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The presence of iduronic acid in chondroitin/dermatan sulfate changes the

properties of the polysaccharides because it generates a more flexible chain

with increased binding potentials. Iduronic acid in chondroitin/dermatan

sulfate influences multiple cellular properties, such as migration, prolifera-

tion, differentiation, angiogenesis and the regulation of cytokine/growth

factor activities. Under pathological conditions such as wound healing,

inflammation and cancer, iduronic acid has diverse regulatory functions.

Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase

1 and 2) that have different tissue distribution and properties. The role of

iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast

changes in connective tissue features in patients with a new type of Ehler–
Danlos syndrome: adducted thumb-clubfoot syndrome. Future research

aims to understand the roles of the two epimerases and their interplay with

the sulfotransferases involved in chondroitin sulfate/dermatan sulfate bio-

synthesis. Furthermore, a better definition of chondroitin/dermatan sulfate

functions using different knockout models is needed. In this review, we

focus on the two enzymes responsible for iduronic acid formation, as well

as the role of iduronic acid in health and disease.

Introduction

Dermatan sulfate (DS) is a glycosaminoglycan (GAG)

that is distinguished from chondroitin sulfate (CS) by

the presence of iduronic acid (IdoA), the C-5 epimer

of D-glucuronic acid (GlcA). IdoA occurs in variable

proportions in DS (Fig. 1A) and, as a result of the dif-

ferent position of the carboxyl moiety (Fig. 1B), it

generates a more flexible polysaccharide chain, allow-

ing specific interactions with several proteins and

polysaccharides. To form CS/DS, three specific

enzymes, dermatan sulfate epimerase 1 (DS-epi1),

dermatan sulfate epimerase 2 (DS-epi2) and dermatan

4-O-sulfotransferse 1 (D4ST1), are required [1]. These

enzymes are differently organized in various tissues

and, under different physiological conditions, they gen-

erate CS/DS of a very different structure. DS is found

relatively late in the evolutionary tree and first appears

in molluscs, sea urchins and sea cucumbers. It is then

found in ascidians and in the whole vertebrate phyla

[2]. However, it is absent in Caenorhabditis elegans and

Drosophila melanogaster. The present review presents

the structure, function and biosynthesis of these struc-

turally different CS/DS polymers and explains how
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they are modified in response to different physiological

and pathological processes.

Structure of CS/DS

CS/DS chains are found on at least 32 different core

proteins forming proteoglycans (Table 1). Six of these

are also substituted with heparan sulfate. Some of

these proteoglycans, such as CD44, a5b1 integrin and

collagen XV, are only part-time proteoglycans.

CS is a long polysaccharide consisting of the repeat-

ing disaccharide units GlcA and N-acetyl-galactos-

amine (GalNAc), attached to serine residues of core

proteins. The chains from eukaryotic organisms are

extensively modified by sulfation, yielding six different

disaccharides: GlcA-GalNac residues (O unit), GlcA-

GalNAc-4-sulfate (A unit), GlcA-GalNAc-6-sulfate

(C unit), GlcA-GalNAc-4,6-disulfated (E unit). The

GlcA residue can also be sulfated at the 2-position

giving rise to B units (GlcA-2-sulfated-GalNAc-4-

sulfated) and D units (GlcA-2-sulfated-GalNAc-6-sul-

fated) [3]. Even more complex sulfation patterns have

been described in the invertebrate phyla [2].

An important modification is the epimerization of

GlcA residues to IdoA residues by C-5 inversion at the

polymer level of a (b-GlcA-1,3-b-GalNAc-1,4-)n
substrate (Fig. 1B) [4]. Individual saccharide units in

CS/DS can exist in different conformations depending

on their structural arrangement. IdoA residues allow

flexibility given their ability to switch between 1C4

(chair), 2S0 (skew boat) and 4C1 (chair) conformations

(Fig. 1C), whereas GlcA residues are less flexible and

exist in the 4C1 (chair) conformation [5]. IdoA can

occur in three different arrangements: (a) as a single

IdoA-containing disaccharide surrounded by GlcA

containing disaccharides; (b) in structures where they

alternate with GlcA containing disaccharides or (c) in

long blocks of adjacent IdoA-containing disaccharides

(Fig. 1A). The sulfation pattern differs according to

the IdoA distribution because IdoA blocks are mainly

Ser

Iduronic acid blocks

Alternating iduronic-glucuronic blocks

Linker region

Glucuronic acid blocks

HOOC
OR1

OH
O
HO

OH

O

OR1

OH

OH

HOOC
O

HO
HO

OR1

OH

OH

1

2

3

4
51

2

3

4
51

234

5

COOH

1C4 2S0 4C1

O

O
ONAc

OR3 O

O
ONAc

OR3OR2

OR2

O
O

HO
OR1

COOH

O

OR1

OH

O

HOOC

-GlcA-1,3- -GalNAc-1,4-

-IdoA-1,3- -GalNAc-1,4-

n

n

R1=SO3H/H, R2=SO3H/H, R3=SO3H/H

DS-epimerases

A

B

C

Fig. 1. Structure of CS/DS and conformations of IdoA. (A) The domains of variable length containing blocks of IdoA, alternating IdoA and

GlcA or blocks of GlcA. (B) The epimerase reaction. (C) Conformations of IdoA.
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Table 1. CS/DS PGs and functions of the CS/DS chain. NA, not analyzed.

PG

Presence

of IdoA Functions of PG

CS/DS binding proteins and

CS/DS functions

Extracellular matrix

Aggrecan NA Chondroskeletal morphogenesis, chondrocyte–matrix

adhesion, cartilage hydration, neuronal cell aggregation [78]

Water retention

Versican IdoA+ Increases differentiation, motility, proliferation and metastasis

[79,80]. ECM assembly [81]

FGF family, L- and P-selectin,

chemokines

Decorin IdoA+ TGF-b interaction [82], self-association [83], modulation of

proliferation, survival, migration and angiogenesis [84],

coagulation [60], LDL interaction [54], Borrelia invasion

[65], a-defensin targeting [66], progeroid and Ehlers–Danlos

syndromes [85]

FGF2, FGF7, HGF, HCII,

a2b1integrin, tenascin-X, fibril

formation, DS:DS

self-association [86]

Biglycan IdoA+ Interactions withTGF-b [87], BMP4/chordin [88], collagen I

[89], associated with tumour in gastric tissue [90] and

endothelial cells [91], involved in inflammation and

development [92,93], neuronal survival [94], bone

development and osteoporosis [95,96]

HCII, FGF family

Epiphycan IdoA+ Chondrocyte differentiation [97] and matrix organization

in the growth plate [98]

NA

Collagen IX NA Organization of cartilage [99], associated with

fibroblasts in colon cancer

NA

Collagen XII NA Organization of cartilage and skin [100] NA

Collagen XIV NA Organization of cartilage and skin [101,102] NA

Cell surface

Betaglycan NA TGF-b presentation [103,104] and suppression of cancer

progression and metastasis [105], binds inhibin and

suppresses activin signalling [106]

NA

Syndecan-1 IdoA+ Regulation of tumour cell survival and proliferation, growth

factor and cytokine binding, adhesion [107–109]

Midkine, pleiotropin, FGF

Syndecan-3 NA Role in human labour [110,111], adhesion, growth factors

co-receptor, neurite outgrowth [112], expressed in tumour

stromal vessels [113]

NA

Syndecan-4 NA Interaction with Frizzled7 and Dishevelled,

regulates noncanonical

Wnt signalling and convergent extension

movements in Xenopus

[114], regulates neural crest cells migration [115] and neural

induction via extracellular signal-regulated

kinase and protein

kinase C pathways [116], adhesion, growth

factors co-receptor

[109], wound healing and angiogenesis [117], up-regulated in

cancer and mediator of cell spreading [118]

Midkine, pleiothropin, bFGF [109]

CD44 IdoA+ Tumour growth, angiogenesis, metastasis,

migration, HGF binding [119]

Migration, HGF

NG2 NA Regulates tumour cell growth, motility

and survival [120]

Differentiation, proliferation

and motility, PDGF-AA and

FGF2, adhesion [121]

a5b1 integrin NA Fibronectin binding, regulation of adhesion

and migration [122]

NA

Nervous system

Neuropilin-1 NA Metastasis, neuronal guidance, regulation

of cell migration [123]

VEGF signalling

Neurocan NA Up-regulated in astrocytoma [124], neurite

outgrowth, growth factors binding, brain

ECM organization [125]

N-CAM, HB-GAM, amphoterin
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4-sulfated with some adjacent sulfated IdoA residues

(iB) close to the nonreducing terminal of the blocks

[6,7]. The short GlcA blocks are mostly 4-sulfated,

whereas longer blocks also contain 6-sulfated GalNac

residues [8]. The resulting CS/DS chains therefore con-

tain different domains that enrich their functional

properties. The presence of alternating IdoA-GlcA or

isolated IdoA has been overlooked in many cases. Fur-

thermore, the content of IdoA varies within the same

proteoglycan depending on the tissue of expression [6]

and physiological conditions [9]. This is the case for

decorin, which is highly iduronated in skin. In bone

decorin, however, IdoA is virtually absent [6]. Given

the fact that a chain containing IdoA always contains

GlcA, the name CS/DS indicates the hybrid nature of

the chain.

The structural characterization of CS/DS takes

advantage of specific lyases such as chondroitinase

ABC, AC and B, which specifically degrade galactosa-

minoglycans depending on the presence of IdoA or

GlcA. The development of high-resolution HPLC sys-

tems with pre- or post-column fluorescent derivatiza-

tion has enabled the separation and quantitation of

the various building blocks [10,11]. These methods can

only determine the degree of sulfation and the occur-

rence of IdoA- and GlcA-blocks. However, detailed

sequence analysis is not possible. The advent of sensi-

tive MS with different fragmentation procedures has

lead to promising results [12,13]. Recently, the com-

plete sequence determination of the chondroitin sulfate

in bikunin has been accomplished [14].

Biosynthesis of DS

DS-epi1 and DS-epi2 catalyze the formation of IdoA,

the stereoisomeric form of GlcA, by repositioning the

C5 carboxyl group in space (Fig. 1B). DS-epi1 (coded

by the gene DSE) and DS-epi2 (coded by the gene

DSEL) are both ubiquitously expressed and have com-

mon structural features [15,16].

Table 1. (Continued).

PG

Presence

of IdoA Functions of PG

CS/DS binding proteins and

CS/DS functions

Phosphacan IdoA+ Mediates migration and adhesion, differentiation

of neuro stem cells [125–128]

HB-GAM, amphoterin, midkine

Brevican NA Promotes glioma invasion [129,130], regulation

of synaptic plasticity [131]

Neuritogenic activity

Appican (AbPP isofom) NA Neuronal cell adhesion and migration,

neurite outgrowth [132]

Midkine, pleiotrophin

Neuroglycan C NA Cerebral development and neuritogenesis NA

Basal membranes

Perlecan NA Basal membrane stability, embryogenesis,

cytokine interaction

[133] interaction with FGFs, angiogenis [134]

NA

Bamacan NA Basal membrane, regulator of angiogenesis [135],

anchorage-independent growth [136]

NA

Leprecan NA Kidney development, fibrillar collagen regulator [137] NA

Collagen XV NA Suppresses tumour growth [138] NA

Intracellular

Serglycin IdoA+ Inflammatory process [139] Cytokine binding and coagulation,

granulocyte maturation

Other proteoglycans

SRPX2 IdoA+ Overexpressed in gastrointestinal cancer,

increases endothelial proliferation, cell signalling

modulation, endothelial cell migration

and angiogenesis [140]

HGF

Endocan IdoA+ Promotes tumour formation [141,142],

mitogenic regulator, inflammation

HGF

Testican-1 NA Inhibition of proteases, neurite extension [143] NA

Testican-2 NA Promotes invasion and abrogates proteases inhibition

of other proteins of the testican family [144]

NA

Testican-3 NA Inhibits invasion, regulates neurite development [145] NA

Bikunin NA Stabilization of ECM, activity in cumuli oophori,

modulation of antiproteases [14,146]
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DS-epi1 and 2 share a common N-terminal epimer-

ase domain (Fig. 2A) with 51% amino acid sequence

identity between the two enzymes. The secondary and

tertiary structures of this domain in the two enzymes

are very similar. DS-epi1 has a C-terminal domain of

unknown function and three-dimensional structure.

There is a similarly positioned domain in DS-epi2 with

unknown function and structure. These two domains

in the two epimerases do not have significant homol-

ogy. In addition, in DS-epi2, there is a C-terminal

domain, which has 16% amino acid identity with

chondroitin-O-sulfotransferase 1, recognized in the

database as a CS/DS–O-sulfotransferase domain

(Fig. 2A), suggesting that DS-epi2 is an enzyme with

dual epimerase and O-sulfotransferase activity. Other

enzymes for GAG biosynthesis have been shown to

accommodate dual activities [17,18]. The functional

epimerase domain of the DS epimerases comprises two

structural domains: one mainly composed of a-helices
and one of b-sheets (Fig. 2B). These two domains of

DS-epi1 were modelled on the crystal structure of hep-

arinase II [19]. At their boundary, they form a groove,

where the substrate is positioned. Some amino acids

that are essential for enzyme activity have been identi-

fied and a catalytic mechanism has been proposed.

Histidine 450 abstracts the C5 proton from one side of

the sugar plane of GlcA. This is followed by cleavage

or glycosidic linkage between GalNAc and GlcA to

generate a C4–C5 double bond containing hexuronic

acid intermediate. This structure is finally protonated

by histidine 205 adding a hydrogen at the side of the

sugar plane that is opposite to the abstraction side.

*

1 27 690

* *
TM

720

* *
TM

Sulfotransferase domain

SP

Unknown

Unknown

*

1 27

SP

Epimerase domain

Epimerase domain

3’-PAPS binding site

958

1,222

DS-epi1

DS-epi2

DS-epi1

Unknown

TM

958690

b.30.5

391

a.102.2

221Amino acid

SCOP domain

Sec. pred.

SP

A

B

Fig. 2. (A) DS-epi1 and DS-epi2 domain structures. (B) Three-dimensional modelling of the DS-epi1 epimerase domain based on the crystal

structure of heparinase II. A chondroitin sulfate tetrasaccharide is positioned in the groove containing the active site.
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Finally, the glycosidic link is recreated. As a result of

the reaction, the carboxyl group has a different spacial

orientation in the IdoA epimer than in the starting

GlcA. A prerequisite for activity is the presence of at

least three of the four N-glycans.

DSE and DSEL are on chromosomes 6 and 18,

respectively [15,20]. The exon/intron organization of

the two enzymes is very different because DSE has six

exons and the coding sequence spans five exons,

whereas DSEL has only two exons (being the whole

ORF present in the single exon 2).

The epimerase activity is highly expressed in the

spleen, stomach, uterus, ovary, kidney and lung. In the

brain, the activity is low and no activity is found in

serum [21]. By analyzing the total activity in tissues

and mouse embryonic fibroblasts of DS-epi1�/� and

DS-epi2�/� mice, it is possible to show that DS-epi1 is

the predominant epimerase in most tissues, whereas

DS-epi2 is the main epimerase in the brain [21,22].

DS-epi2 also has a relatively high expression in the

kidney.

The epimerase reaction is reversible, with an equilib-

rium of 9 : 1 (GlcA to IdoA) under in vitro conditions

when the biosynthetic complex has been solubilized

with detergent [4]. On the other hand, CS/DS chains

in vivo can contain a higher proportion of IdoA. This

is assumed to be achieved through functional collabo-

ration between DS-epi1 and D4ST1 (Fig. 3) [23]. In

support of this, transient down-regulation of D4ST1

results in a reduced IdoA content [24]. Genetic muta-

tions in D4ST1 found in a new type of Ehlers–Danlos

syndrome (i.e. adducted thumb-clubfoot syndrome)

also result in CS/DS of low IdoA content [25].

Little is known about the regulation of epimerase

activity. Transforming growth factor (TGF)-b-stimu-

lated fibroblasts have reduced levels of epimerase

activity, a reduced expression of D4ST1 and an

increased expression of C4ST1, resulting in CS/DS

with a considerably lower amount of IdoA [26]. This

effect is further increased by combined treatment with

TGF-b, epidermal growth factor and platelet-derived

growth factor (PDGF) (9). In another study, PDGF

promoted the migration of fibroblasts, comprising a

mechanism that is proposed to involve the up-regula-

tion of IdoA in the proteoglycan CD44 [27].

The products of DS-epi1 and 2 are difficult to assess

as a result of the complex interaction with D4ST1.

DS-epi1 can generate long blocks of IdoA together

with D4ST1 (Fig. 3). Down-regulation of D4ST1

resulted in the abrogation of IdoA-containing blocks

without affecting overall epimerase activity [24]. The

role of DS-epi2 has been more difficult to assess. Over-

expression of DS-epi2 increased IdoA in hybrid struc-

tures (Fig. 3). No increase of IdoA blocks was

recorded upon overexpression of DS-epi2, whereas

overexpression of DS-epi1 resulted in enhanced block

formation [16]. By contrast, down-regulation of

DS-epi2 in fibroblasts decreased the proportion of

IdoA blocks, although to a smaller degree than that

obtained by down-regulation of DS-epi1. Data

obtained from DS-epi1 knockout mice show that

DS-epi2 mainly forms alternating structures [28]. These

data indicate that DS-epi2 might be primarily involved

in the formation of isolated or alternating IdoA struc-

tures (Fig. 3).

Different proteoglycans produced by the same cell

can vary greatly with respect to their IdoA content

and distribution. For example, decorin and biglycan

have been found to contain blocks of IdoA, whereas

versican only has isolated IdoA. Other studies have

suggested that the core protein regulates the activity of

the DS epimerases. This was demonstrated by the gen-

eration of chimeric proteins of decorin, which has a

high content of IdoA, and colony-stimulating factor, a

part-time proteoglycan with a low content of IdoA.

The chimeric decorin–colony-stimulating factor con-

tained less IdoA than the unmodified decorin [29].

This suggests that core proteins carry information that

may direct the proteoglycan cores to compartments

within the Golgi complex with different amounts of

DS epimerase activity [30].

Functions of IdoA as indicated by
targeting of the two epimerases

The phenotype observed in DS-epi1 knockout mice is

dependent upon the genetic background. Using mice

with a pure C57BL6 genetic background, all pups die

perinatally, whereas, when using mice with a pure

NFR background, approximately half of the pups die.

The NFR pups have a retarded growth rate in the late
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Fig. 3. Formation of IdoA in CS/DS. The amount and distribution of

IdoA depends upon the expression level of the DS epimerases and

D4ST1.
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embryological stages of development and, furthermore,

~ 20% of the pups display gastroschisis, an abdominal

wall-closure defect that presents intestines outside the

body (R. Gustafsson, unpublished data). DS-epi1

depleted mice in a mixed 129Sv/C57BL6 genetic back-

ground have been investigated in more detail. The

pups were born at a normal Mendelian frequency [28].

At birth, they are smaller and have a crooked tail.

Because decorin is a major proteoglycan involved in

the organization of collagen fibrils in skin, this tissue

was studied in more detail. DS-epi1�/� skin was more

fragile than the skin of wild-type mice. DS-epi1�/� col-

lagen fibrils were more heterogeneous in denaturation

profiles and in vitro experiments showed that, in DS-

epi1�/� skin, decorin was the proteoglycan that was

responsible for altered collagen structure (Fig. 4A).

Electron microscopy showed that the diameter of DS-

epi1�/� fibrils was 85 nm compared to 62 nm for wild-

type mice [28]. In summary, iduronic acid in the CS/

DS chain and particularly of IdoA blocks participates

in skin collagen fibril maturation.

DS-epi2�/� mice do not show any evident pheno-

type [22]. The brain was analyzed because DS-epi2 is

the predominant epimerase in this tissue [22,31].

Accordingly, DS-epi2�/� brains had a 90% reduction

in epimerase activity. The brains of newborn mice con-

tain little IdoA (2% of the total chain), and this was

further reduced in DS-epi2�/� mice. However, the

brain extracellular matrix (ECM) architecture was

unaltered. It would be interesting to determine whether

more subtle phenotypes such as behavioural changes

are present in DS-epi2�/� mice.

Mice deficient in DS-epi1 and 2 were recently

obtained in a mixed 129Sv/C57BL6 genetic back-

ground. A large proportion of the pups die perinatally,

although a few survive until 7 weeks of age. Double
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knockout mice are dwarf and have approximately half

the size and weight of their wild-type littermates.

Down-regulation of DS-epi1 has been achieved in

the frog Xenopus laevis using morpholino injections

(E. Pera, unpublished data). Several abnormalities

were observed, such as the absence of the dorsal fin,

which could be explained by the altered migration of

neural crest cells into that anatomical structure.

Genetic alterations affecting IdoA
formation in humans

There are no mutations in DS-epi1 associated with

human diseases. However, mutations in D4ST1, which

functionally collaborates with DS-epi1 to make IdoA

blocks (Fig. 3), result in adducted thumb-clubfoot syn-

drome [32]. Mutations of D4ST1 result in reduced

amount of IdoA in CS/DS [25], also resulting in a defect

in collagen fibril maturation and reduced collagen

strength [28]. This autosomal recessive syndrome [33] is

characterized by facial changes, contractures of thumbs

and fingers, joint instability, skin hyperextensibility,

and heart and kidney defects. Additionally, myopathy

has been described in these patients [34].

DS-epi2 has been genetically associated with bipolar

disorder, which is a disease affecting ~ 1% of mankind

[15]. Interestingly, two single nucleotide polymor-

phisms predicted to change the amino acid sequence

were present in the bipolar disorder group and not in

the control group.

The role of IdoA in stem cell
development

Embryonic stem cells are obtained from embryos and

can be maintained in cell cultures as pluripotent stem

cell lines with a capacity to differentiate into whole

embryos. Studies have shown a four- to six-fold

increase of CS/DS during the differentiation of murine

embryonic stem cells to embroid bodies and to extra

embryonic endodermal cells. The formation of embroid

bodies and extra embryonic endodermal cells was

accompanied by a two- and four-fold increase of IdoA,

respectively [35], suggesting a role for IdoA. The bio-

synthetic genes DSE, DSEL and CHST14, coding for

D4ST1, were expressed at all stages. CHST14 was also

expressed in the extra embryonic endodermal cells.

However, the detailed structure of CS/DS, as well as its

functions, still needs to be determined.

CS/DS is enriched in the neural stem cell niche and

has been shown to play important role in the differenti-

ation of neural progenitor cells [36]. Its importance has

been demonstrated in progenitor cells from mice with

ablations of C4ST1 (a 4-O-sulfotransferase acting on

GlcA-containing sequences) and D4ST1. Down-regula-

tion of D4ST1 resulted in the abrogation of IdoA

blocks, as well as decreased neurogenesis and prolifera-

tion and a change in the expression of cell surface

receptors for fibroblast growth factor (FGF)-2 and epi-

dermal growth factor, whereas C4ST1 deficiency did

not affect these processes [37]. The importance of IdoA

motifs was further underlined by the fact that mRNA

expression of the DS epimerases was higher in differen-

tiated neurones than in precursor stem cells [38].

IdoA-containing structures in brain
development

CS/DS structures are implicated in brain development

[39] and injury to the central nervous system [40]. Dur-

ing development, IdoA-containing structures (iA, iB,

iE and iD) are ubiquitous in different parts of the

brain [31,41], although at low concentrations. Indeed,

CS/DS brains of newborn mice comprise only 2% idu-

ronic acid [22]. The CS/DS bioenzymatic machinery is

carefully regulated during brain development, resulting

in a large variation of IdoA-containing structures. For

example, in the cerebellum, iD decreases and iB

increases from newborn to adult age [31]. Interestingly,

the embryo-derived CS/DS shows a greater binding of

FGFs (FGF-2, -10 and -18), pleiotrophin, midkine,

vascular endothelial growth factor (VEGF) and hepa-

tocyte growth factor (HGF) than CS/DS from the

brains of adult animals [42].

The role of IdoA in CS/DS under
pathological conditions

Inflammation

The involvement of CS/DS in inflammation has been

extensively explored, whereas the role of IdoA is not

well defined [43,44]. The inflammatory response

initiated by infection or injury results in diverse pro-

cesses, involving cell recruitment, extravasation and

cell/pathogen clearance. For example, during wound

healing, CS/DS is reported to be the dominating GAG

in wound fluid [45,46]. FGF2 and FGF7 are two

important growth factors during wound repair and

they have been shown to preferentially bind to IdoA-

containing motifs in CS/DS, promoting proliferative

processes (Fig. 4A,F). CS/DS has been proposed, in

combination with FGF-10, as a pharmacological

accelerator of wound closure as a result of its capacity

to stimulate re-epithelialization [47]. CS/DS can

potentially affect several steps during cell recruitment.
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For example, CS/DS has been shown to interact with

P-selectin, which is expressed on endothelial cells and

platelets [48] (Fig. 4E). CS/DS is reported to influence

the recruitment of polymorphonuclear cells in a thio-

glycollate-induced inflammatory model in a supposedly

P-selectin manner [49]. RANTES, a leukocyte-recruit-

ing chemokine, also interacts with IdoA-containing

segments in CS/DS [50]. An essential step during

extravasation is the increased expression of intercellu-

lar adhesion molecule-1 (ICAM-1) on endothelial cells.

IdoA in CS/DS induces endothelial expression of

ICAM-1 mediated by nuclear factor-kb [45] (Fig. 4G).

Interestingly, macrophages are reported to produce

CS/DS containing up to 70% of IdoA [51]. After lipo-

polysaccharide stimulation, macrophages predomi-

nantly secrete CS/DS, either as free chains or bound

to the serglycin core protein.

Immune response

Autoimmunity is a result of a disarray in the immune

response, which becomes directed towards its own tis-

sue and cells. B cells participate in autoimmunity by

the production of antibodies and presentation of self-

antigens to T cells. IdoA motifs in CS/DS are reported

to augment the proliferation of B1-a cells and increase

their autoantibody production [52]. IdoA in CS/DS

interacts with components from apoptotic and dead

cells and forms complexes that enhance autoantibody

production. IdoA-containing structures in CS/DS bind

autoantigens, which were enriched after CS/DS-affinity

chromatography of cellular lysates. Two hundred

autoantigens were identified by MS and could be used

in western blot experiments to detect different autoan-

tibody patterns of diagnostic value in patient sera

[52,53]. Further studies are needed to clarify the

physiological role of CS/DS in the generation of

natural autoantibodies.

Atherosclerosis

Atherosclerosis, an inflammatory-driven disease, is

characterized by the accumulation of cholesterol in

arterial blood vessels, resulting in thicker and more

fragile artery vessels. Binding of low-density lipopro-

tein (LDL) to GAGs is considered to be one of the

steps in the onset of this disease [54]. The GAG inter-

action enhances LDL uptake by macrophages, leading

to the formation of foam cells (Fig. 4C). IdoA both in

CS/DS and heparan sulfate is reported to enhance the

binding of VLDL and LDL [55,56]. Recently, it was

reported that an antibody against CS/DS inhibited the

LDL–CS/DS interaction and inhibited LDL oxidation

in vitro [57]. Furthermore, the injection of anti-CS/DS

antibody in an atherosclerosis model of ApoE�/� mice

resulted in decreased arteriosclerotic lesions [58].

Coagulation

Coagulation is essential under normal physiological

conditions and several pathological conditions (e.g.

cancer, atherosclerosis and sepsis) have enhanced coag-

ulation. Thrombin, a serine protease, catalyzes the

conversion of fibrinogen to fibrin, which forms blood

clots in conjunction with platelets. Heparin cofactor II

(HCII) is a thrombin inhibitor and the only known

serpin to be activated by IdoA-containing CS/DS

(Fig. 4D). The HCII binding site to CS/DS differs

from that to HS [59]. The HCII binding structures in

CS/DS contain IdoA-2S-GalNAc-4S [60] or GlcA-Gal-

NAc-4,6-disulfated [61] in hexa- and octasaccharides

as minimal binding motifs. The complex CS/DS-HCII

is considered to be the major anticoagulant system

after injury of the vessel wall [60,62,63]. CS/DS con-

taining 2-O-sulfated IdoA also controls coagulation by

activating protein C [64].

Infection

CS/DS is involved in bacterial infections. Borrelia (caus-

ing Lyme disease) was shown to use the core protein of

decorin, as well as its CS/DS side chain, as a binding

target in the initial phase of infection [65] (Fig. 4B).

CS/DS released from decorin by proteases produced by

Pseudomonas, Enterococcus and Streptococcus [66] tar-

gets a-defensin and inhibits its bactericidal activity. The

optimal structure for interaction to a-defensin is a motif

containing a mix of IdoA and GlcA, which is found in

decorin present in fibrous connective tissue [66].

IdoA motifs in cancer

CS/DS is implicated in several cancer-promoting pro-

cesses, such as cell proliferation and metastasis [3].

DS-epi1, previously named SART2 (squamous cell car-

cinoma antigen recognized by T cell 2), is highly

expressed in many tumours and cell lines [20]. DS-epi1

expressed by cancer cells was recognized by HLA-A24-

restricted and tumour-specific cytotoxic lymphocytes.

Peptides from DS-epi1 were used in peptide-based

immunotherapy phase I clinical trials for prostate can-

cer [67], glioblastoma multiforme [68] and hepatocellu-

lar carcinoma [69] with moderate success. We have

established that DS-epi1 is not tumour specific because

DS-epi1 is ubiquitously expressed in normal tissues

[21]. Squamous cell carcinoma from oesophagus
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contains epimerase activity that is increased four- to

five-fold compared to normal oesophagus [13]. DS-

epi1 is localized both in stroma surrounding the

tumour and in cancer cells. To investigate the role of

IdoA, DS-epi1 was stably down-regulated in oesopha-

gus squamous carcinoma cell lines using shRNA

sequences. IdoA was shown to facilitate the binding of

HGF to its receptor and was essential for cMET-

dependent signalling [13] (Fig. 4F). In addition, DS-

epi1 down-regulated cells displayed fewer cytoplasmic

stress fibres than control cells. Furthermore, the focal

adhesion complexes were evenly distributed at the cell

surface in DS-epi1 down-regulated cells compared to

control cells, which displayed focal adhesion complexes

predominantly at the leading edge. This resulted in less

migration and invasion of DS-epi1 down-regulated

cells compared to control cells [13].

Different CS/DS structures mediate diverse function

during cancer development. The sulfation pattern of

CS/DS in cancer differs from normal tissue. For exam-

ple, 6-O-mono-sulfated disaccharides are accumulated

in tumours compared to normal tissues, whereas

4-O-mono-sulfated disaccharides are reduced [70]. Dur-

ing metastasis, CS/DS disaccharides sulfated at posi-

tions 4 and 6 (E units) present on the surface of cancer

cells facilitate colonization of the lung and liver [71,72].

The process might be mediated by the receptor RAGE,

which is highly expressed in the lung [73]. Another pro-

metastatic activity of the E units on cancer cells could

be a result of the capability to bind platelet P-selectin

[49], resulting in the formation of tumour microemboli.

These cell–platelet aggregates protect cancer cells

against elimination by the immune system. IdoA in

CS/DS is also known to mediate P-selectin binding.

Two CS/DS structures containing IdoA (iB units or iD

units), as isolated from marine animals, inhibit metasta-

sis in a P-selectin-dependent manner in a metastatic

tumour model [49]. Several studies report that CS/DS

structures mediate growth factor and chemokine bind-

ing. IdoA is essential for HGF-mediated binding and

an IdoA-containing tetrasaccharide is the minimum

structure required to confer affinity [74]. Exogenously

added IdoA-containing motifs inhibit the proliferation

of normal and malignant cells [75]. Elimination of

CS/DS on the cancer cell membrane by chondroitinase

B inhibits the migration and invasion of tumour cells

[76].

Future perspectives in research and
clinical therapy

Still largely unknown is how the complex structure of

CS/DS is formed and how it is regulated. A key

question is the organization of the biosynthetic

enzymes in the Golgi and how this organization is

modulated in different cells and tissues. The role of

the two different epimerases, DS-epi1 and 2, as well as

that of D4ST1, needs to be clarified.

Different functions of IdoA have been found both

in vitro and in vivo. The human situations where DS-

epi1 expression is changed in tumours and where D4ST1

mutations lead to deranged connective tissue have

been highlighted. The importance of IdoA is evident

from observations of DS-epi1 KO mice, which die

perinatally and/or present gastroschisis. Furthermore,

a decrease of IdoA leads to an altered collagen struc-

ture, resulting in a decreased tensile strength. Provoca-

tion of mice with targeted DS-epi1 and 2 will most

likely provide more information about other biological

functions of IdoA. Other data indicate the importance

of IdoA in cytokine activity and storage, cell prolifera-

tion and migration, the control of coagulation, the for-

mation of autoantibodies, the control of stem cell

stability and differentiation.

In disease, IdoA contributes to cancer progression

and infection. New avenues for future therapies have

been tested, such as vaccination against cancer [67–69],
or are warranted to control infection [65,66] and can-

cer [13,76,77]. DS epimerases inhibitors could be used

in cancer and fibrosis, as well as to guide stem cell dif-

ferentiation [3].
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