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Abstract

Reverberation enhances music perception and is one of the most important acoustic factors in auditorium design. However,
previous research on reverberant music perception has focused on young normal-hearing (YNH) listeners. Old hearing-
impaired (OHI) listeners have degraded spatial auditory processing; therefore, they may perceive reverberant music differ-
ently. Two experiments were conducted examining the effects of varying reverberation on music perception for YNH and
OHl listeners. Experiment | examined whether YNH listeners and OHI listeners prefer different amounts of reverberation
for classical music listening. Symphonic excerpts were processed at a range of reverberation times using a point-source
simulation. Listeners performed a paired-comparisons task in which they heard two excerpts with different reverberation
times, and they indicated which they preferred. The YNH group preferred a reverberation time of 2.5 s; however, the OHI
group did not demonstrate any significant preference. Experiment 2 examined whether OHlI listeners are less sensitive to (e,
less able to discriminate) differences in reverberation time than YNH listeners. YNH and OHI participants listened to pairs of
music excerpts and indicated whether they perceived the same or different amount of reverberation. Results indicated that
the ability of both groups to detect differences in reverberation time improved with increasing reverberation time difference.
However, discrimination was poorer for the OHI group than for the YNH group. This suggests that OHI listeners are less
sensitive to differences in reverberation when listening to music than YNH listeners, which might explain the lack of group
reverberation time preferences of the OHI group.
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times challenge speech perception more than short rever-

Introduction S . ;
beration times by smearing the acoustic content of words

Musical performance venues are designed to use acoustic
features, such as reverberation, to enhance the listening
experience for those in attendance. Reverberation is the
persistence of sound due to repeated acoustic reflections
off features in an environment after the source has
ceased. While there are many physical parameters of
reverberation that affect perception including direct-to-
reverberant ratio, interaural cross correlation, and lat-
eral energy fractions, the reverberation time remains
the most common metric for quantifying reverberation
(International Organization for Standardization, 1997).
Reverberation time is frequently calculated as the time
required for the sound level to decrease by 60 dB relative
to its initial level (Sabine, 1927).

Reverberation is commonly considered as a source of
distortion with respect to speech. Longer reverberation

and phonemes to a greater extent (Nabelek, Letowski, &
Tucker, 1989; Reinhart, Souza, Srinivasan, & Gallun,
2016). However, for the enjoyment of music, a certain
amount of reverberation is desirable because it embel-
lishes the direct sound and adds qualities of fullness,
warmth, and cohesion to the musical piece. As such,
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the reverberation time of a music venue is one of the
most important acoustic parameters affecting listener
perception and enjoyment of the music (Giménez,
Cibrian, & Cerda, 2012; Lokki, Pdtynen, Kuusinen,
& Tervo, 2012; Prodi, Pompoli, Martellotta, & Sato,
2015; Schroeder, Gottlob, & Siebrasse, 1974;
Yamaguchi, 1972).

Due to the important effect of reverberation on music
perception, reverberation time has become a critical
acoustic parameter in venue design (e.g., Adelman-
Larsen, Thompson, & Gade, 2010; Ando, 2007; Kuhl,
1954; Sakai, Setoguchi, & Ando, 1998; Winckel, 1962). If
the reverberation time is too short, music can sound
unblended and disconnected. In contrast, if the reverber-
ation time is too long, the dynamic contrasts, articula-
tion, and rhythm of the music may sound distorted.
Tsolias and Davies (2014) summarized previous research
and determined that the optimal reverberation time for
music listening environments ranges from 1 to 4s. This
recommended reverberation time range is so wide
because optimal reverberation time varies based on
musical style, tempo, and other inherent aspects of the
music. For music with lyrical content, listeners prefer
moderate reverberation times of approximately 1s
(Ando, 2007; Sakai et al., 1998), so as to enhance the
perceived quality of the music without overly distorting
the transmission of lyrical speech information. For music
without lyrical content, longer reverberation times are
generally preferred. Kuhl (1954) examined the preferred
amount of reverberation for classical, romantic, and
modern music in a sample of 370 musicians and engin-
eers. It was found that the preferred reverberation time
varied from approximately 1.5 to 2.1s. Similarly, Ando
(2007) summarized that the preferred reverberation
time for some classical orchestral music varies from
approximately 2 to 3s. Overall, these previous studies
have shown that the preferred reverberation time when
listening to music has high test-retest reliability and low
intersubject variability for a given type of music when
testing younger listeners with normal hearing (Kubhl,
1954; Sakai et al., 1998).

However, these previous studies have predominantly
been conducted using samples of young normal-hearing
(YNH) listeners with many studies only partially report-
ing the age and hearing status of their participants. These
samples may not represent the range of listeners, includ-
ing older listeners with hearing impairment, who may be
more likely to attend certain types of concerts. This may
be particularly true for classical music. An estimated
50% of classical music concert attendees are over 50
years of age and are likely to experience some degree
of age-related hearing impairment (Kolb, 2001; Lee
et al., 2012). Due to the potential prevalence of aging
and hearing impairment in the classical music attendee
population, it is important to consider how advanced age

and hearing impairment may affect perception of rever-
berant classical music. Previous studies investigating the
preferred amount of reverberation for classical music lis-
tening have not examined old hearing-impaired (OHI)
listeners and thus may not reflect the classical music
attendee population.

Previous work has identified that OHI listeners
experience degraded spatial auditory processing and per-
ceive reverberation differently than YNH listeners.
Akeroyd, Gatehouse, and Blaschke (2007) found that
OHI listeners show deficits in the ability to use reverber-
ation as a cue for distance perception compared with
YNH listeners (Akeroyd et al., 2007). It is also well
known that OHI listeners have significantly different per-
ception of reverberation in speech than YNH listeners
(Duquesnoy & Plomp, 1980; Gordon-Salant &
Fitzgibbons, 1993, 1995). This difference in perception
of reverberant speech persists even when audibility is
accounted for. Thus, it is hypothesized that age and sen-
sorineural hearing impairment fundamentally change the
way in which OHI listeners perceive reverberation
(Dobreva, O’Neill, & Paige, 2011; Reinhart & Souza,
in press; Zahorik & Brandewie, 2011). That is, the OHI
auditory system encodes reverberation differently than
the normal auditory system, irrespective of audibility.
If true, then it is likely that OHI listeners also perceive
reverberant music differently than the YNH listeners on
which previous studies have exclusively focused. If OHI
listeners prefer a different amount of reverberation when
listening to music than YNH listeners, then it is possible
that the acoustic criteria used in modern concert venue
design do not reflect the perceptual needs of OHI lis-
teners because those criteria are based on research in
YNH listeners.

Experiment |

The purpose of Experiment 1 was to examine whether
OHI listeners and YNH listeners prefer different
amounts of reverberation for listening to classical
music. For this experiment, both YNH listeners and
OHI listeners listened to excerpts from three classical
music recordings processed across a range of reverber-
ation times. Stimuli were presented in a round-robin
paired-comparisons task in which listeners selected
which of the recordings in a pair they preferred.
Results were compiled across listeners in each group to
construct a relative preference scale, and group results
were compared.

Methods

Participants. Thirteen YNH listeners and 14 OHI listeners
enrolled in the study. Audiometric thresholds were
measured in all listeners at octave frequencies from
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.25 to 8 kHz and interoctaves at 3 and 6 kHz. All listeners
in the YNH group had air conduction
thresholds < 20dB HL across the test frequencies.
Listeners in the OHI group additionally had their bone
conduction thresholds tested at octave frequencies from
.5 to 4 kHz. Results of the bone conduction testing con-
firmed that the etiology of hearing loss for the OHI lis-
teners was sensorineural in nature (air-bone threshold
gaps <10dB). Listeners also had symmetrical hearing
loss (pure-tone average threshold difference across the
ears <10dB). Audiometric results for both groups can
be seen in Figure 1. A cutoff of 40 years of age between
YNH and OHI groups was used based on evidence that
age-related hearing changes occur as early as 40 years
(Grose, Hall, & Buss, 2006). Additional relevant partici-
pant information for each group is summarized in
Table 1. Because music typically occurs over a wider
frequency bandwidth than speech (Chasin, 2003),
degree of hearing loss was quantified as the 6-frequency
pure-tone average (average thresholds at octaves
250-8000 Hz).

Because the tasks in the current study involve music
perception, it is possible that musical experience may
have some impact on performance. While the effect of
musical experience on perception of reverberation in
music was not a research question of the current study,
we sought to include approximately equal numbers of
musicians in both listener groups. This was done
to avoid musical experience as a significant confound
by having one listener group dominated by musicians.
For the current study, musicianship was defined as
having greater than 3 years of formal music training
(Bidelman, Gandour, & Krishnan, 2009; Bidelman &
Krishnan, 2010). All of the listeners reported good gen-
eral health at the time of testing. Listeners completed an
informed consent process and were compensated for
their time.

Stimuli and processing. Music stimuli included excerpts
from three classical symphonic compositions:

1. Beethoven’s Symphony no. 7, I movement, bars 1-53
2. Bruckner’s Symphony no. 8, I movement, bars 1-61
3. Mabhler’s Symphony no. 1, IV movement, bars 1-85

These stimuli were recorded by Lokki, Piatynen, and
Pulkki (2008) to provide a set of open-source anechoic
classical symphony recordings for academic research.
From the composite recordings, we isolated an 8 to
10's excerpt that comprised a coherent musical line with-
out too abrupt a start or finish, consistent with musical
phrasing. Excerpts were gated with a 0.5-s cosine-
squared ramp. The spectral and temporal characteristics
of the three excerpts are similar. The long-term magni-
tude spectra of the signals across octave bands are

Threshold (dB HL)

100 ............................................................

Threshold (dB HL)

100 ............................................................
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Figure 1. Participant audiograms for Experiment | for the left
and right ear. The shaded area represents the range for the YNH
group, and the white line represents the mean. The symbols rep-
resent mean threshold for the OHI group with error bars repre-
senting £ | standard deviation.

YNH =young normal-hearingg OHIl=old hearing-impaired; dB
HL = decibels hearing level.

Table I. Participant Characteristics for Experiment | for the
YNH and OHI Groups.

Young normal- Old hearing-
hearing group impaired group
N=13 N=14
Six-Frequency PTA M=6.0 M=455
(dB HL) SD=27 SD=125
Range: 0.8—-10.4 Range: 25.8-70.0
Age (years) M=265 M=68.2
SD=58 SD=11.9
Range: 22-39 Range: 41-83
No. of Musicians 5 4
Sex 5 Male, 8 Female 7 Male, 7 Female

Note. YNH =young normal-hearing; OHl=old hearing-impaired; PTA =
pure-tone average; dB HL = decibels hearing level.

depicted in Figure 2. The tempos for the Beethoven,
Bruckner, and Mahler excerpts were 125, 120, and 105
beats per minute, respectively. Overall, these stimuli were
selected due to the anechoic nature of the recordings.
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Figure 2. Long-term magnitude spectra in octave bands for the
musical excerpts. Each spectrum has been normalized to its max-
imum value.
dB = decibel.

This allowed us to control the exact amount of reverber-
ation without having to compensate for the uncontrolled
amount of reverberation that would otherwise be incor-
porated into studio and live recordings.

Musical excerpt stimuli were then processed using
a virtual reverberation simulator implemented in
MATLAB (Zahorik, 2009) to yield reverberant music
stimuli processed across a range of reverberation times
typical for a concert hall. In total, six broadband rever-
beration time conditions were simulated ranging from
1.0 to 3.5s in 0.5-s intervals. A three-dimensional room
(15m x 30m x 10 m) that is typical of a medium-sized
performance venue was simulated (e.g., Orlowski,
2014), and the absorptive properties of the room were
varied to yield the desired broadband reverberation
times. In brief, the simulation method uses an image
model to compute the early reflections and the direct
stimulus path (Allen & Berkley, 1979). In the current
model, the source was set 3m from the wall with the
receiver spatialized 15m away in a more central position
in the room. Independent Gaussian noise samples were
used to statistically simulate the late reverberant energy
using exponential decay functions in octave bands from
125 to 4000 Hz, and original stimuli were zero-padded as
needed for the duration of reverberant decay. These
components were spatially rendered using nonindividua-
lized head-related transfer functions to produce binaural
room impulse responses. Lastly, the binaural room
impulse responses were convolved with the excerpts to
produce the final reverberant stimuli. Final broadband
reverberation times, as well as the individual octave band
reverberation times for each of the six conditions can be
seen in Figure 3. Overall, the relationship between the
overall reverberation time and octave band values is
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Figure 3. Final broadband reverberation time as well as rever-
beration time as a function of octave bands for the six processed
reverberation conditions.

comparable to that measured in real-world performance
spaces of similar size (Beranek, 2012; Orlowski, 2014).

Preference task. Preference for reverberation time was
measured using a pairwise comparison task. The task
consisted of 90 trials in a round-robin comparison
format. In each trial, the participants listened to two
versions of the same musical excerpt processed at differ-
ent reverberation times. For the round-robin comparison
format, 15 comparisons were required to compare each
of the six reverberation time conditions to all of the
others (number of comparisons=N x (N —1)/2, where
N is the total number of conditions). Two trials for
each possible reverberation time comparison were con-
ducted to counterbalance the order of presentation of the
different reverberation times. All of these comparisons
were conducted for each of the three symphonic compos-
itions for the total of 90 trials (15 comparisons x 2
orders x 3 compositions). The order of the trials was
individually randomized for each participant.

In each trial, listeners were asked to select whichever
sample they preferred. Listeners did not have to listen to
the entire duration of the second stimulus if they knew
which they preferred after a few seconds. Listeners
were required to indicate a response even if they were
unable to determine a preference. To test for the pres-
ence of order selection bias, data were collected on how
frequently listeners selected either the first or second
stimulus in the trial. Listeners from both groups had a
slight order bias toward selecting the second stimulus
of a pair (53.0% for YNH group and 55.3% for
OHI group).
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Procedure. Testing took place in a double-walled sound-
proofed booth. Stimulus presentation and data recording
for the preference task were controlled using a custom
MATLAB program. Listeners logged their responses
using a computer interface. Digital signals were con-
verted to analog by Tucker-Davis Technologies equip-
ment (Alachusa, FL) and played through Etymotic-ER2
insert phones (Elk Grove Village, IL). These headphones
were chosen due to their flat frequency response at the
tympanic membrane. The music stimuli were presented
at 75dB sound pressure level, as this level reasonably
approximates the average intensity of symphonic music
performed in a small auditorium (Royster, Royster, &
Killion, 1991). It was a methodological choice not to
provide any frequency shaping or compensation for
loss of audibility to the listeners in the OHI group. We
believe that this approach most closely imitates the per-
ception of reverberation and music by OHI listeners in
the real world. Approximately 80% of OHI listeners do
not use any form of amplification (Kochkin, 2007).
While some concertgoers may be of higher socioeco-
nomic status and be more likely to own hearing aids
(Nieman, Marrone, Szanton, Thorpe, & Lin, 2016),
they may nevertheless opt not to use their hearing aids
during music listening due to distortions introduced by
hearing aid signal processing (Chasin, 2003; Madsen &
Moore, 2014). This may be especially true for individuals
with milder degrees of hearing impairment for whom the
unamplified live music signal is sufficiently audible.
Therefore, it is ecologically valid to investigate music
perception in OHI listeners without providing amplifica-
tion. All procedures were approved by the Northwestern
University Institutional Review Board.

Results

Pairwise preference data were analyzed using binary
logistic regression. Binary logistic regression can be
used to construct a perceptual scale and provide statis-
tical significance differences between preferences from
round-robin paired-comparison data (Lipovetsky &
Conklin, 2004; Woods, Satgunam, Bronstad, & Peli,
2010). One advantage of this technique is that it uses
the original paired-comparison data that is preferable
to an approach that uses the aggregated frequency
table data (Blyth, 1972). In brief, the method involved
constructing a regression table with the six reverberation
times represented in six columns. Separate regression
tables were constructed for the YNH and OHI groups.
To increase the power of each regression table, results for
the three different symphonic excerpts were depicted in
the same table and analyzed together. Due to the spec-
trotemporal similarity of the musical excerpts (Figure 2),
it is unlikely there would be an interaction with stimulus
excerpt. Each row represented a single trial comparison

Table 2. Pairwise Statistical Significance Results From the Binary
Logistic Regression Analyses From the Preference Task.

1.0 1.5 2.0 2.5 3.0 35
10 - .022% 001  <.001%*  <.001** .075
1.5 859 - .265 131 .168 .599
20 .12 .077 - 693 792 .10l
25 409 316 443 - .895 .042%

30 316 .238 555 .860 - .057
35 316 .238 555 .860 1.000 -

Note. Results for the young normal-hearing group are depicted above the
diagonal in bold, and results for the old hearing-impaired group are
depicted below the diagonal in italics.

*p <.05. ¥p < .0l.

judgment made by one listener. For the two reverber-
ation times being compared in any one trial, the corres-
ponding column was assigned either a positive 1 for
the preferred reverberation time or a negative 1 for the
nonpreferred reverberation time; all other columns cor-
responding to reverberation times that were not part of
that trial comparison pair were assigned a 0. A seventh
column, known as the identity vector, served as the
dependent variable of the analyses. Each row of the iden-
tity vector was randomly assigned a value of 0 or 1. If for
a given row the value of the identity vector was assigned
a 0, then the other values of that row were inverted (i.e.,
preferred stimulus = — 1; nonpreferred stimulus =1).

Five binary logistic regressions were conducted for
each of the YNH and OHI regression tables to examine
the statistical significance among the six reverberation
times for each group. In each of the binary logistic
regression analyses, a different reverberation time vari-
able was held constant by being excluded from the
model. The results of each model gave the statistical rela-
tionship between the excluded reverberation time vari-
able and all the other reverberation time variables that
were included in the model. See Table 2 for the statistical
significance results of the pairwise comparisons for both
the YNH and OHI. For the YNH group, the 1.0s rever-
beration time was preferred significantly less than all the
other reverberation time conditions (all p <.05) except
for the 3.5s reverberation time (p =.075), and the 3.5s
reverberation time was preferred significantly less than
the 2.5 s reverberation time (p < .05). For the OHI group,
there were no significant differences between any of the
reverberation time conditions (all p > .05).

For visualizing the data, a zero-to-one perceptual
scale was quantified by normalizing the regression coef-
ficients of the different reverberation times. Because the
reverberation time conditions represented an ordinal
continuum, the data were plotted as a two-dimensional
graph rather than a visual analog scale more typical of
preference data (Figure 4). The results of the YNH
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Figure 4. Scaled relative preference across the different reverberation time conditions for both the YNH (left panel) and OHI (right

panel) groups. Error bars represent+ | standard error.
YNH = young normal-hearing; OHI = old hearing-impaired.

group depict an approximately normal distribution in
which listeners tended to prefer higher reverberation
times to a point (1.0s reverberation time significantly
less preferred than 1.5 to 3.0s). The distribution
peaked around the 2.5s reverberation time condition
before decreasing (3.5s reverberation time significantly
less preferred than 2.5s). The results of the OHI group
indicated a slight trend for higher reverberation times;
however, there were no statistically significant differences
between any of the reverberation times.

Experiment 2

The results of Experiment 1 suggest that OHI listeners do
not prefer a certain reverberation time when listening to
classical music. One possible explanation for this is that
they were not sufficiently sensitive to the differences in
reverberation. Therefore, even though the samples
within a pair had different reverberation times, OHI lis-
teners may not have been able to perceive that difference
and therefore had no preference. We conducted a second
experiment to address this possibility. The purpose of
Experiment 2 was to examine whether OHI listeners are
less sensitive to (i.e., less able to discriminate) differences
in reverberation time when listening to classical music
than listeners with YNH. For the experiment, both
YNH listeners and OHI listeners listened to pairs of clas-
sical music excerpts that had the same reverberation time,

or that differed in reverberation time by varying amounts.
Listeners indicated whether excerpts within a pair had the
same or different amounts of reverberation. The propor-
tion of the time that listeners correctly identified the pairs
with differing reverberation times was compared between
the YNH and OHI groups.

Methods

Participants. Eighteen YNH adults and 19 OHI adults
enrolled in Experiment 2. One of these YNH listeners
and five of these OHI listeners also participated in
Experiment 1. Listeners underwent the same audiometric
protocol as described in Experiment 1. See Figure 5 for
audiometric data and Table 3 for additional listener
information. Listener characteristics in Experiment 2
for each group were similar to those of the groups in
Experiment | (Table 1). Listeners completed an informed
consent process and were compensated for their time.

Stimuli and processing. Experiment 2 contained the same
processed music excerpts as those used in Experiment 1.

Sensitivity task. Sensitivity to differences in reverberation
time was measured using a same—different paradigm. The
task consisted of 24 trials. Within each trial, the musical
excerpt (i.e., Beethoven, Bruckner, or Mahler) being
compared was the same. Each trial had a reference
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Figure 5. Participant audiograms for Experiment 2 for the left
and right ear. The shaded area represents the range for the YNH
group, and the white line represents the mean. The symbols rep-
resent mean threshold for the OHI group with error bars repre-
senting £ | standard deviation.

YNH =young normal-hearingg OHIl=old hearing-impaired; dB
HL = decibels hearing level.

Table 3. Participant Characteristics for Experiment 2 for the
YNH and OHI Groups.

Young normal- Old hearing-
hearing group impaired group
N=18 N=19

Six-Frequency PTA M=55 M=477

(dB HL) SD=4.6 SD=13.4

Range: 0.0-9.17 Range: 26.3-73.8

Age (years) M=263 M=708
SD=4.1 SD=10.4
Range: 20-32 Range: 42-85

No. of Musicians 8 5

Sex 7 Male, || Female I3 Male, 6 Female

Note. YNH =young normal-hearing; OHI=old hearing-impaired; PTA =
pure-tone average; dB HL = decibels hearing level.

stimulus that had a reverberation time of 1.0s. The other
nonreference stimulus had a reverberation time of 1.5
(A0.5 compared with the 1.0s reference), 2.5 (A1.5), or
3.5 (A2.5) s for three A reverberation time conditions.

The presentation order for reference versus nonreference
stimuli was counterbalanced for each of the three sym-
phonic compositions (i.e., Beethoven, Bruckner, Mahler)
giving 18 comparisons. During the task, listeners indi-
cated whether the excerpts in the trial had the same or
different amounts of reverberation using a computer
interface. The presentation order of the trials was indi-
vidually randomized for each listener.

In addition, there were six comparisons in which both
excerpts in the pair had the same reverberation time of
1.0s. There were two such comparisons for each of the
three symphonic compositions. These comparisons were
included to examine the rate of false positive responses in
listeners (i.e., responding that the stimuli were different,
when in fact both excerpts had the same reverberation
time). The false positive rate for all subjects was 0.329.

Procedure. Stimuli were presented in the same manner
and with the same calibration as in Experiment 1. All
procedures were approved by the Northwestern
University Institutional Review Board.

Results

Sensitivity data were transformed to d’ for analyses
(MacMillan & Creelman, 2004). Figure 6 shows listener
performance on the sensitivity task across the different A
reverberation time conditions (A0.5, Al.5, A2.5) for
both the YNH and OHI groups. Results were collapsed
across the three symphonic excerpts because of their
spectral and temporal similarities. Data were analyzed
using a two-way repeated-measures analysis of variance
with one within-subjects factor (A reverberation time)
and one between-subjects factor (listener group). The
dependent variable was d’ sensitivity. The data did not
satisfy the assumption of sphericity as indicated by a
significant result for Mauchly’s Test of Sphericity
(p=.042). Therefore, a Greenhouse-Geisser correction
was applied for all subsequent main effect and inter-
action tests. There was a significant A reverberation
time x listener group interaction [F(1.7, 59.8)=3.708,
p=.037, partial n”=.096], and both main effects were
significant: A reverberation time [F(1.7, 59.8, p <.001,
partial n>=.301] and listener group [F(1, 35)=39.742,
p <.001, partial n*=.532].

Given the significant A reverberation time x listener
group interaction, independent samples ¢ tests were con-
ducted between the listening groups at each A reverber-
ation time condition to further examine differences in
sensitivity between the groups. The groups were signifi-
cantly different at every level of A reverberation time
(all p<.05). However, after performing a Bonferroni
correction, the difference between the listener groups in
the A0.5 reverberation time condition became nonsigni-
ficant (p=.14).
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Figure 6. Performance on the sensitivity task as indicated by proportion correct discriminating the samples as a function of their different

reverberation times for both the YNH and OHI groups.
YNH = young normal-hearing; OHI = old hearing-impaired.

To further examine how differences in A reverber-
ation time affected sensitivity, separate one-way
repeated-measures analyses of variance were conducted
for each listener group. For both groups, the effect of A
reverberation time was significant: YNH [F(1.4,
23.3)=11.7, p=.001, partial 7*=.407] and OHI
[F(2, 34)=3.449, p=.043, partial n*=.161]. Overall,
the effect size was greater for the YNH group suggesting
that the sensitivity of the OHI group did not improve as
much as the YNH group as the difference between sti-
muli became larger.

General Discussion

In Experiment 1, the YNH group preferred a moderate
reverberation time around 2.5s. These results are

consistent with previous research that was conducted
using similar samples of YNH listeners (e.g., Kuhl,
1954). In contrast, the results of the OHI group demon-
strated no significant group preference for any of the
reverberation times examined. The results of
Experiment 2 suggest that this lack of preference may
have occurred because the OHI listeners were less sensi-
tive to the differences in reverberation than the YNH
listeners. These findings are further discussed in the
following.

Knowing the optimally preferred reverberation time
for music listening is a critical consideration for con-
structing and modifying concert venues, as well as for
guiding the selection of musical programs to be per-
formed in existing venues (Ando, 2007). This informa-
tion may even be used to recommend an individual’s
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optimum seat in a given concert hall (Sakurai, Korenaga,
& Ando, 1997). While the OHI sample in Experiment 1 is
representative of the larger population in age and degree
of hearing loss, it is possible that with additional people,
there would be a significant preference for music at a cer-
tain reverberation time. Nevertheless, it is evident that the
OHI listeners were not consistent as a group in their
responses. This is in contrast to the YNH listeners who
were consistent as a group in this study and prior studies
(Kuhl, 1954; Sakai et al., 1998). These results suggest that
listeners who are less sensitive to differences in reverber-
ation time (i.e., OHI individuals) as a result of age or
hearing impairment may be more tolerant of concert
venues that do not meet the exact desired acoustic criteria.
In addition, OHI listeners may be more tolerant of venue
seats that are considered acoustically suboptimal. Overall,
it may be that less concern need be spent regarding opti-
mal reverberation time for music listening for OHI lis-
teners because they may not be sensitive enough to
differences in reverberation to express a clear preference.

Understanding how sensitive an individual is to dif-
ferences in reverberation time may be important for prior-
itizing seating arrangements in a venue. The current study
measured listener sensitivity to differences in reverberation
only using classical, symphonic music stimuli. Previous
work using a just noticeable difference task has indicated
that listener sensitivity to differences in reverberation is
independent of whether the stimuli source is instrumental
music, choral music, or conversational speech (Bradley,
Reich, & Norcross, 1999; Larsen, Iyer, Lansing, &
Feng, 2008; Martellotta, 2010). Thus, it is likely that
these results are generalizable to other types of stimuli.

While the results indicate that OHI listeners are less
sensitive to differences in reverberation in music than
YNH listeners, the exact reason for this discrepancy
cannot be inferred from the current study. One possibil-
ity is that because the acoustic signals were not amplified,
the decay of the late energy reflections was likely to fall
below the audibility threshold more quickly for the OHI
listeners than for the YNH listeners. That is, the OHI
listeners were receiving impoverished samples due to
decreased audibility with which to compare and judge
the relative amounts of reverberation. In addition,
decreased audibility may affect sensitivity by limiting
the bandwidth of the signal. Larsen et al. (2008) found
that sensitivity to differences in direct-to-reverberant
energy ratio was poorer for a narrowband signal than
a wideband signal. Because the audible bandwidth was
reduced for the OHI group due to poorer auditory sen-
sitivity compared with YNH individuals, especially in the
high frequencies, that may account for the decreased sen-
sitivity in the current study. It would be interesting to
determine if OHI listeners would still be less sensitive
to differences in reverberation time even when the
signal is amplified to restore audibility.

Another factor potentially contributing to the current
findings is that OHI listeners are less sensitive to differ-
ences in reverberation due to spatial processing deficits.
That is, even if audibility was compensated for OHI lis-
teners, they would still perform differently than YNH lis-
teners because OHI exhibit fundamental deficits. It is well
known that OHI listeners encode spectral and temporal
characteristics of acoustic signals differently than YNH
listeners (e.g., Souza, Wright, Blackburn, Tatman, &
Gallun, 2015). As a result, OHI listeners experience spatial
processing deficits related to sound localization (Dobreva
et al., 2011) and binaural processing (Moore, 2007). These
deficits likely affect the way listeners perceive reverber-
ation. In support of this explanation recall that there are
declines in perception of reverberant speech even when
audibility is compensated (Shi & Doherty, 2008). Thus,
it is hypothesized that there are aging and hearing loss-
related deficits in the processing mechanisms related to the
encoding of reverberation. If this is true, then OHI lis-
teners would likely still be less sensitive (albeit possibly
to a lesser extent) to differences in reverberation in music
than YNH listeners even when the signal is amplified.

The relative contributions of advanced aging and hearing
loss for perception of reverberant music remain unknown.
Because both factors commonly present concomitantly in
listeners in the real world, we were interesting in examining
the combined effects on perception. Previous work has found
mixed results as to whether declines in spatial perception are
primarily driven by age or hearing impairment-related
changes (Dobreva et al., 2011; Kolarik, Moore, Zahorik,
Cirstea, & Pardhan, 2016). If performance on the preference
and sensitivity tasks were driven primarily by spatial process-
ing deficits, then it is possible that both differences in hearing
loss and age contributed to the findings between the listener
groups. Further research is necessary to clarify the effects of
advanced aging versus hearing impairment on the effects of
varying reverberation on music perception.

A limitation of the study is how the simulation was
conducted to render the reverberant stimuli. In the cur-
rent simulation, the combined musical signal was treated
as a colocated source rather than individual instruments
being spatially distributed as if on a concert stage.
Previous work has suggested that music may have differ-
ent timbre when recorded from different directions
(Pdatynen & Lokki, 2010). While the results for preferred
reverberation times are consistent with previous
research, the current simulation does not perfectly emu-
late concert hall listening. Nevertheless, the primary pur-
pose of the current study was to examine potential
differences in music perception between YNH and OHI
listeners. Given that the current study has demonstrated
clear differences between the groups, further research is
warranted to examine differences under more realistic
representations of concert hall listening, as well as to
consider other acoustic metrics than reverberation time.
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Conclusions

The present study comprised two experiments: one inves-
tigating the preference of OHI and YNH listeners for
music processed with different reverberation times; and
another comparing the sensitivity of OHI and YNH lis-
teners to differences in reverberation time. The OHI lis-
teners did not have a significant preference for any of the
reverberation time conditions and that they were less sen-
sitive to differences in reverberation time than the YNH
listeners. These results suggest that OHI listeners may be
more tolerant of concert venues with a wide range of
reverberation times. Overall, further research is required
to understand the effects of aging and hearing impairment
on perception of reverberation in music in concert halls.
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