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Alzheimer’s disease (AD) is a complex, and multifactorial neurodegenerative

disease. Previous studies have revealed that oxidative stress, synaptic toxicity,

autophagy, and neuroinflammation play crucial roles in the progress of AD,

however, its pathogenesis is still unclear. Recent researches have indicated

that ferroptosis, an iron-dependent programmed cell death, might be involved

in the pathogenesis of AD. Therefore, we aim to screen correlative ferroptosis-

related genes (FRGs) in the progress of AD to clarify insights into the

diagnostic value. Interestingly, we identified eight FRGs were significantly

differentially expressed in AD patients. 10,044 differentially expressed genes

(DEGs) were finally identified by differential expression analysis. The following

step was investigating the function of DEGs using gene set enrichment

analysis (GSEA). Weight gene correlation analysis was performed to explore

ten modules and 104 hub genes. Subsequently, based on machine learning

algorithms, we constructed diagnostic classifiers to select characteristic

genes. Through the multivariable logistic regression analysis, five features

(RAF1, NFKBIA, MOV10L1, IQGAP1, FOXO1) were then validated, which

composed a diagnostic model of AD. Thus, our findings not only developed

genetic diagnostics strategy, but set a direction for further study of the disease

pathogenesis and therapy targets.
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Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative
disorder, is the most major form of dementia. Clinically, AD
is characterized by cognitive impairments, language deficits
and behavioral disturbances (Villain and Dubois, 2019). As
per Alzheimer’s Disease International in 2019, approximately
50 million people suffer from AD. Thus, the therapeutic
methods of AD need to be explored urgently. For decades,
most mechanism explanations have focused on amyloid-β
accumulation and neurofibrillary tangles. However, medicine
effect of inhibiting amyloid plaque formation is less effective.
Recent theoretical developments have revealed that oxidative
stress (Chen and Zhong, 2014) also play a significant part in
AD, in addition to synaptic toxicity (Hampel et al., 2018),
autophagy (Zhang et al., 2021), neuroinflammation (Calsolaro
and Edison, 2016). Almost all neurodegenerative diseases are
associated with reactive oxygen species (ROS) (Patten et al.,
2010).

Ferroptosis is defined as a form of programmed cell death
driven by lipid peroxidation and this term first appeared in 2012
(Dixon et al., 2012). Since then, the field of ferroptosis has met
with great discoveries in molecular mechanisms. Ferroptosis
highly depends on two main physiological processes, i.e.,
cell metabolism (especially lipids, iron, and amino acids)
and degradation (especially autophagy and the ubiquitin-
proteasome system) (Chen et al., 2021). Moreover, exhaustion
of glutathione and activity reduction of glutathione peroxidase
4 (GPX4) are crucial regulators in the occurrence of ferroptosis
(Yang et al., 2014). It is worth noting that GPX4 can remove
lipid peroxides (Ursini et al., 1982). Therefore, as GPX4
function is inhibited, ROS accumulates and promotes cell
death.

Researchers have clarified that ferroptosis might participate
in multiple diseases, such as cancer, neurodegeneration and
ischemia/reperfusion (Yan et al., 2021). In recent years, it
has attracted enormous interests in the relationship between
ferroptosis and AD. Some studies have stated there is
down-regulated expression of ferroportin1, excessive iron
accumulation, and ROS generation in the AD mice and AD
patients (Zhang et al., 2012; Bao et al., 2021; Majernikova
et al., 2021), which suggest ferroptosis might be interrelated
in the etiology of AD. The relationship between pathogenesis
of ferroptosis and AD was revealed as the evidence of iron
dyshomeostasis, enhanced lipid peroxidation and an impaired
glutamate system (Long et al., 2022). Up till now, it remains
challenges for pathological hypotheses of AD, therefore the
regulation mechanisms of ferroptosis need draw more attention
and further study. Genetic data could yield new insights
into AD. However, expression patterns of controlling genes
remain unclear, which limits further study of different biological
processes. The issue that genetic screening is a diagnostic
method or not still requires investigation.

In this study, we used Gene Expression Omnibus (GEO)
and the Molecular Signatures Database (MsigDB) to identify
the expression of ferroptosis-related genes (FRGs). Then, we
investigated the co-expression network, performing weighted
gene co-expression network analysis (WGCNA), Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
functional analysis. Hub genes associated with AD was explored
and investigated the potential biological functions. To assess
their influence on the diagnostic module, we constructed
diagnostic classifiers based on multiple machine learning
algorithms to perform feature selection and evaluated the
diagnostic value of AD predictive model by multivariable
logistic regression analysis. The major contribution of our work
was the discovery of 5 FRGs which may be involved in the
diagnosis of AD.

Materials and methods

Data set collection and differential
expression analysis

With the GEOquery package, the RNA sequencing dataset
(GSE33000) containing 310 samples was downloaded from
the GEO database.1 Transcriptome data of GSE5281 and
GSE48350 was extracted for confirmatory studies. GEO
database is the largest and most comprehensive public
gene expression database, which are freely available. We
downloaded the genes of ferroptosis-related pathways from
the MSigDB and identified a total of 60 genes related to
ferroptosis2 (Liberzon et al., 2015). Gene expression profiles
obtained from datasets were analyzed to seek DEGs with
the limma R package. | log2FC| > 0.1 and p-value >0.05
as the cut−off criterion were applied to screen DEGs.
Expressions of DEGs were visualized in Volcano plots and
heatmaps.

Consensus clustering

Consensus clustering is a useful method to discover
biological characteristics in bioinformatics analysis. We
selected FRGs for further analysis of different molecular
subgroups in AD. Based on expressed FRGs selected
above, a consistency matrix was built to identify the
ferroptosis-related subtypes. The ConsensusClusterPlus
package was used to divide the samples into diverse clusters
with number set to 2. Cumulative distribution function
(CDF) and area under CDF curve were used to select the
optimal cluster number.

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi

2 https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Gene set enrichment analysis

Gene set enrichment analysis (GSEA)3 was employed to
identify different functional phenotypes, which was performed
using the “ClusterProfiler” R package (Wu et al., 2021). The
reference genes performed GSEA are AD vs Normal and
Cluster1 vs Cluster2. Additionally, the nominal (NOM) p-value
<0.05 was considered to be significant.

Weighted gene co-expression network
analysis

WGCNA was applied to construct the expression patterns
of genes from samples. A co-expressed gene module was
composed of similar expression patterns with R-Studio
software (Langfelder and Horvath, 2008). The R function
“pickSoftThreshold” algorithm was utilized to select an
appropriate soft threshold (β) modules were identified with
hierarchical clustering and dynamic tree cut function. Gene
significance (GS) and Module Membership (MM) derived from
module eigengenes were defined as index of selecting hub genes.

Functional and pathway enrichment
analysis

GO and KEGG enrichment analyses were performed on
the module most relevant to the AD, using the“clusterProfiler”
and “enrichplot” on R Studio. Significance was adjusted to
P-value <0.05.

Construction and validation of
classifier model

Patients from GSE33000 were first randomly grouped into
train (70%) and test (30%) datasets by R package “caret” and
function createFolds. GSE48350 and GSE5281 were chosen as
external validation dataset. LASSO regression, random forest,
XGBoost and Support Vector Machines (SVM) were performed
for feature selection to build the diagnostic model using the most
representative genes. R packages including “glmnet,” “Boruta,”
“xgboost” as well as “e1071” were applied for this study.

After taking the intersection of the four machine learning
algorithms, the remaining features were applied to construct an
AD diagnostic model through Logistic regression. Diagnostic
scores are calculated based on the following formula:

Diagnositc Model =
Expi∑

i=1−5

Expi × coefi

3 https://www.gsea-msigdb.org/gsea/index.jsp

i the number of diagnostic genes; Exp standardized gene
expression; coef regression coefficients.

The receiver operating curve (ROC) curve of the predicted
results is drawn using the "pROC" R package. By calculating
the area under the ROC curve (AUC), we determine the
classification capability of the diagnostic model.

Results

Expression analysis and clustering of
ferroptosis-related genes

The workflow of this study was shown in (Figure 1). Based
on GSE33000, Differential expression analysis was carried out to
describe genetic differences in FRGs between AD and control
samples. As can be seen from the volcano plot (Figure 2A),
we discovered differentially expressed genesamong 60 FRGs. 13
differentially expressed genes (DEGs) were identified, of which
8 genes were upregulated and five genes were downregulated
(p < 0.05, abs (logFC) > 0.1). The collection of 12 genes in
60 FRGs were listed in Figure 2B. The expression level of 12
labeled genes in AD and normal samples was verified by a
boxplot. According to statistics mentioned above, eight FRGs
were all significantly differently expressed between AD group
and normal samples, suggesting the eight genes may play a vital
role in the progress of AD regulated by ferroptosis (Figure 2C).
Among the eight DEGs, the overexpression of genes (AKR1C3,
CD44, CRYAB, MT1G, NFE2L2) was observed in AD tissues
compared to normal tissues, and the rest of genes (CISD1,
GOT1, HMGCR) was lowly expressed in AD. Besides, we also
identified the eight significant genes expressed differently in
several regions of brain tissue (Figures 2D–K).

Furthermore, to illustrate distinct expression patterns of
FRGs among different AD patients, a consensus clustering was
performed based on 60 FRGs and GSE33000 dataset. k = 2 was
determined to have the best stability and reliability (Figures 2L–
N). Gene expression profile was classified into two subtypes,
including cluster1 and cluster2 (n1 = 99, n2 = 211). The heatmap
indicated that expression of 60 FRGs among two clusters was
represented (Figure 2O).

Identification of ferroptosis-related
genes-related differentially expressed
genes

Through differential expression analysis of GSE33000,
multiple genes were significantly differentially expressed in
310 AD patients compared with 157 control samples. DEGs
were identified with thresholds of |log2FC| > 0.1 and
p-value <0.05. As demonstrated in (Figure 3A), the DEGs
consisted of 6,198 up-regulated genes and 7,050 down-regulated
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FIGURE 1

The overview of the whole study.

genes. Furthermore, compared to Cluster1, 11,505 DEGs were
observed in Cluster2, containing 5,727 up-regulated genes and
5,778 down-regulated genes (Figure 3B). We set the intersection
of the two groups of differential genes and a heatmap depicted
the top 100 DEGs at the intersection between the two groups
(Figure 3C).

Gene set enrichment analysis identifies
biological functions and pathways

Subsequently, we conduct GSEA analysis to investigate
the significantly differential functions and pathways of
the two groups. To explore the different functions and
pathways in the AD, the KEGG pathways suggested that
apoptosis, B cell receptor signaling pathway, complement and
coagulation cascades, cytokine-cytokine receptor interaction
were significantly enriched. The enriched GO terms included
regulation of humoral immune response, regulation of
syncytium formation by plasma membrane fusion, cytokine
binding, lipase inhibitor activity (Figures 3D–K). In the
enrichment of GO and KEGG collection between two clusters,

the results revealed the pathways of Alzheimer’s disease, citrate
cycle, TCA cycle, glycosaminoglycan biosynthesis heparan
sulfate, oxidative phosphorylation. Further cerebellar cortex
formation, neurotransmitter secretion, neurotransmitter
transport, substantia nigra development were significantly
enriched (Figures 3L–S).

Construction of co-expression
network and related modules

Through the application of WGCNA analysis, the
expression values of 10,044 genes were used to construct a
weighted co-expression network. In order to construct a scale-
free network simulating a true biological network, the power
value was selected to be 8 and the independence degree was
≥0.9 (Figures 4A,B). In this analysis, ten modules were detected
according to similar expression characteristics (Figure 4C).
Cluster analysis showed that various modules were related to
AD, however, we need to identified the co-expression module
most relevant to clinical features. Among the extensive number
of modules, the blue module was analyzed further as it exhibited
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FIGURE 2

Differential expressing analysis and consensus clustering analysis of ferroptosis regulating genes (A) DEGs were demonstrated in the volcano
plot. Up-regulated genes were represented in blue and down-regulated genes were represented in red. The markers of the most different
expressing genes were labeled in this diagram. (B) The expression profiles for 12 labeled genes. Red represented the increasing expression and
blue represented decreasing expression. (C) The expression levels of 12 labeled genes were demonstrated with boxplots in GSE5281 and
GSE48350, and it showed that eight FRGs had significant expression levels compared to the AD and Normal tissues. (Median line evaluated
expression level and * indicted significant difference). (D–K) The expression level of genes was analyzed in entorhinal cortex, hippocampus,
postcentral gyrus and superior frontal gyrus. (L) Consistent clustering at the index k = 2. (M) The cumulative distribution function (CDF) of
clustering (k = 2–5). (N) Delta area plot depicting the relative change under the CDF curve (k = 2–5). (O) The expression level of FRGs in
different clusters (The left side was cluster1, while the right side was cluster2).
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FIGURE 3

Identification of DEGs and Gene Set Enrichment Analysis from two groups. (A) Volcano plot of DEGs between AD patients and control samples
(AD vs Normal). (B) Volcano plot of DEGs between Cluster1 and Cluster2 (Cluster1 vs Cluster2). (C) A heatmap of the top 100 DEGs. (D–K)
Biological functions and pathways of genes between AD and normal samples. (L–S) Biological functions and pathways of genes between
cluster1 and cluster2.

a highly correlation with AD (correlation coefficient = 0.72,
P = 5E-77; Figure 4D). on the basis of GS > 0.7 and MM > 0.8
(Figure 4E), we identified 125 hub genes shared by the blue
module.

Functional and pathway enrichment
analysis

Subsequently, to discover the potential molecular biological
process, we conducted GO and KEGG enrichment analysis

in the blue gene clusters. GO terms of molecular function
revealed that these genes (Figure 4F) are primarily involved
in regulation of immune cell activation and migration, cell-
cell adhesion. The results of the KEGG pathway analysis
indicated that inflammatory responses may be a key regulatory
pathway associated with ferroptosis in AD, such as Immune
cell differentiation, phagocytosis, cytokine interaction,
antigen processing and presentation. Meanwhile, other
regulatory pathways also included metabolic process (fatty acid
metabolism), programmed cell death (apoptosis, ferroptosis),
protein interaction, Toll-like receptors, and PI3K-Akt signaling
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FIGURE 4

Weighted correlation network analysis of DEGs and Enrichment
analysis result for the identified module. (A,B) Analysis of the
scale independence and the mean connectivity for various
soft-threshold powers. (C) The cluster dendrogram of 10,044
DEGs, with 10 modules in different colors. (D) Heatmap of the
correlation between modules and phenotypes. Red shows a
positive correlation and blue shows a negative correlation. Each
cell contains the correlation coefficients. (E) A scatterplot of
Gene Significance (GS) vs. Module Membership (MM) in the blue.
Hub genes are evaluated by GS > 0.7 and MM > 0.8. (F) Gene
Ontology enrichment analysis. (G) Kyoto Encyclopedia of Genes
and Genomes enrichment analysis.

pathway. Of these pathways, cell death and Toll-like receptors
were closely associated with the role of ferroptosis in AD
(Figure 4G).

Identification and validation of hub
genes related Alzheimer’s disease
classifier

We constructed diagnostic classifiers with four distinct
algorithm types (LASSO, random forest, XGBoost and SVW).
A feature selection strategy was performed to reduce the
number of hub genes. The LASSO Cox regression model was
employed to identify the most significant genes from 104 hub
genes associated with AD (Figures 5A,B). We utilized Boruta
algorithm to filtrate irrelevant features. The results indicated
that it revealed 68 variables as the core genes (Figure 5C).
The XGBoost model examined the importance of features and
the top 30 indicators were displayed (Figure 5D). Similarly,
using the SVM algorithm, we also obtained Feature screening
of hub genes (Figure 5E). The hub genes obtained in the four
algorithms were intersected by a Venn diagram accordingly, and
5 features were selected (RAF1, NFKBIA, MOV10L1, IQGAP1,
FOXO1; Figure 5F).

Establishment of Alzheimer’s disease
predictive model

We divided the GSE33000 into training dataset
(70%) and test dataset (30%) randomly and added the
GSE5281/GSE48350 datasets for external validation. Then the
above core genes underwent multivariable logistic regression
analysis, identifying with non-zero regression coefficients.
The optimized diagnostic model was calculated by the
summation of “ExpRAF1×4.9453963+ExpNFKBIA×3.3202819
+ ExpMOV10L1×7.7251910+ExpIQGAP1×0.8511138 + Exp
FOXO1×1.3755429.” ROC analysis discriminated whether the
5-gene-based model had good diagnostic ability of AD. For
instance, the area under the curve (AUC) was 0.943 in the
training set, 0.961 in the test set and 0.808 in the validation set
(Figures 5G–I). All of results indicated that the model had high
predictive value in AD compared with normal samples and
deserved further investigation.

Discussion

With aging of the population in worldwide, AD is becoming
a common issue. scientists are researching on diagnosis of
AD in the earliest stages, before the toxic proteins damage
large amounts of brain cells. However, as pathophysiological
process precedes clinical symptoms (Sperling et al., 2011),
AD is still poorly cured despite the availability of numerous
clinical diagnostic methods. Therefore, if we can identify the
factors related to the early onset of AD, it will be more
conducive to the clinical diagnosis and treatment of disease.
While dementia mechanism has developed rapidly over the past
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FIGURE 5

Results of Machine Learning Algorithms and ROC curve. (A) LASSO coefficient profiles of the significant hub genes. (B) Cross validation for
turning parameter (lambda) selection in the LASSO regression. The LASSO model selected the log(λ) value for further analysis. (C) Screening
conditions of Boruta algorithm. The green boxes confirmed the top 68 important features. The other two colors represented tentative and
rejected attributes. (D) 125 hub genes identified by WGCNA were calculated by XGBoost and automatically ranked in order of importance. A list
of the top 30 genes was predicted by XGboost classifier. (E) Using SVM modeling, 17 feature genes were extracted as gene biomarkers of AD
from the aforementioned 125 hub genes. (F) Venn diagram to screen 5 overlapping genes presented in four Machine Learning Algorithms. (G–I)
ROC curve was used to investigate the diagnostic model based on five diagnostic markers. The diagnostic model had the AUC value of 0.943 in
the training set. The AUC of the test set was 0.961 and that of the validation set was 0.808. The X-axis represented the (1-specificity), and the
Y-axis represented the sensitivity in the ROC curve.

decade, dementia prediction models were analyzed to increase
the diagnostic efficiency (Hou et al., 2019). We learned that
multiple iron-regulatory proteins are abnormally expressed,
leading to iron overload and accelerating the progression of AD

(Wang et al., 2022a). In this study, we linked the diagnosis of AD
with FRGs and used analyses to illustrate this correlation.

We performed a comprehensive bioinformatics analysis of
hub FRGs involved in the pathogenesis of dementia, providing
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insights into the diagnosis. Firstly, we evaluated the expression
level of 60 FRGs between AD and normal tissue based on
GSE33000, and the screened genes were validated by GSE5281
and GSE48350 dataset. The results indicated that 8 genes were
abnormally expressed in different region of the AD brain
(AKR1C3, CD44, CISD1, CRYAB, GOT1, HMGCR, MT1G,
NFE2L2). Among these genes, CD44 is identified as a potential
biomarker for brain aging (Xu et al., 2022). As an inflammation-
related gene, the increased expression of CD44 can promote
the pathological progress of AD (Pinner et al., 2017). HMG-
CoA reductase (HMGCR) is a rate-limiting enzyme involved in
cholesterol synthesis (Zhang and Liu, 2015; Howe et al., 2017).
Aβ can dramatically elevate the protein level of HMGCR, which
may increase cholesterol synthesis (Cheraghzadeh et al., 2021).
On the other, increasing of brain cholesterol level can exacerbate
Aβ-induced neurotoxicity in AD (Fernandez et al., 2009; Li
et al., 2018). The gene NFE2L2 encodes Nrf2, which is widely
accepted to reduce oxidative stress and inflammation. Under
oxidative stress induced by ferroptosis, free NRF2 is released and
rapidly transferred to the nucleus, upregulating nuclear NRF2
(Alam et al., 1999; Sun R. et al., 2022). It further confirmed the
association between FRGs and AD, providing more evidence
for our study. Meanwhile, investigation of the remaining genes
added novelty and innovation for subsequent molecular biology
research. The above genes lay the foundation for discovery of
diagnostic genes.

In this study we explored the specific regulation of FRGs
on AD. Differential analysis was performed on the clustered
dataset and GSE33000 to identify the DEGs, and the common
DEGs were selected as candidate genes. That DEGs were
mainly involved in the pathway of AD, neurotransmitter
transmission, metabolic process, development of nervous
system, and so on, which suggested regulatory factors associated
with ferroptosis in AD. According to analyzing the expression
patterns of candidate genes, a total of ten modules were
proposed. After selecting the key modules, 104 hub genes
were identified. In order to discover important pathways in
biological processes, we did an enrichment analysis of hub
genes, thus revealing the basic molecular mechanisms of
biological processes.

Finally, machine learning algorithms were used to screen
5 potentially most relevant ferroptosis-related gene features
(RAF1, NFKBIA, MOV10L1, IQGAP1, FOXO1), which were
constructed a disease diagnostic model. All the five genes
have been reported to be associated with neurodegenerative
diseases, and FAF1, NFKBIA, FOXO1 are related to iron
metabolism. The model can accurately classify patients
from healthy individuals, indicating its potential value in
molecular diagnosis.

RAF1 encodes protein named MAP kinase kinase kinase
(MAP3K), playing an intermediate regulatory role in the
linear RAS/RAF/MEK/ERK pathway (Ghousein et al., 2020).
It was reported that RAF1 was involved in promoting

neuronal neurite growth (Su et al., 2020). Moreover, RAF1
activation mediates cell death and survival, oncogenic
transformation and hematopoietic function. Importantly,
the heavy subunit of ferritin, FHC, can affect the gene
expression of RAF1 (Pearson et al., 2001; Biamonte et al.,
2015).

As for NFKBIA, it can encode IκBα to inhibit the
function of NFκB. NFκB takes part in the inflammatory
responses, anti-apoptotic transcription and angiogenesis
regulation (Perkins, 1997). NF-κB activation is associated
with neurodegeneration in AD, so NFKBIA is a candidate
longevity−associated variant (Granic et al., 2009;
Ryu et al., 2021). NFKBIA also have a strong ability
of stabilizing mitochondria membrane (Pazarentzos,
2021). Iron-mediated cytotoxicity resulted in apoptosis
accompanied by down-regulation of IκBα and up-
regulation of NF-κB phosphorylation (Bhattacharyya et al.,
2013).

MOV10L1 encodes an ATP-dependent RNA helicase
(Wang et al., 2001) required for germline integrity, which
is specifically expressed in germ cells. MOV10L1 regulates
primary piRNA biogenesis and represses retrotransposons by
forming complexes composed of piRNAs and Piwi proteins
(Guan et al., 2021; Loubalova et al., 2021). For another, its
paralog MOV10 is essential for normal brain circuitry and
CNS function (Skariah et al., 2017). MOV10L1 might be
due to Neuron development, for which further research is
needed.

IQGAP1 participates various cellular functions, such as
adherens junctions, cell migration, and cell proliferation.
As a signal scaffolding protein, IQGAP1 regulates cell
signaling transductions, such as MAPK signaling, Wnt
Signaling, PI3K/Akt Signaling and TGF-β Signaling (White
et al., 2012; Wei and Lambert, 2021). Many studies have
reported that the overexpression of IQGAP1 contributes
to different kinds of carcinoma (Takemoto et al., 2001;
Zoheir et al., 2016; Wei and Lambert, 2021; Zhang Z.
et al., 2022). It is also involved in the maintenance of
neuronal function. IQGAP1 is identified as a key node of
synaptic plasticity and dendritic spine density (Gao et al.,
2011).

FOXO1 primarily regulates redox balance and osteoblast
proliferation. Normal protein synthesis is necessary for redox
balance. The interaction of FOXO1 and ATF4 maintain
amino acid import and protein synthesis, which controlling
osteoblast proliferation (Rached et al., 2010). In the nervous
system, FOXO1 can affect neuronal autophagy (Castillo
et al., 2013). On the other hand, FoxO1 is the main
target of insulin signaling pathways, and as a result controls
glucose metabolism (Kousteni, 2011; Nathanael et al., 2022).
These mechanisms suggest FOXO1 may have implications
in progression of AD. It is known that FOXO1-regulated
HO1 overexpression increased the generation of ferrous iron
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(Dahyaleh et al., 2021). Ferroptosis may be related to the disease
factor.

Currently, a few problems still existing in the diagnosis
of AD. The pathological change of AD appears earlier than
the symptoms. Upon onset of symptoms, diagnosis time can
delay postpone treatment. There is increasing evidence of the
importance of genetic factors in disease diagnosis. Several
studies have used gene expression datasets downloaded from
databases to clarify the biological mechanisms underlying AD
development for disease prediction (Bellenguez et al., 2022;
Wang et al., 2022b). On the basis of some research, ferroptosis
has been shown to be involved in the pathological process
of AD (Ayton et al., 2020; Sun Y. et al., 2022; Wang et al.,
2022c). In the previous studies, to promote the development of
diagnosis, researchers have explored candidate factors such as
immune-based biomarkers (He et al., 2022), DNA methylation-
related biomarkers (Chen et al., 2022) and aging-related
biomarkers (Zhang Q. et al., 2022). The diagnostic link between
ferroptosis and AD is not well studied. Consequently, we
identified AD-related ferroptosis genes as candidate diagnostic
biomarkers for AD and aimed to fill the gap by conducting
bioinformatics analysis. Compared to similar previous studies,
we applied conventional logistic regression and four different
machine algorithms to validate diagnosis models creatively. The
combination of the two methods is an excellent attempt to
the existing diagnosis methods. Additionally, selected model
genes have certain diagnostic value for clinical treatment. This
conclusion also has profound significance for the scientific
experimental study of ferroptosis. Results of genetic indicators
and regulatory mechanism still need to be further tested by
experiment. However, the verification measures have limitations
as the difficulty of obtaining human brain samples. Moreover,
there are high requirements for data analysis by lack of large
datasets on AD. Further research requires more comprehensive
genomic information and more normative clinical information.

In conclusion, we proposed five characteristic genes related
to ferroptosis (RAF1, NFKBIA, MOV10L1, IQGAP1, FOXO1)
in the diagnose of AD. In addition, further in other studies are
required to verify the evidence for ferroptosis in the prevention
and treatment in AD.

Data availability statement

The original contributions presented in this study are
included in the article/Supplementary material, further
inquiries can be directed to the corresponding author.

Author contributions

DH conceived and designed the study. YD and YF
performed data analysis and wrote the manuscript.

ZL collected data from database. JH, XC, and CW
validated the analysis. MY and TX made the major
effort of polishing the language. WG revised the
manuscript. DC and HZ supervised the whole research.
All authors contributed to the article and approved the
submitted version.

Funding

This work was supported by Social development Project
of Hunan Science and Technology Department (grant
number: 2020SK53613), the Natural Science Foundation
of Hunan Province (grant numbers: 2021JJ31006 and
2020JJ5876), Hunan Provincial Science and Technology
Plan Project (grant number: 2019JJ80066), Scientific Research
Project of Health and Family Planning Commission of
Hunan Province of China (grant number: B20-17202),
National Natural Science Foundation for Young Scholars
of China (grant number: 82000614), and Science and
Technology Project of Changsha, Hunan, China (grant
number: kq2004146).

Acknowledgments

We thank the GEO database for providing information.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnagi.2022.994130/full#supplementary-material

Frontiers in Aging Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnagi.2022.994130
https://www.frontiersin.org/articles/10.3389/fnagi.2022.994130/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2022.994130/full#supplementary-material
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-994130 October 3, 2022 Time: 17:13 # 11

Deng et al. 10.3389/fnagi.2022.994130

References

Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A. M., and Cook, J. L.
(1999). Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme
oxygenase-1 gene. J. Biol. Chem. 274, 26071–26078.

Ayton, S., Wang, Y., Diouf, I., Schneider, J. A., Brockman, J., Morris, M. C., et al.
(2020). Brain iron is associated with accelerated cognitive decline in people with
Alzheimer pathology. Mol. Psychiatry 25, 2932–2941.

Bao, W. D., Pang, P., Zhou, X. T., Hu, F., Xiong, W., Chen, K., et al. (2021).
Loss of ferroportin induces memory impairment by promoting ferroptosis in
Alzheimer’s disease. Cell Death Differ. 28, 1548–1562. doi: 10.1038/s41418-020-
00685-9

Bellenguez, C., Kucukali, F., Jansen, I. E., Kleineidam, L., Moreno-Grau, S.,
Amin, N., et al. (2022). New insights into the genetic etiology of Alzheimer’s
disease and related dementias. Nat. Genet. 54, 412–436.

Bhattacharyya, S., Pal, P. B., and Sil, P. C. (2013). A 35 kD Phyllanthus niruri
protein modulates iron mediated oxidative impairment to hepatocytes via the
inhibition of ERKs, p38 MAPKs and activation of PI3k/Akt pathway. Food Chem.
Toxicol. 56, 119–130. doi: 10.1016/j.fct.2013.02.013

Biamonte, F., Zolea, F., Bisognin, A., Di Sanzo, M., Saccoman, C.,
Scumaci, D., et al. (2015). H-ferritin-regulated microRNAs modulate gene
expression in K562 cells. PLoS One 10:e0122105. doi: 10.1371/journal.pone.012
2105

Calsolaro, V., and Edison, P. (2016). Neuroinflammation in Alzheimer’s disease:
Current evidence and future directions. Alzheimers Dement. 12, 719–732.

Castillo, K., Nassif, M., Valenzuela, V., Rojas, F., Matus, S., Mercado, G.,
et al. (2013). Trehalose delays the progression of amyotrophic lateral sclerosis by
enhancing autophagy in motoneurons. Autophagy 9, 1308–1320.

Chen, F., Wang, N., and He, X. (2022). Identification of differential genes
of DNA methylation associated with Alzheimer’s Disease based on integrated
bioinformatics and its diagnostic significance. Front. Aging Neurosci. 14:884367.
doi: 10.3389/fnagi.2022.884367

Chen, X., Li, J., Kang, R., Klionsky, D. J., and Tang, D. (2021). Ferroptosis:
Machinery and regulation. Autophagy 17, 2054–2081.

Chen, Z., and Zhong, C. (2014). Oxidative stress in Alzheimer’s disease.
Neurosci. Bull. 30, 271–281.

Cheraghzadeh, M., Nazeri, Z., Mohammadi, A., Azizidoost, S., Aberomand, M.,
and Kheirollah, A. (2021). Amyloid Beta sharply increases HMG-CoA reductase
protein levels in astrocytes isolated from C57BL/6 mice. Gene Rep. 23:101070.

Dahyaleh, K., Sung, H. K., Prioriello, M., Rengasamy, P., Lam, N. H., Kim,
J. B., et al. (2021). Iron overload reduces adiponectin receptor expression
via a ROS/FOXO1-dependent mechanism leading to adiponectin resistance
in skeletal muscle cells. J. Cell. Physiol. 236, 5339–5351. doi: 10.1002/jcp.30
240

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M.,
Gleason, C. E., et al. (2012). Ferroptosis: An iron-dependent form of nonapoptotic
cell death. Cell 149, 1060–1072.

Fernandez, A., Llacuna, L., Fernandez-Checa, J. C., and Colell, A. (2009).
Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced
inflammation and neurotoxicity. J. Neurosci. 29, 6394–6405. doi: 10.1523/
JNEUROSCI.4909-08.2009

Gao, C., Frausto, S. F., Guedea, A. L., Tronson, N. C., Jovasevic, V., Leaderbrand,
K., et al. (2011). IQGAP1 regulates NR2A signaling, spine density, and cognitive
processes. J. Neurosci. 31, 8533–8542. doi: 10.1523/JNEUROSCI.1300-11.2011

Ghousein, A., Mosca, N., Cartier, F., Charpentier, J., Dupuy, J. W., Raymond,
A. A., et al. (2020). miR-4510 blocks hepatocellular carcinoma development
through RAF1 targeting and RAS/RAF/MEK/ERK signalling inactivation. Liver
Int. 40, 240–251. doi: 10.1111/liv.14276

Granic, I., Dolga, A. M., Nijholt, I. M., van Dijk, G., and Eisel, U. L. (2009).
Inflammation and NF-kappaB in Alzheimer’s disease and diabetes. J. Alzheimers
Dis. 16, 809–821.

Guan, Y., Keeney, S., Jain, D., and Wang, P. J. (2021). Yama, a mutant allele of
Mov10l1, disrupts retrotransposon silencing and piRNA biogenesis. PLoS Genet.
17:e1009265. doi: 10.1371/journal.pgen.1009265

Hampel, H., Mesulam, M. M., Cuello, A. C., Farlow, M. R., Giacobini, E.,
Grossberg, G. T., et al. (2018). The cholinergic system in the pathophysiology and
treatment of Alzheimer’s disease. Brain 141, 1917–1933.

He, Y., Cong, L., He, Q., Feng, N., and Wu, Y. (2022). Development and
validation of immune-based biomarkers and deep learning models for Alzheimer’s
disease. Front. Genet. 13:968598. doi: 10.3389/fgene.2022.968598

Hou, X. H., Feng, L., Zhang, C., Cao, X. P., Tan, L., and Yu, J. T. (2019).
Models for predicting risk of dementia: A systematic review. J. Neurol. Neurosurg.
Psychiatry 90, 373–379.

Howe, V., Sharpe, L. J., Prabhu, A. V., and Brown, A. J. (2017). New insights into
cellular cholesterol acquisition: Promoter analysis of human HMGCR and SQLE,
two key control enzymes in cholesterol synthesis. Biochim. Biophys. Acta Mol. Cell.
Biol. Lipids 1862, 647–657. doi: 10.1016/j.bbalip.2017.03.009

Kousteni, S. (2011). FoxO1: A molecule for all seasons. J. Bone Miner. Res. 26,
912–917. doi: 10.1002/jbmr.306

Langfelder, P., and Horvath, S. (2008). WGCNA: An R package for weighted
correlation network analysis. BMC Bioinformatics 9:559. doi: 10.1186/1471-2105-
9-559

Li, H. H., Lin, C. L., and Huang, C. N. (2018). Neuroprotective effects of statins
against amyloid beta-induced neurotoxicity. Neural Regen. Res. 13, 198–206. doi:
10.4103/1673-5374.226379

Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P., and
Tamayo, P. (2015). The molecular signatures database (MSigDB) hallmark gene
set collection. Cell Syst. 1, 417–425.

Long, H. Z., Cheng, Y., Zhou, Z. W., Luo, H. Y., Wen, D. D., and Gao,
L. C. (2022). The key roles of organelles and ferroptosis in Alzheimer’s disease.
J. Neurosci. Res. 100, 1257–1280. doi: 10.1002/jnr.25033

Loubalova, Z., Fulka, H., Horvat, F., Pasulka, J., Malik, R., Hirose, M., et al.
(2021). Formation of spermatogonia and fertile oocytes in golden hamsters
requires piRNAs. Nat. Cell Biol. 23, 992–1001. doi: 10.1038/s41556-021-00746-2

Majernikova, N., den Dunnen, W. F. A., and Dolga, A. M. (2021). The potential
of ferroptosis-targeting therapies for Alzheimer’s Disease: From mechanism to
transcriptomic analysis. Front. Aging Neurosci. 13:745046. doi: 10.3389/fnagi.2021.
745046

Nathanael, J., Suardana, P., Vianney, Y. M., and Dwi Putra, S. E. (2022). The role
of FoxO1 and its modulation with small molecules in the development of diabetes
mellitus: A review. Chem. Biol. Drug Des. 99, 344–361. doi: 10.1111/cbdd.13989

Patten, D. A., Germain, M., Kelly, M. A., and Slack, R. S. (2010). Reactive
oxygen species: Stuck in the middle of neurodegeneration. J. Alzheimers Dis. 20,
S357–S367. doi: 10.3233/JAD-2010-100498

Pazarentzos, E. (2021). Cell demise inhibited: Unexpected liaisons between
mitochondria and IkappaBetaalpha. Mol. Cell. Oncol. 8:995020. doi: 10.4161/
23723556.2014.995020

Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman,
K., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation
and physiological functions. Endocr. Rev. 22, 153–183.

Perkins, N. D. (1997). Achieving transcriptional specificity with NF-kappa B.
Int. J. Biochem. Cell. Biol. 29, 1433–1448.

Pinner, E., Gruper, Y., Ben Zimra, M., Kristt, D., Laudon, M., Naor, D., et al.
(2017). CD44 splice variants as potential players in Alzheimer’s Disease pathology.
J. Alzheimers Dis. 58, 1137–1149. doi: 10.3233/JAD-161245

Rached, M. T., Kode, A., Xu, L., Yoshikawa, Y., Paik, J. H., Depinho, R. A.,
et al. (2010). FoxO1 is a positive regulator of bone formation by favoring protein
synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 11, 147–160.
doi: 10.1016/j.cmet.2010.01.001

Ryu, S., Han, J., Norden-Krichmar, T. M., Zhang, Q., Lee, S., Zhang, Z., et al.
(2021). Genetic signature of human longevity in PKC and NF-kappaB signaling.
Aging Cell 20:e13362. doi: 10.1111/acel.13362

Skariah, G., Seimetz, J., Norsworthy, M., Lannom, M. C., Kenny, P. J.,
Elrakhawy, M., et al. (2017). Mov10 suppresses retroelements and regulates
neuronal development and function in the developing brain. BMC Biol. 15:54.
doi: 10.1186/s12915-017-0387-1

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan,
A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease:
Recommendations from the National Institute on Aging-Alzheimer’s Association
workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement.
7, 280–292. doi: 10.1016/j.jalz.2011.03.003

Su, Y., Huang, X., Huang, Z., Huang, T., Li, T., Fan, H., et al. (2020). Early
but not delayed optogenetic RAF activation promotes astrocytogenesis in mouse
neural progenitors. J. Mol. Biol. 432, 4358–4368.

Sun, R., Liu, M., Xu, K., Pu, Y., Huang, J., Liu, J., et al. (2022). Ferroptosis
is involved in the benzene-induced hematotoxicity in mice via iron metabolism,
oxidative stress and NRF2 signaling pathway. Chem. Biol. Interact. 362:110004.
doi: 10.1016/j.cbi.2022.110004

Frontiers in Aging Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnagi.2022.994130
https://doi.org/10.1038/s41418-020-00685-9
https://doi.org/10.1038/s41418-020-00685-9
https://doi.org/10.1016/j.fct.2013.02.013
https://doi.org/10.1371/journal.pone.0122105
https://doi.org/10.1371/journal.pone.0122105
https://doi.org/10.3389/fnagi.2022.884367
https://doi.org/10.1002/jcp.30240
https://doi.org/10.1002/jcp.30240
https://doi.org/10.1523/JNEUROSCI.4909-08.2009
https://doi.org/10.1523/JNEUROSCI.4909-08.2009
https://doi.org/10.1523/JNEUROSCI.1300-11.2011
https://doi.org/10.1111/liv.14276
https://doi.org/10.1371/journal.pgen.1009265
https://doi.org/10.3389/fgene.2022.968598
https://doi.org/10.1016/j.bbalip.2017.03.009
https://doi.org/10.1002/jbmr.306
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.4103/1673-5374.226379
https://doi.org/10.4103/1673-5374.226379
https://doi.org/10.1002/jnr.25033
https://doi.org/10.1038/s41556-021-00746-2
https://doi.org/10.3389/fnagi.2021.745046
https://doi.org/10.3389/fnagi.2021.745046
https://doi.org/10.1111/cbdd.13989
https://doi.org/10.3233/JAD-2010-100498
https://doi.org/10.4161/23723556.2014.995020
https://doi.org/10.4161/23723556.2014.995020
https://doi.org/10.3233/JAD-161245
https://doi.org/10.1016/j.cmet.2010.01.001
https://doi.org/10.1111/acel.13362
https://doi.org/10.1186/s12915-017-0387-1
https://doi.org/10.1016/j.jalz.2011.03.003
https://doi.org/10.1016/j.cbi.2022.110004
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-994130 October 3, 2022 Time: 17:13 # 12

Deng et al. 10.3389/fnagi.2022.994130

Sun, Y., Xia, X., Basnet, D., Zheng, J. C., Huang, J., and Liu, J.
(2022). Mechanisms of ferroptosis and emerging links to the pathology of
Neurodegenerative diseases. Front. Aging Neurosci. 14:904152. doi: 10.3389/fnagi.
2022.904152

Takemoto, H., Doki, Y., Shiozaki, H., Imamura, H., Utsunomiya, T., Miyata,
H., et al. (2001). Localization of IQGAP1 is inversely correlated with intercellular
adhesion mediated by e-cadherin in gastric cancers. Int. J. Cancer 91, 783–788.
doi: 10.1002/1097-0215(200002)9999:9999&lt;::aid-ijc1121&gt;3.0.co;2-z

Ursini, F., Maiorino, M., Valente, M., Ferri, L., and Gregolin, C. (1982).
Purification from pig liver of a protein which protects liposomes and
biomembranes from peroxidative degradation and exhibits glutathione peroxidase
activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta 710, 197–
211. doi: 10.1016/0005-2760(82)90150-3

Villain, N., and Dubois, B. (2019). Alzheimer’s Disease including focal
presentations. Semin. Neurol. 39, 213–226.

Wang, F., Wang, J., Shen, Y., Li, H., Rausch, W. D., and Huang, X.
(2022a). Iron dyshomeostasis and ferroptosis: A new Alzheimer’s Disease
hypothesis? Front. Aging Neurosci. 14:830569. doi: 10.3389/fnagi.2022.83
0569

Wang, H., Zhang, Y., Zheng, C., Yang, S., Chen, X., Wang, H., et al. (2022b). A
3-Gene-Based Diagnostic Signature in Alzheimer’s Disease. Eur. Neurol. 85, 6–13.
doi: 10.1159/000518727

Wang, Y., Tang, B., Zhu, J., Yu, J., Hui, J., Xia, S., et al. (2022c).
Emerging mechanisms and targeted therapy of ferroptosis in neurological
diseases and neuro-oncology. Int. J. Biol. Sci. 18, 4260–4274. doi: 10.7150/ijbs.72
251

Wang, P. J., McCarrey, J. R., Yang, F., and Page, D. C. (2001). An abundance of
X-linked genes expressed in spermatogonia. Nat. Genet. 27, 422–426. doi: 10.1038/
86927

Wei, T., and Lambert, P. F. (2021). Role of IQGAP1 in Carcinogenesis. Cancers
13:3940.

White, C. D., Erdemir, H. H., and Sacks, D. B. (2012). IQGAP1 and its binding
proteins control diverse biological functions. Cell Signal. 24, 826–834.

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler
4.0: A universal enrichment tool for interpreting omics data. Innovation 2:100141.
doi: 10.1016/j.xinn.2021.100141

Xu, J., Zhou, H., and Xiang, G. (2022). Identification of key biomarkers and
pathways for maintaining cognitively normal brain aging based on integrated
bioinformatics analysis. Front. Aging Neurosci. 14:833402. doi: 10.3389/fnagi.2022.
833402

Yan, H. F., Zou, T., Tuo, Q. Z., Xu, S., Li, H., Belaidi, A. A., et al. (2021).
Ferroptosis: Mechanisms and links with diseases. Signal. Transduct. Target. Ther.
6:49.

Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R.,
Viswanathan, V. S., et al. (2014). Regulation of ferroptotic cancer cell death by
GPX4. Cell 156, 317–331.

Zhang, C., Rodriguez, C., Spaulding, J., Aw, T. Y., and Feng, J. (2012). Age-
dependent and tissue-related glutathione redox status in a mouse model of
Alzheimer’s disease. J. Alzheimers Dis. 28, 655–666. doi: 10.3233/JAD-2011-
111244

Zhang, J., and Liu, Q. (2015). Cholesterol metabolism and homeostasis in the
brain. Protein Cell 6, 254–264.

Zhang, Q., Li, J., and Weng, L. (2022). Identification and validation of aging-
related genes in alzheimer’s disease. Front. Neurosci. 16:905722. doi: 10.3389/fnins.
2022.905722

Zhang, Z., Wei, Y., Li, X., Zhao, R., Wang, X., Yang, Z., et al. (2022).
IQGAP1 enhances cell invasion and matrix metalloproteinase-2 expression
through upregulating NF-kappaB activity in esophageal squamous cell carcinoma
cells. Gene 824:146406. doi: 10.1016/j.gene.2022.146406

Zhang, Z., Yang, X., Song, Y. Q., and Tu, J. (2021). Autophagy in Alzheimer’s
disease pathogenesis: Therapeutic potential and future perspectives. Ageing Res.
Rev. 72:101464. doi: 10.1016/j.arr.2021.101464

Zoheir, K. M., Abd-Rabou, A. A., Harisa, G. I., Kumar, A., Ahmad, S. F., Ansari,
M. A., et al. (2016). IQGAP1 gene silencing induces apoptosis and decreases
the invasive capacity of human hepatocellular carcinoma cells. Tumour Biol. 37,
13927–13939. doi: 10.1007/s13277-016-5283-8

Frontiers in Aging Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2022.994130
https://doi.org/10.3389/fnagi.2022.904152
https://doi.org/10.3389/fnagi.2022.904152
https://doi.org/10.1002/1097-0215(200002)9999:9999&lt;::aid-ijc1121&gt;3.0.co;2-z
https://doi.org/10.1016/0005-2760(82)90150-3
https://doi.org/10.3389/fnagi.2022.830569
https://doi.org/10.3389/fnagi.2022.830569
https://doi.org/10.1159/000518727
https://doi.org/10.7150/ijbs.72251
https://doi.org/10.7150/ijbs.72251
https://doi.org/10.1038/86927
https://doi.org/10.1038/86927
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.3389/fnagi.2022.833402
https://doi.org/10.3389/fnagi.2022.833402
https://doi.org/10.3233/JAD-2011-111244
https://doi.org/10.3233/JAD-2011-111244
https://doi.org/10.3389/fnins.2022.905722
https://doi.org/10.3389/fnins.2022.905722
https://doi.org/10.1016/j.gene.2022.146406
https://doi.org/10.1016/j.arr.2021.101464
https://doi.org/10.1007/s13277-016-5283-8
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Machine learning models identify ferroptosis-related genes as potential diagnostic biomarkers for Alzheimer's disease
	Introduction
	Materials and methods
	Data set collection and differential expression analysis
	Consensus clustering
	Gene set enrichment analysis
	Weighted gene co-expression network analysis
	Functional and pathway enrichment analysis
	Construction and validation of classifier model

	Results
	Expression analysis and clustering of ferroptosis-related genes
	Identification of ferroptosis-related genes-related differentially expressed genes
	Gene set enrichment analysis identifies biological functions and pathways
	Construction of co-expression network and related modules
	Functional and pathway enrichment analysis
	Identification and validation of hub genes related Alzheimer's disease classifier
	Establishment of Alzheimer's disease predictive model

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


