combinations may not
form wobble pairs, which could explain their high SHAPE
reactivity. Nevertheless, functional mutagenesis (discussed
below) suggests that these G/U combinations have essen-
tial functions in PSTVd replication (49:312) and systemic
trafficking (114:246). The remaining unsupported base pair
(61:299) displayed low to moderate reactivity and is in Case
0 context, and hence likely forms a wobble base pair. Why it
was annotated differently by the structural prediction soft-
ware is not clear, but again, functional mutagenesis sug-
gests this G/U pair has an essential role in PSTVd infection
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(see below). Finally, in contrast to whole molecule studies,
when SHAPE was performed using nine fragments span-
ning the PSTVd genome all but one of the 17 G/U pairs in
the canonical structure had low SHAPE reactivity, consis-
tent with being base paired. Reactivity of the remaining pair
was not determined for experimental reasons. These differ-
ential results may be explained by the fact that SHAPE data
suggests which nucleotides are involved in cWW base pairs
(59), but does not indicate which bases are actually paired
with each other. The RNAstructure software then utilizes
the SHAPE data to predict the most stable structure, which
could vary based on small differences in reactivity between
different studies. Another important factor is the flexibility
of RNA, which may form alternative structures in solution.
Thus, it is possible that SHAPE using genomic fragments
will yield somewhat different results than whole molecule
SHAPE. In any case, regardless of whether G/U combina-
tions actually form cWW wobble base pairs, our mutagen-
esis data suggests they are critical for PSTVd infection.

It is also important to consider that the PSTVd genome
exists as both positive and negative strands in infected cells,
and may fold in different ways to perform essential func-
tions that likely involve interactions with multiple host pro-
teins. In light of this, it is somewhat surprising that results
from in vitro and in vivo whole molecule SHAPE performed
with the PSTVd NB variant generated largely similar struc-
tures (53), despite the presence of host binding proteins in
vivo that might shield nucleotides from SHAPE reagents.
Possible explanations for the relatively minor differences
observed in this study include the asynchronous nature of
whole plant infections, where the entire ensemble of infec-
tion stages co-exist, and the likely transient nature of viroid-
host protein interactions.

G/U and classical WC base pairs have similar structures,
but G/U pairs have more conformational flexibility. For
functional mutagenesis PSTVd G/U pairs were replaced
with A/U and G/C, with A/U being the more flexible of the
two. G/U was also replaced by U/U, which has even greater
flexibility. In addition, because GU and UG are not self-
isosteric, G/U was replaced by U/G. With respect to repli-
cation in inoculated leaves, three outcomes were evident
(Figure 4). First, at one G/U pair (7:353) known to be lo-
cated within RNA Pol II and TFIIIA binding sites (19,57),
none of the introduced mutations allowed replication, and
this result was confirmed in protoplast experiments (Sup-
plementary Figure S4). Second, six pairs (15:347, 27:335,
35:326, 61:299, 64:296 and 156:205) could replicate with
substitutions resulting in U/U and/or A/U pairs, but not
more rigid G/C pairs or G/U to U/G, suggesting that flexi-
bility at these locations might have a role in replication. Ad-
ditional studies subsequently confirmed a role in replication
for five of these six G/U pairs (see below). Third, at ten pairs
(40:321, 44:317, 49:312, 76:283, 104:254, 106:252, 114:246,
115:245, 130:232 and 132:230) three or more mutation types
were able to replicate in inoculated leaves. Eight of these
more permissive pairs reside in the same WC base-paired
stem as another G/U pair, suggesting functional compen-
sation. This also was confirmed by further studies (see be-
low).

Considerably fewer mutants were able to pass the more
stringent test of both successful replication and systemic

spread. Nevertheless, substitutions resulting in U/U and
A/U pairs were again more likely to be functional than
G/C mutants. In keeping with non-isostericity, G/U to
U/G mutants proved least functional. Only two of these
mutants could systemically infect plants, and one of them
was severely impaired (Figure 4). In summary, this study
identified one G/U pair (7:353) required for replication and
six (27:335, 44:317, 61:299, 64:296, 76:283 and 156:205) es-
sential for effective systemic spread. One of these, 61:299,
was not annotated as a G/U base pair by whole molecule
SHAPE.

Analysis of more permissive sites with two G/U pairs
in the same WC base paired stem using double mutants
also proved informative. This study confirmed our suspicion
that one pair might compensate for the other, and impli-
cated six of the stem co-resident G/U pairs (44:317/49:312,
61:299/64:296, and 104:254/106:252) in PSTVd replication
(Figure 5). Three of these G/U pairs (44:317, 61:299, and
64:296) were shown by single mutant analysis to also be
essential for systemic spread (see above). Two further co-
resident G/U pairs, 114:246/115:245, were found to be crit-
ical for systemic spread. It should also be noted that two of
the G/U pairs determined to be critical for PSTVd infectiv-
ity in this study, 49:312 and 114:246 (both Case 2), were not
annotated as G/U base pairs by whole molecule SHAPE.

Gain-of-function experiments carried out on G/U pairs
that did not share a stem with another G/U pair were sur-
prisingly successful, and showed that mutations (to G/C)
that blocked replication could be at least partially sup-
pressed by addition of a new G/U pair at a different lo-
cation in the same stem, resulting in both successful repli-
cation and systemic spread (Figure 6). This study revealed
the critical need for G/U pairs in stems containing 15:347,
27:335 and 35:326. On the other hand, this approach did
not restore function to the 7:353 G/U to G/C mutant,
likely further highlighting its role in replication. G/C mu-
tations of Case 2 pairs 76:283 and 156:205 also could not
be suppressed, suggesting that perhaps Case 2 context im-
parts some unique property that cannot be mimicked by a
Case 0 or Case 1 G/U pair. In this regard, we speculate that
Case 0 and Case 1 G/U pairs provide a necessary flexibility
that can be achieved by locating a single G/U pair at dif-
ferent positions within a stem, whereas Case 2 G/U pairs
have more specific, location-sensitive functions. In some in-
stances, Case 2 G/U function might also involve flexibility
to alternatively form a cWW base pair or not to base pair.

To summarize, functional mutagenesis provided evidence
that G/U pair 7:353 is required for replication, and that
15:347, 27:335, 35:326, 44:317, 49:312, 61:299, 64:296,
104:254 and 106:252 are also important for this process.
Further, the G/U pairs 27:335, 44:317, 61:299, 64:296,
76:283, and 156:205 are critical for systemic spread, and
15:347, 35:326, 114:246 and 115:245 are also important for
this activity. Several pairs appear to be involved in both
replication and systemic spread, including 15:347, 27:335,
35:326, 44:317, 61:299 and 64:296.

Evidence of important function is lacking for only three
sites. G/U pair 40:321, which is present alone in a stem, does
not appear to be required for replication and mutation to
more rigid G/C does not abolish systemic spread. Single-
and double-mutant analysis of stem co-resident 130:232
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and 132:230 indicated that these G/U pairs also are not re-
quired for replication, and roles in systemic spread could
not be established. However, we note that these are the only
two G/U pairs where non-isosteric U/G mutants were sys-
temically infectious, suggesting these sites may be less im-
portant.

As perhaps might be expected, a survey of 363 PSTVd
variants using sequence data available from the National
Center for Biotechnology Information showed that nu-
cleotides constituting the 17 G/U pairs are very highly con-
served, and in some cases invariant (Supplementary Table
S4). For example, no substitutions were observed in G/U
pairs shown here to be essential for replication (7:353, Case
1) or entry into the vascular system (76:283 and 156:205,
both Case 2). Another Case 2 G/U pair essential for sys-
temic spread, 76:283, also showed no substitutions. On the
other hand, base substitutions were also absent from some
G/U pairs for which important function has yet to be
demonstrated, including 40:321 and 132:230 (both Case 0).
Notably, of the six total G/U pairs where no substitutions
were observed, three were in Case 2 context. These obser-
vations underscore the importance of G/U pairs and the
special nature of Case 2 pairs.

Using a novel deep sequencing approach (Figure 3), we
also investigated the type and frequency of natural varia-
tion at G/U pairs in progeny quasispecies derived from a
cloned master sequence. We considered only variants shared
by cognate libraries from inoculated (local) and systemi-
cally infected leaves, as these were considered more likely
to retain both the ability to replicate and traffic systemi-
cally. As perhaps might be expected, we found that in vari-
ant progeny genomes, which represented only ∼10% of the
population, G/U pairs were most often replaced by A/U
and G/C pairs (Table 5). However, unlike results of muta-
genesis studies where A/U mutants were more likely to be
functional, A/U and G/C substitutions were equally likely.
A comparison of all nucleotides further revealed that sub-
stitutions at classical WC pairs and G/U pairs occurred
just over half as often as expected by chance, with substi-
tutions at Case 2 G/U pairs occurring at the lowest rate
(Table 6). Thus, substitutions of nucleotides involved in
A/U, G/C and G/U pairs is more likely to negatively im-
pact function than replacements in loop regions, which oc-
curred twice as often as expected. We speculate that con-
servation of G/U pairs is, at least in part, a reflection of
their importance for providing conformational flexibility,
while canonical WC pairs largely establish overall PSTVd
secondary structure by creating relatively rigid stems. As
all viroid species have characteristic rod shaped-secondary
structures, it seems this feature is critical for replication
and systemic spread. In addition, it is probable that specific
G/U and canonical WC base pairs mediate important con-
tacts with host factors. Thus, both are crucial for PSTVd
viability.

Further comparison of outcomes from deep sequencing
PSTVd variants (Table 5) and directed mutagenesis (Fig-
ure 4) is informative. Of the 37 total mutations shared in
cognate local and systemic libraries, 32 coincide with tested
mutations (i.e. G/U to A/U, G/C or U/U). Of these, 20
(62.5%) proved to be replication competent and 11 of these
(34.4%) could systemically infect plants. Thus, similar to

plant virus populations (54), non-functional variants can
be maintained in the presence of wild type PSTVd. How-
ever, a considerably larger number of non-functional vari-
ants, and variants with non-WC substitutions that were
not tested by mutagenesis, were observed in aggregate in-
dividual libraries. Thus, our rationale for considering only
mutants shared by local and systemic libraries was justi-
fied. That said, there are several cases where there is lit-
tle alignment between deep sequencing and mutagenesis
results. To highlight two extreme cases, the UG pair at
7:353 did not tolerate any of the introduced mutations,
yet UU and UA variants were observed in progeny pop-
ulations. This likely reflects support of these variants by
wild type PSTVd. At the other extreme, 106:252 was classi-
fied as a permissive pair based on mutagenesis results, but
no variants meeting our criteria were detected in progeny
quasispecies. This may indicate that variants at this po-
sition are restricted or simply out-competed by wild type
PSTVd.

We also report the first instance of G/U pairs involved in
RNA trafficking. Cell-to-cell spread of viroids and viruses
occurs through plasmodesmata, which function as chan-
nels that provide continuity between plant cells. While the
structure, composition, and transit mechanisms of these
organelles are incompletely understood, they are known
to mediate the transport of small molecules and macro-
molecules, including proteins, RNAs, and RNA-protein
complexes (60–63). Importantly, plasmodesmata are dy-
namic in nature and can effect changes in permeability that
permit transport to be finely regulated. Plasmodesmata also
function as gateways to the vascular system, allowing sig-
nals to be propagated throughout the plant body but also
serving as a highway for systemic spread of viruses and vi-
roids.

Our analysis of G76A and G156A mutants, which impact
Case 2 G/U pairs 76:283 and 156:205, revealed that both
were unable to transit from bundle sheath cells into phloem
cells, although they were competent to move in the opposite
direction following inoculation into vascular tissue (Figures
10 and 11). While previous studies showed that a PSTVd
loop motif (loop 7) also mediates vascular entry (58), the
present study is the first to show that requirements for RNA
transit at this boundary are directional and that widely sep-
arated sequences and structures are involved. Other work
has identified motifs responsible for directional trafficking
from bundle sheath to mesophyll cells (37), from palisade to
spongy mesophyll (48,64), and from epidermal to palisade
mesophyll cells (46). As cell-to-cell movement of PSTVd oc-
curs through plasmodesmata (65), it follows that plasmod-
esmal gates likely differ between most and perhaps all cell
types. It also appears that requirements for passage are of-
ten and possibly always directional. The work reported here
adds further evidence for directional transit mechanisms,
which would allow precise regulation of RNA transport
and the establishment of distinct cellular boundaries. In this
case, the ability of PSTVd to pass through a plasmodes-
mal gate between bundle sheath and phloem cells likely in-
volves contacts between a transport and/or plasmodesmal
protein(s) at loop 7 (a bulge involving nucleotides 43 and
318) and G/U pairs 76:283 and 156:205. Further study will
be required to identify these host factors.
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