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A fast-converging iterative method 
based on weighted feedback for 
multi-distance phase retrieval
Cheng Guo1, Cheng Shen1, Qiang Li   1, Jiubin Tan1, Shutian Liu2, Xinchi Kan3 & Zhengjun Liu1

Multiple distance phase retrieval methods hold great promise for imaging and measurement due to 
their less expensive and compact setup. As one of their implementations, the amplitude-phase retrieval 
algorithm (APR) can achieve stable and high-accuracy reconstruction. However, it suffers from the 
slow convergence and the stagnant issue. Here we propose an iterative modality named as weighted 
feedback to solve this problem. With the plug-ins of single and double feedback, two augmented 
approaches, i.e. the APRSF and APRDF algorithms, are demonstrated to increase the convergence 
speed with a factor of two and three in experiments. Furthermore, the APRDF algorithm can extend the 
multiple distance phase retrieval to the partially coherent illumination and enhance the imaging contrast 
of both amplitude and phase, which actually relaxes the light source requirement. Thus the weighted 
feedback enables a fast-converging and high-contrast imaging scheme for the iterative phase retrieval.

Phase retrieval methods1, which have been applied in various fields of science and engineering, including X-ray 
imaging2, quantum imaging3, astronomy4, super-resolution5, diffraction tomography6, and wide-field imaging7, 
enable one to recover the phase information of an object from the magnitude of its diffraction pattern. As a fun-
damental theory of the iterative phase retrieval methods, the Gerchberg–Saxton algorithm (GS)8 was invented to 
retrieve the object’s phase with a pair of intensity patterns located in the object and recording planes. The original 
GS algorithm was slow and sensitive to initial guesses. To solve this problem, Fienup improved the GS algorithm 
with a support constraint of non-negativity and a pre-assigned boundary to speed up the convergence under sin-
gle or double measurements9,10. However, these methods both have to get a rough estimation for the object. Also, 
since they are defined in far field region11–13, it is not suitable for a compact imaging system. Compared to these 
single and double measurement schemes, the multi-image phase retrieval methods are investigated by virtue of 
measurement diversities14–26. Without the need of the support constraint, these methods are capable of obtain-
ing an optimal convergence and high-accuracy reconstruction by utilizing different scanning strategies, such as 
overlapping illumination15–17, multi-wavelength scanning18, multi-angle illumination19, pinhole scanning26 and 
multiple distance measurements14,22–25.

Due to the compact implementation and low cost, the multiple distance phase retrieval methods attract more 
concerns in the imaging field, which have been applied in lens-based imaging systems21,24, the coherent diffrac-
tive imaging system14 and the digital in-line holography22,27,28. The strategy of multi-positioned measurements is 
fully compatible with all kinds of light propagation models, such as Fourier transform5, gyrator transform20 and 
Fresnel diffraction15. As one of the multiple distance phase retrievals, the amplitude-phase retrieval algorithm 
(APR) appropriately combines the reconstruction accuracy and stability for imaging23,25. However, it is heavily 
enslaved to the slow convergence rate. Generally, a satisfactory result of the APR algorithm is obtained at the 
expense of more measurements or iterations, both of which demand heavy computational loads. Moreover, the 
long-time computation may not guarantee an improved result due to its stagnant issue.

In this work, we propose an acceleration modality for the APR algorithm, named as the weighted feedback. 
The weighted feedback can effectively enhance the convergence speed. The corresponding feedback coefficients 
are optimized by the data-driven curve fitting. Simulations and experiments have demonstrated the acceleration 
validity. To further prove the stability of weighted feedback, this phase retrieval method is applied in the imaging 
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system with partially coherent illumination. The result indicates that the weighted feedback APR is capable of 
obtaining an enhanced imaging contrast for different objects.

Method
We firstly describe the notation and basic concepts of the APR algorithm and the weighted feedback. The experi-
mental schematic and flowchart of APR algorithm are given in Figs 1 and 2. As a beam of plane wave illuminates 
sample, a set of diffraction patterns In(n ∈ [1, N]) measured with different transverse distances in the diffractive 
downstream are able to achieve complex-valued image reconstruction of the object. To simplify the notation, 
the transverse distances Zn are described as Zn = Z0 + (n − 1)d, which are composed of initial distance Z0 and 
equivalent interval d. The complex amplitude of object is reconstructed by iterative back-and-forth propagation 
computation. Here the computation of diffraction propagation is based on Fresnel region, whose transfer func-
tion is expressed as
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where λ is wavelength of the illumination and (ξ, η) is the coordinate in frequency domain. Thus the forward and 
backward propagation of an input signal S related to transverse distance Zn are accomplished by − S H[ ( ) ]n

1   
and − ⁎S H[ ( ) ]n

1  , where   is the Fourier transform and the superscript ‘*’ denotes the complex conjugate.
The detailed algorithmic flowchart of APR is depicted in Fig. 2: (1) initializing complex amplitude with con-

stant matrix; (2) propagating k-th input of object’s complex filed Ĝ
k
 forward to the recording plane and then 

obtaining the computed diffraction patterns ϕa exp(j )n
k

n
k  by Eq. (1) with different transverse distances Zn; (3) 

replacing the amplitude of computed patterns with the square root of recorded diffraction patterns In  and retain-
ing the computed phase ϕn

k; (4) propagating these synthesized patterns ϕI exp(j )n n
k  backward to object plane and 

producing N guesses of object ∈g n N( [1, ])n
k ; (5) kth estimation of object Gk is calculated by the average of N 

Figure 1.  The imaging schematic of multi-distance phase retrieval.

Figure 2.  The flowchart of multi-distance phase retrieval.
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for next iteration; (6) the full complex-valued image of object is obtained by running iteratively from step (2) to 
(5) until the reconstructed accuracy meets the required threshold.

It is not a fresh idea to introduce a feedback control to speed up the convergence for iterative phase retrieval 
method. As is described above, the hybrid input-output algorithm (HIO) invented by Fienup9 has brought feed-
back into the non-support region to eliminate the reluctant data so that the convergence speed is enhanced. In the 
HIO algorithm, assuming the input signal as Ĝ

k
 and the output signal as Gk at k-th iteration, The (k + 1)-th input 

is defined as

γ

β γ
=








∈

− ∉

+ˆ
ˆ

G
G x y

G G x y

, ( , )

, ( , ) (2)

k
k

k k
1

where γ is the support region. With the use of feedback coefficient β, the region of interest is enhanced and the 
region of redundancy is decreased. For the HIO algorithm, the tighter the support region is, the faster the conver-
gence becomes. To get a tight support region, shrink wrap method12,13 is also utilized to fulfill this task. However, 
within a lens-based imaging system, tiny objects can be resolved and the filed of view is accordingly decreased, 
in which the global region is entirely interested. Thus it is impossible to seek a support region for a biological 
sample, such as a brain tissue or a cellular tissue. Different from these methods, our weighted feedback modality 
releases the requirement of the support region and is defined in the global region, which is added between steps 
(4) and (5) as
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two iterations, Eq. (3) will begin after the third iteration. The parameters (a, b) are feedback coefficients. If b = 0, 
the feedback is changed into the single mode. Equipped with the weighted feedback, the convergence speed of 
APR algorithm can be easily increased, which will be described in the following. For simplicity, we term the APR 
algorithm based on single and double feedback as the APRSF and the APRDF algorithm, respectively.

Numerical fitting
We use the data-driven fitting to characterize the optimal feedback coefficients for the APRSF and APRDF algo-
rithms. The logarithm of mean square error (LMSE) between the ground truth image and the retrieved ampli-
tude is employed as a metric indicator for the convergence. For APR algorithm, its convergence threshold keeps 
around −25 orders of magnitude. If LMSE <10−25, the retrieved result is considered fully convergent. Hence, the 
convergence speed is indicated by the number of iteration (NUM) at which the recovered amplitude is less than 
the preassigned threshold (10−25). Therefore, the value of NUM is used to evaluate the convergence speed. The less 
NUM is, the faster the convergence speed is. The simulated parameters are listed as follows: (1) the wavelength λ 
is 632.8 nm; (2) the image size is 1 mm × 1 mm (256 × 256 pixels); (3) iterative number is 1000; (4) the number 
of recording plane N is 3; (5) diffractive distance includes: Z0 = 10 mm, d ∈ [15, 25] × mm, step size = 1 mm and 
Z0 = 20 mm, d ∈ [10,30] × mm, step size = 5 mm, for a total of 16 groups. As for single feedback, 16 groups of 
NUM curve are illustrated in Fig. 3(b) with the plugin of a (a ∈ [0, 1], step size = 0.02). We note that these curves 
have a common minimum, which is demarcated in 0.9. Thus, a = 0.9 is the optimal value of accelerating conver-
gence for the APRSF algorithm.

Curve fitting is utilized for the characterization of the APRDF algorithm. We run the APRDF algorithm 
with the different pairs of (a, b) (a, b ∈ [0, 1], step size = 0.02) to compute 16 NUM maps, one of which is 

Figure 3.  Numerical fitting for APRSF algorithm. (a) Ground truth image. (b) NUM curves with a ranging 
from 0 to 1.
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displayed in Fig. 4(a). Especially, 16 maps like as Fig. 4(a) are calculated with a sampling size of 51 × 51, which is 
computation-heavy and gives a reliable guarantee for linear fitting. Here NUM map is manifested by a colorbar 
from yellow to deep blue. For yellow part, it represents non-convergent region under 1000 iterations. Others 
denote the fast-converging region. The NUM in central region is ~300, whose structure looks like an oblique line 
while a ranges from 0 to 1. Here convergence coefficient σ is introduced as

σ =
−NUM NUM

NUM
,

(4)
min

min

to extract the fastest region. NUMmin is corresponding to the minimum of each NUM map. For example, if σ = 
0.1, the region of σ > 0.1 is deleted and the region of σ ≤ 0.1 is retained. Then the selected region is pictured in 
Fig. 4(b). Here the selected region is used for curve fitting and thus depicted by linear curve fitting as

= +b ma n, (5)

where m and n are pending parameters. Here each pair of (Z0, d) related to one σ could produce a selected NUM 
map and then each selected map is able to be fit as a linear equation. Given a value of σ, we can derive m and n by 
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16 . The variables mi and ni are calculated by linear fitting for a pair 
of (Z0, d) under a value of σ. Therefore, the statistical distribution of m and n is pictured in Fig. 4(c) while σ ranges 
from 0.01 to 0.1. As shown in Fig. 4(c), the parameters m and n vary with the increase of σ. Here setting σ from 
0.01 to 0.1 could provide a reliable guarantee for linear curve fitting. Specifically, if σ > 0.1, the structure of the 
selected region is not approximated to be an oblique line. If σ < 0.01, it is impossible to ensure that all selected 
maps have two or more sampling data to use linear fitting. Here m and n are parameterized by keeping all values 
of statistical distribution to the second decimal place. With this process, the parameter n is easy to be truncated as 
0.60 but m is approximated to −0.13 and −0.14. Note that the statistical distribution of m dramatically decreases 
if σ > 0.6, the values (σ > 0.6) are regarded as redundant and unstable data for curve fitting. Thus m is roughly 
assessed at −0.13. Accordingly, Eq. (5) is parameterized as

= − . + . .b a0 13 0 6 (6)

Simulation.  Numerical simulation is given to exhibit the performance of our weighted feedback scheme. 
Let a = 0.9 for the APRSF and a = 0.7, b = 0.5 for the APRDF, the LMSE curves of three algorithms (Z0 = 10 mm, 
d = 12 mm, N = 3, 1000 iterations) are illustrated in Fig. 5(a) for binary objects. The APR, APRSF and APRDF 
spend 56s, 60s and 61s for computation in total (Intel i5 CPU, no GPU), as shown in Fig. 5(a). But the APRDF 
reaches the convergence with only ~400 iterations. Accordingly, the convergent time of the APRDF is merely 
~30s. Working the Eq. (6) with a series of a, the LMSE distribution under different wavelengths (432 nm, 532 nm 
and 632 nm) is shown in Fig. 5(b), where its setting parameters are listed as: Z0 = 20 mm, d = 2 mm and N = 4, 
iterative number = 1000.

In Fig. 5(b), a = 0.9 is initialized for the APRSF. As different values of a (0.1 ≤ a ≤ 1) are put into Eq. (6), 
the reconstructed results from pairs of (a, b) are plotted for theAPRDF. For each wavelength, the reconstructed 
accuracy of the APRDF holds the first place even if the feedback coefficient a changes from 0.1 to 1, which proves 
the effectiveness and stability of Eq. (6). Similar to Fig. 5(a,b), the LMSE curves and distribution of grey-scale 
object are shown in Fig. 5(c) and (d). Especially, all simulation parameters are the same as in Fig. 5(a) and (b), 
except that the computation is run with 3000 iterations. We note that the single and double feedback both speed 
up the convergence for the complicated sample. In the iterative phase retrieval method, more recording planes 
could heavily reduce the number of iteration. These results have shown that weighted feedback is feasible for the 
multi-distance phase retrieval even with more recording planes. Thus the simulations of N = 11 are displayed in 
Fig. 5(e) for a plane wave illumination and in Fig. 5(f) for a speckle illumination. As is shown in Fig. 5(e), the 
APRDF algorithm retrieves the object only after 50 iterations. On the contrary, it is still non-convergent after 100 
iterations for the APR algorithm.

Figure 4.  Curve fitting for APRDF algorithm. (a) The NUM map in Z0 = 10 mm, d = 20 mm. (b) The extracted 
NUM map of (a) while σ < 0.1. (c) The statistical distribution of m and n with σ from 0.01 to 0.1.
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It has been proved in refs29,30 that a random phase illumination could lead to a unique and stable reconstruc-
tion to solve the problem of ambiguity, trivial and nontrivial for iterative phase retrieval. As its typical implemen-
tation, the speckle illumination caused by a diffuser has been introduced into digital holography for a unique and 
fast solution in refs22,27,28,31. Here the weighted feedback can also be used in the speckle illumination. To simulate 
the speckle field, a phase mask with a range of [0, 1.2π] is placed upstream 10 mm from the object. It clearly shows 
that the APRSF and the APRDF could reconstruct a full target only after 50 iterations, while the APR needs 100 
iterations. The results are shown in Fig. 5(f). Obviously, the quality of recovered images in Fig. 5(f) is impaired 
due to the speckle illumination although the structure of object is resolved. We believe that this problem deserves 
to be perfected in the future. In this section, it is proved that weighted feedback is capable of getting a fast recon-
struction for different samples.

Experimental Results
We conduct imaging experiments in the lens-less system and the typical wide-field microscope. The fundamental 
set-up of the lens-less imaging is displayed in Fig. 1. A diverging spherical wave is used to illuminate a collimating 

Figure 5.  Numerical simulation for APR, APRSF and APRDF algorithm. (a) and (c) are LMSE curves 
retrieved from binary and grey-scale object for APR, APRSF (a = 0.9) and APRDF algorithm (a = 0.7, b = 0.5) 
in Z0 = 10 mm, d = 12 mm, N = 3, iterative number = 1000. (b) and (d) are LMSE distributions retrieved from 
binary and grey-scale object with the wavelength of 432 nm (purple curve), 532 nm (green curve) and 632 nm 
(red curve) in Z0 = 20 mm, d = 2 mm, N = 4. (e) and (f) are reconstructed images after 20, 50 and 100 iterations 
in Z0 = 10 mm, d = 1 mm, N = 11 under plane wave and speckle illumination.
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lens to generate parallel light. Subsequently, the shaped plane wave through an aperture illuminates the sample 
to produce a dataset of diffraction patterns with the initial distance Z0 and the equally-spaced interval d. The 
receiving device is a CCD camera (3.1 μm, Point Gray), which is mounted on a precision linear stage (M-403, res-
olution 0.012 μm, Physik Instrumente Inc.) to implement transverse movement. A fiber laser with the wavelength 
of 532 nm is used for the coherent illumination and a target of ‘HIT’ etched on a glass is regarded as the sample. 
Here a = 0.7 and b = 0.5 deriving from Eq. (6) are fed for the APRDF algorithm and a = 0.9 for the APRSF algo-
rithm. The central 600 × 600 pixels of CCD is chosen as the imaging region for the recorded patterns. The other 
experimental parameters are listed as: Z0 = 21 mm, d = 1 mm, N = 11, iterative number is selected as 10, 20, 30, 
50 and 100. The relevant results are presented in Fig. 6 for the coherent illumination and in Fig. 7 for the speckle 
illumination. In Fig. 6, with the increase of iterations, the structure of reconstructed image is visually resolved for 
three algorithms. From Fig. 6(e),(i) and (m), we can see that the sample is fully reconstructed after 100, 50 and 30 
iterations by the APR, APRSF and APRDF algorithm, which correspondingly takes 151s, 86s, 50s for computa-
tion. Thus single and double feedback could speed up the convergence with a factor of two and three. To quantita-
tive show this improvement, the LMSE curves are plotted in Fig. 6(p), where the acceleration effect is remarkable 
for the weighted feedback. Especially, in experiments, the values of LMSE are calculated at the recording plane, 
i.e., using the square root of recorded intensity as the ground truth. Plugging different values of a (0.1 ≤ a ≤ 1) 
into Eq. (6), the LMSE distribution is pictured in Fig. 6(q) with different pairs (a, b) after 50 iterations. The results 
show that, in Fig. 6(q), the APRDF algorithm still holds the stable and fast-converging reconstruction even if the 
feedback coefficients are different, which actually agree with the simulations.

The imaging results with the speckle illumination are shown in Fig. 7. The experimental parameters as same 
as in Fig. 6, except that a ground glass diffuser (DG10-120-MD, Thorlabs, 120 grit) is inserted between collimated 
lens and sample, to generate speckle field. Accordingly, the retrieved images of three algorithms are displayed in 
Fig. 7. Similarly, the APRDF, APRSF and APR fulfill the image reconstruction with the iterations of 30, 50 and 
100, where the computational time is 48s, 77s and 141s. The results again show that the weighted feedback has the 
ability of speeding up the convergence for the multi-distance phase retrieval.

Figure 6.  The reconstructed images under coherent illumination. (a–e), (f–j) and (k–o) are retrieved by APR, 
APRSF and APRDF algorithm with 10, 20, 30, 50 and 100 iterations. (p) The convergence curve for three 
algorithms. (q) LMSE distribution after 50 iterations. The white bar corresponds to 150 μm.
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Additionally, the weighted feedback is helpful for the enhancement of imaging contrast. Replacing the fiber 
laser with a LED, the reconstruction under partially coherent illumination is shown in Fig. 8. We use a program-
mable LED matrix (Adafruit 607) to illuminate condenser lens (f = 80 mm) to produce a parallel beam (532 nm) 
and other devices are unchanged. Practically, different LEDs are switched on to adjust optical system so as to 
eliminate the impact of off-axis. Once on-axis is calibrated, the only one LED corresponding to the used position 
is applied for illumination.

An inverted symbol ‘6’ and a cross stripe of 1951 USAF resolution chart (R3L3S1N, Thorlabs) are served as 
the sample. The imaging size of the recorded patterns is 1200 × 1200 pixels and other experimental parameters 
are listed as follows: Z0 = 74 mm, d = 3 mm, N = 4, and iterative number is 200. The APR algorithm is invented 
in the case of coherent illumination. It is no doubt that its reconstructed amplitude and phase are degraded by 
partially coherence in Fig. 8(a) and (e). As we expect, the degradation caused by partial coherence can be elimi-
nated by our augmented approaches. Especially for the APRDF algorithm, it significantly enhances the contrast 
of amplitude and phase in Fig. 8(c) and (g). Furthermore, the APRDF acquires an excellent visual effect on phase 
contrast and two others are incompetent. Capturing data between two red, green and blue arrows on recovered 
images, the slicing outlines are drawn in Fig. 8(d) and (h), in which single and double feedback both function 
well to enhance contrast of amplitude and phase. This experiment proves that the APRDF algorithm not only pro-
vides a fast-converging strategy but also achieves a full reconstruction of object function under partially coherent 
illumination.

To further prove the capability of our method, we apply these methods in the wide-field microscope and the 
corresponding experimental schematic is shown in Fig. 9(a). The 4f arrangement is composed of a tube lens 
(f = 200, ITL200, Thorlabs) and an objective lens (4×/0.13, Nikon). A beam of plane wave shaped from condense 
lens (f = 80 mm) and adjustable aperture illuminates ant specimen to produce a set of intensity patterns. The 
receiving detector is CCD camera (3.1 μm, Point Gray). The dataset of defocused intensity patterns is recorded by 
mounting CCD camera on a linear stage (M-403, resolution 0.012 μm, Physik Instrumente Inc). 21 intensity images 
nearby in-focused plane are sequentially received and the focusing method in ref.32 is utilized to acquire in-focused 
image. After this preparation, one in-focused and ten defocused intensity patterns are recorded with an equal inter-
val of 0.2 mm, which are displayed in Fig. 9(b). With the use of the APR, APRSF and APRDF algorithms, the phases 
of an ant specimen are retrieved in Fig. 9(c–h) after 10 and 50 iterations. In this case, an in-focused image is regarded 
as object constraint, i.e., replacing the amplitude of object estimation derived from the average of N guesses with the 
square root of in-focused intensity pattern. Thus the output image with the APR, APRSF and APRDF algorithms 
is the phase of the ant specimen. As shown in Fig. 9(c),(e) and (g), the structure of ant retrieved by the APRDF is 
dominant to be resolved by contrast with APR’s and APRSF’s one. Also, as the weighted modality changes from 
single to double mode, the phase contrast of ant specimen is strengthened. With the increase of iterations, the APR 
enables the ant specimen more clearly in Fig. 9(d). But the APRDF sharpens the edge of ant specimen and achieves 
the imaging contrast enhancement at the highest level in Fig. 9(d),(f) and (h). These results prove that weighted 
feedback facilitates the enhancement of the imaging contrast for iterative phase retrieval.

Figure 7.  The reconstructed images under speckle illumination. (a–e), (f–j) and (k–o) are retrieved by APR, 
APRSF and APRDF algorithm with 10, 20, 30, 50 and 100 iterations. The white bar corresponds to 150 μm.
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Conclusions
We developed a fast-converging modality, weighted feedback, to accelerate the convergence for multi-distance 
phase retrieval. Based on the APR algorithm, two augmented approaches, namely, the APRSF and the APRDF, 
are proved to speed up the convergence in simulation, where the optimized feedback coefficients are parameter-
ized by numerical fitting. In experiments, two algorithms, the APRSF and the APRDF, have been demonstrated 
to speed up the convergence with a factor of two and three under coherent and speckle illuminations. Another 
advantage of the weighted feedback embodies in the enhancement of imaging contrast. Furthermore, the APRDF 

Figure 8.  The reconstructed images under partially coherent illumination. (a–c) and (e–g) are retrieved 
amplitudes and phases by APR, APRSF and APRDF algorithm. (d) and (h) are the plot lines between red, green 
and blue arrows from (a–c) and (e–g). The white bar corresponds to 300 μm.

Figure 9.  The reconstruction of ant specimen in wide-filed microscope. (a) The experimental schematic. (b) 
The recorded dataset of intensity patterns. (c,d) are reconstructed phases for APR algorithm, (e,f) for APRSF 
algorithm and (g,h) for APRDF algorithm after 10 and 50 iterations. The white bar corresponds to 120 μm.
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algorithm has the ability of achieving a full high-contrast reconstruction of complex amplitude for both binary 
object and biological specimen, which extends multiple distance phase retrieval to the application of partially 
coherent illumination. Therefore, the weighted feedback scheme will provide a fast-converging and high-contrast 
imaging modality for iterative phase retrieval.

The limitations of the weighted feedback APR lies in two aspects. First, the weighted feedback not only 
enhances the imaging contrast for the region of interest but also magnifies the background noise. Accordingly, 
this modality deserves to be improved by combing denoising method. Second, the feedback modality in our work 
merely reaches to a double mode. More investigations of multi-feedback modality will be a prospective challenge 
in the field of iterative phase retrieval.
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