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ORIGINAL ARTICLE

Two subgroups of antipsychotic-naive, first-episode
schizophrenia patients identified with a Gaussian mixture
model on cognition and electrophysiology

N Bak'?, BH Ebdrup'?, B Oranje'***, B Fagerlund'?, MH Jensen'?, SW Diiring"?, M@ Nielsen'**, BY Glenthgj'** and LK Hansen®

Deficits in information processing and cognition are among the most robust findings in schizophrenia patients. Previous efforts to
translate group-level deficits into clinically relevant and individualized information have, however, been non-successful, which is
possibly explained by biologically different disease subgroups. We applied machine learning algorithms on measures of
electrophysiology and cognition to identify potential subgroups of schizophrenia. Next, we explored subgroup differences
regarding treatment response. Sixty-six antipsychotic-naive first-episode schizophrenia patients and sixty-five healthy controls
underwent extensive electrophysiological and neurocognitive test batteries. Patients were assessed on the Positive and Negative
Syndrome Scale (PANSS) before and after 6 weeks of monotherapy with the relatively selective D, receptor antagonist, amisulpride
(280.3 + 159 mg per day). A reduced principal component space based on 19 electrophysiological variables and 26 cognitive
variables was used as input for a Gaussian mixture model to identify subgroups of patients. With support vector machines, we
explored the relation between PANSS subscores and the identified subgroups. We identified two statistically distinct subgroups
of patients. We found no significant baseline psychopathological differences between these subgroups, but the effect of treatment
in the groups was predicted with an accuracy of 74.3% (P=0.003). In conclusion, electrophysiology and cognition data may be used
to classify subgroups of schizophrenia patients. The two distinct subgroups, which we identified, were psychopathologically
inseparable before treatment, yet their response to dopaminergic blockade was predicted with significant accuracy. This proof of
principle encourages further endeavors to apply data-driven, multivariate and multimodal models to facilitate progress from

symptom-based psychiatry toward individualized treatment regimens.
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INTRODUCTION

Despite great progress in the characterization of specific
functional and structural deficits associated with schizophrenia,’
the clinical diagnosis according to Diagnostic and Statistical
Manual of Mental Disorder and International Classification of
Diseases classifications still relies entirely on symptomatology
rather than on objective, biological measures. A wide range of
group differences ranging from genetic variation over brain
structural and functional changes to deficits in early information
processing and cognition have been reported in schizophrenia
patients when compared with groups of matched healthy
controls.>?

Although many of these neurobiological findings have been
reproduced at a meta-analytical level,* the great heterogeneity
between studies suggests that schizophrenia is composed of
several biologically different subgroups.” The presence of
subgroups implies that any given clinical sample of schizophrenia
patients comprise multiple subgroups with different patterns of
biological disturbances. Such ‘mixed’ patient samples may hinder
identification of effective, individually targeted clinical manage-
ment. Moreover, the presence of subgroups impairs the

development of novel treatment strategies, as potentially
important clinical effects may be masked by unknown variance
in the clinical sample of schizophrenia patients.>’ Finally,
observations of deficits in schizophrenia patients are often
confounded by effects of chronicity, substance abuse and
previous treatment exposure. Subgroups of schizophrenia patients
based on biologically valid, objectively measured markers have
not yet been identified.

Deficits in early information processing and cognition are
among the most robust findings in schizophrenia.® In early
information processing, sensory input is filtered so that only
relevant input reaches the conscious, cortical level. Early informa-
tion processing can be estimated with electrophysiology using
several paradigms, such as P50 suppression,'® the pre-pulse
inhibition (PPI) of the startle response’’ and mismatch
negativity (MMN).'? Despite the presence of psychotic symptoms,
cognition can be reliably assessed by neurocognitive tests, and
pronounced cognitive deficits constitute core deficits in schizo-
phrenia patients.’

Handling of complex data sets comprising multiple variables
from several modalities requires the application of novel
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algorithms. ‘Machine learning’ enables identification of patterns in
complex data, which cannot be modeled by means of more
classical statistical methods. Identified patterns can potentially be
used to predict future data or outcomes. In essence, the
underlying hypothesis for applying machine learning is that a
measurable structure in data exists. Machine learning techniques
can be divided into supervised and unsupervised learning. In
supervised learning, the ‘label’, which can be a class or an
outcome, has to be known for each observation, and the
supervised algorithm identifies the underlying structure in the
data, which is associated with this label. The identified data
structure can then be applied to predict future, independent
observations for which the label is unknown. Unsupervised
learning, on the other hand, is used to identify new and unknown
structures in data. Specifically, unsupervised learning is useful in
order to subgroup data if the labels, that is, classes or outcomes
are unknown. To ensure generalizable results, data-driven
machine learning techniques require valid unbiased methods
such as cross-validation."®

Previous machine learning studies in schizophrenia patients
have reported on subgroup structures (referred to as ‘profiles’ or
‘biotypes’) based on electrophysiology (for example, Van Tricht
et al,'* Turetsky et al,' Hall et al.,'® John et al.'”), cognition (for
example, Geisler et al,'® Marder et al'®) or both,®* but first-
episode, antipsychotic-naive patients have not been investigated.

The primary aim of the study was to identify potential
subgroups of schizophrenia on measures of electrophysiology
and cognition. For this, we applied an unsupervised machine
learning algorithm in an unbiased cross-validation scheme for
evaluation. The secondary aim was to investigate whether these
subgroups were related to treatment response. For this, we
applied a supervised machine learning algorithm including
measures of psychopathology before and after treatment with a
relatively selective dopamine D, antagonist, amisulpride.

MATERIALS AND METHODS

The study was conducted in accordance with the Declaration of Helsinki I,
and approved by the Danish National Committee on Biomedical Research
Ethics (H-D-2008-088). Clinical trials identifier: NCT01154829. All partici-
pants approved participation by signing informed consent.

Participants

We included data from a multimodal first-episode study of antipsychotic-
naive schizophrenia patients and healthy controls. The groups were
matched on age, gender and socioeconomic status. Patients were
excluded if they had a current diagnosis of drug dependency or were
treated with antidepressants within the last month or during the study
period. In addition, patients were asked to refrain from taking benzodia-
zepines the evening prior to a test day. At baseline, subjects underwent
extensive assessments in multiple modalities, including cognitive and
electrophysiological test batteries. Part of the data overlap with previous
uni-modal publications on electrophysiology®'* as well as publications
on functional and structural magnetic resonance imaging,>*’ oxidative
stress®® and single-photon emission computed tomography data.”®

After baseline assessments, the patients underwent 6 weeks of
antipsychotic monotherapy with the relatively selective D, receptor
antagonist, amisulpride. Symptom severity in patients was measured with
the Positive and Negative Syndrome Scale (PANSS).*° The subgrouping
analyses in the current study included data on electrophysiology (base-
line), neurocognition (baseline), PANSS (baseline and follow-up) and
amisulpride dose (follow-up).

Participants for analyses and imputation procedure

We included 69 antipsychotic-naive schizophrenia patients and 67 healthy
controls. Three patients and two controls did not undergo the electro-
physiological and cognitive test batteries. These five subjects were
excluded. In addition, 39 subjects had one or more missing variables in
electrophysiology or cognition data leaving 92 complete cases (41 patients
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and 51 controls). On the subset of subjects, who had one or more missing
variables, we performed an imputation procedure.3' After imputation, the
data set comprised 97 subjects (44 patients and 53 controls). The
subgrouping analyses were performed on these 44 patients. Subsequent
supervised machine learning analyses were based on the patients, who
had PANSS baseline (N=43), follow-up (N=36) or both (N=35) (due to
missing data for one PANSS baseline assessment).

A short description of acquisition and processing of cognitive and
electrophysiological data is provided below. Details of the procedures are
presented in Supplementary Material.

Cognition

All participants were examined with a comprehensive neurocognitive test
battery. The neurocognitive battery took ~2h to complete and
participants were allowed short breaks between tests. All tests were
administered by research staff trained in standardized administration and
scoring of the battery. Outcome variables from the following neurocog-
nitive tasks were included from: Danish Adult Reading Test,*? Wechsler
Adult Intelligence Scale 1IL,>® Brief Assessment of Cognition in
Schizophrenia®* and Cambridge Neuropsychological Test Automated
Battery.>® Please, also see Supplementary Material.

Electrophysiology

Participants were examined with the Copenhagen Psychophysiology Test
Battery.?'?**¢ The Copenhagen Psychophysiology Test Battery includes
PPI, P50 suppression, MMN and selective attention paradigms in a fixed
order. Tobacco use was not allowed 1 h before testing in order to avoid
acute and/or withdrawal effects of nicotine.?” Participants were instructed
to refrain from intake of caffeinated beverages at the day prior to testing.
Testing was performed in a separate room with a sound level <40 dB
situated adjacent to the control room. Participants were seated in a
comfortable armchair and were instructed to keep movements to a
minimum, keep their eyes fixed on a spot on the wall directly in front of
them and stay awake. Auditory stimuli were presented by a computer
running Presentation (Neurobehavioral Systems, Albany, NY, USA) software
(soundcard: Creative Sound Blaster 5.1, 2008 Creative Technology,
Singapore). Stimuli were presented binaurally through stereo insert
earphones (Eartone ABR, 1996—2008 Interacoustics A/S, Assens, Denmark;
and C and H Distributors, Milwaukee, WI, USA). The soft- and hardware
audio settings were calibrated with an artificial ear (Briiel and Kjeer, type
2133, Odin Metrology, Thousand Oaks, CA, USA).

Electroencephalography as well as electromyography recordings were
performed using BioSemi hardware (Amsterdam, The Netherlands) using a
cap with 64 active electrodes. For PPI, the eye-blink component was
measured by recording electromyography activity from the right musculus
orbicularis oculi with two electrodes. The first of these was aligned with the
pupil, the other positioned just laterally. BESA software (version 5.2.4,
MEGIS Software, Gréfelfing, Germany) was used for further processing of
the data. A background noise consisting of 70 dB white noise was used in
all paradigms. Please, also see Supplementary Material.

Statistical analyses

Analyses were performed in MATLAB (The MathWorks, Natick, MA, USA)
using the Statistics and Bioinformatics Toolbox Release 2013a.

Identification of subgroups. In order to identify potential subgroups of
schizophrenia, we applied unsupervised machine learning analyses on 26
cognitive and 19 electrophysiological variables, denoted ‘features’
(Figure 1).

A probabilistic principal component analysis based on the 45
standardized (scaled to a mean of zero and unit variance) features from
all subjects with complete data sets (Ncompiete=92) was performed,
identifying the 45-dimensional (D) principal component space. The whole
sample was used in this step in order to be able to compare the healthy
subjects with patients in a space unbiased toward patients or controls and
avoid variance inflation.>® The 45 components were sorted so that the first
component explained most variance in the data. Each of the subsequent
components explained most of the remaining variance.

To identify the statistically distinct PCA subspace of the 45D principal
component space, we applied the Akaike information criterion (AIC).3° AIC
is an analytic and asymptotically unbiased estimator of the cross-validation
deviance (mean log-likelihood of test data). The asymptotic estimator is
appropriate, as we apply this step for the combined cohort of patients and
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Feature Schizophrenial Schizophrenia2  Controls

Premorbid 1Q (DART) 23.65(10.37) 19.61(7.63)  23.06(6.81)
Verbal IQ a 106.28(21.17) 98.72(13.93) 113.50(14.11)
Performance IQa 103.64(13.97) 97.28(13.44) 108.75(13.32)
Full scale IQa 105.72(18.12) 98.11(12.18) 112.50(12.55)
List learning b 52.46(7.18) 51.06(13.37) 55.23(8.32)
Digit Sequencing Task b 21.38(4.08) 20.11(3.92) 22.89(3.65)
Token Motor Task b 68.23(10.81) 72.78(15.19)  76.08(13.30)
Verbal Fluency ("supermarket") b 23.88(6.93) 26.22(9.08) 31.25(8.00)
Verbal Fluency ("F") b 13.46(3.67) 12.22(5.41) 15.66(4.22)
Verbal Fluency ("S") b 14.46(4.59) 12.89(5.86) 16.28(4.76)
Symbol coding b 59.69(10.13) 54.50(15.56)  65.83(11.66)
Tower of London b 18.73(1.93) 18.56(2.48) 19.51(2.00)
Spatial Span ¢ 7.19(1.41) 6.94(1.30) 7.51(1.25)
Spatial Working Memory (strategy) c 26.69(6.42) 29.56(6.31) 24.36(5.37)
Spatial Working Memory (total errors) ¢ 11.54(14.92) 15.33(19.44) 7.13(8.43)
Stockings of Cambridge (problems solved) ¢ 9.65(1.83) 9.06(1.51) 10.21(1.35)
Stockings of Cambridge (initial thinking time) ¢ 9,470(8,003) 9,872(4,810) 12,472(7,545)
Intra-Extra Dimensional Set Shift (stages) c 9.00(0.00) 7.89(0.96) 8.87(0.48)
Intra-Extra Dimensional Set Shift (errors) ¢ 11.42(5.09) 39.94(20.78)  14.60(13.14)
Intra-Extra Dimensional Set Shift (EDS errors) ¢ 3.38(3.07) 17.89(11.22) 6.25(7.68)
Reaction Time (simple reaction) ¢ 337.82(56.79) 322.71(35.20) 304.51(33.77)
Reaction Time (simple movement) c 456.72(127.08) 455.81(113.01) 455.90(141.34)
Reaction Time (choice reaction) c 410.97(78.84) 381.42(60.91) 356.42(66.47)
Reaction Time (choice movement) c 402.50(111.79) 409.03(95.58) 413.05(120.22)
Rapid Visual Processing (A’, 3-5-7) c 0.98(0.02) 0.97(0.02) 0.99(0.01)
Rapid Visual Processing (A’, 3-5-7, 2-4-6) ¢ 0.96(0.03) 0.95(0.04) 0.97(0.02)
P50 c-stimulus Amplitude 7 129(0.74) ~ T 2.03(140)  1.70(0.99)
P50 t-stimulus Amplitude 0.43(0.49) 0.74(0.88) 0.55(0.55)
P50t/cratio 0.36(0.49) 0.40(0.43) 0.30(0.29)
P50 c-stimulus Latency 56.72(9.78) 58.44(10.90) 58.88(8.88)
PPI 85dB 120ms 53.50(40.66) 50.28(29.65)  58.89(37.25)
PPI 85dB 60ms 57.00(28.00) 50.89(17.38)  58.13(33.01)
PPI 76dB 120ms 37.77(40.11) 29.56(32.16)  48.87(34.64)
PPI 76dB 60ms 37.04(39.90) 32.00(27.71)  36.89(48.17)
PPI Pulse alone 106.19(73.59) 208.06(141.25) 138.28(127.10)
PPI 85dB 120ms amplitude 40.38(35.81) 93.17(92.69)  56.72(93.12)
PP185dB 60ms Amplitude 39.19(31.92) 92.28(66.52) 55.92(86.18)
PPI 76dB 120ms Amplitude 58.19(43.75) 135.61(114.29) 74.25(111.11)
PPI 76dB 60ms Amplitude 59.35(38.96)  153.39(129.16) 83.89(114.38)
MMN Frequency deviant FCZ -2.74(1.25) -2.83(1.42) -2.49(1.13)
MMN Duration deviant FCZ -4.27(2.10) -3.75(1.40) -4.01(1.60)
MMN Frequency and duration deviant FCZ -3.82(1.72) -3.86(1.80) -4.16(1.43)
MMN Frequency deviant Latency 131.20(38.56) 131.78(43.07) 140.83(41.59)
MMN Duration deviant Latency 194.33(36.10) 184.44(46.73)  187.55(34.59)
MMN Frequency and Duration deviant Latency 142.88(37.71) 122.00(32.36) 146.49(40.72)
Principal Component 1 0.0155(0.1007) 0.1023(0.1127) -0.0419(0.0788)

Principal Component 2 -0.0273(0.0613)
Principal Component 3 -0.0496(0.0968)
Principal Component 4 0.0418(0.0796)

0.0271(0.1088)
0.0491(0.0683)
-0.0697(0.1594)

-0.0008(0.1159)

0.0089(0.1087)
0.0072(0.0774)

Figure 1.

Cogpnitive and early information processing data. Mean (s.d.) for the two subgroups and controls. The weights for each feature on the

four principal components (PC1-4) are shown as bar charts. Cognitive features from Danish Adult Reading Test (DART); *Wechsler Adult

Intelligence Scale IIi;

Brief Assessment of Cognition in Schizophrenia; “Cambridge Neuropsychological Test Automated Battery.

Electrophysiological features from P50 suppression (P50); pre-pulse inhibition (PPI) of the startle effect; mismatch negativity (MMN).

controls.*® AIC was calculated for dimensions D=2, 3, 4, ..., 45 to
determine the number of principal components, which best described the
data. AIC identified an optimal number of four components, which were
then used in the further analyses (Figure 2).

On the subset of subjects (n=39), who had one or more missing
variables, we performed an imputation procedure.®' This method provides
an estimate of the imputation error and variance, by simulating missing
values in subjects with complete data sets and weighing these by similarity
to subjects with missing values. Subjects with missing values and an
estimated error below 0.05 (s.d.=0.1 in all four PCs) in the 4D principal
component space were imputed and included in the analyses, while
subjects with higher estimated imputation errors were excluded. After the

imputation procedure, the analyzed data set comprised 97 subjects (44
patients and 53 controls).

A Gaussian mixture model (GMM) was used to identify group structure
(patients only) in the 4D principal component space, using leave-one-out
cross-validation®' based on subjects to estimate the optimal number of
groups. The GMM is an unsupervised clustering algorithm that fits data as
a number of ‘structures’ in the Gaussian mixtures. Each structure in the
Gaussian mixture represents a subgroup in the data. The structures should
not be confused with the principal components that determine the
dimensions in which the subgroups are found. The GMM was run on
patients alone (N=44), as we aimed to identify subgroups within patients
rather than classify patients from controls. To provide an unbiased

Translational Psychiatry (2017), 1-8
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Figure 2.

AIC indicating likelihood for number of principal component dimensions. The minimal AIC value is attained at D =4, models based

on larger or smaller dimensions provide poorer fits to the test data. AIC, Akaike information criteria.

estimate of test error, the mean negative log likelihood was estimated for a
range of groups, K=1,..., 10 in each cross-validation fold.

To further characterize the identified subgroups, we applied y*-test for
gender and use of alcohol, tobacco, cannabis or benzodiazepines. Patients
fulfilling criteria ‘never tried’ or ‘tried a few times’ regarding each item
were defined as ‘non-users’. Patients fulfilling criteria ‘regular use’ or
‘abuse’ were defined as ‘users’. We applied independent t-tests to test for
differences in age, PANSS subscores and amisulpride dose to explore
psychopathological subgroup differences. Specifically, we included ami-
sulpride dose at follow-up, positive, negative, and general subscores from
baseline, follow-up and change scores (baseline — follow-up; Table 1).

Prediction of treatment response. In order to investigate whether the two
identified subgroups were related to treatment response, we used PANSS
subscores (positive, negative, general) from baseline, follow-up (6 weeks)
and changes in PANSS subscores (baseline - follow-up), which represented
the treatment effect. For this, we performed three separate linear support
vector machines (SVMs)*? based on the PANSS subscores (baseline, follow-
up or changes; Table 1) with the ‘C parameter set to 100. The SVM
algorithm classifies the data regarding label by finding the multidimen-
sional hyperplane with the largest margin that separates the labels in the
input space. The measure of ‘accuracy’ estimates whether the PANSS
scores can predict the identified subgroups. This can be considered an
external validation of the subgroups and thereby indicate whether the
subgroups have potential clinical relevance. Leave-one-out cross-validation
was used to obtain an unbiased estimator of the predictability and the
strength of the evidence was evaluated by permutation test. One thousand
permutations of group labels were performed, refitting the SVM to
randomized labels and testing accuracy in each.

Code availability
Computer code available upon request.

RESULTS

Patients (N=44) and controls (N=53) were well matched on age
(t=0.222, P=0.825) and gender (x> < 0.001, P=0.983). At follow-
up, the mean amisulpride dose was 280.3 (159.6) mg per day.

Identification of subgroups

The first principal component identified with probabilistic
principal component analysis loaded on all cognitive features
thus represents the overall cognitive capacity (also referred to as
‘Spearman’s G).** The second principal component loaded
primarily on electrophysiological features, specifically the features
from PPl of the startle reflex. The third and fourth principal
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components involved features from both modalities. More
specifically, the third component principal component loaded
on executive functions and reaction time from the neurocognitive
modality and percent inhibition in PPl and latency in MMN. The
fourth component loaded on intra-extra dimensional set shifting
and all variables from P50 suppression. See Figure 1 for weights of
the four principal components.

As indicated by the lowest negative log-likelihood score, the
cross-validation of the GMM indicated that a separation into two
subgroups of patients provided the most generalizable model,
hence the model that best-fit the test data (Figure 3). ‘Subgroup 1’
consisted of 26 patients and ‘Subgroup 2’ consisted of 18 patients.
Data on the two patient subgroups and the controls are displayed
in Figure 1.

Subgroup 1 had, compared to subgroup 2 lower values in PC 1
(representing higher cognitive capacity), lower values in PC 2
(indicating lower PPl and higher PPl amplitudes), and lower values
in PC 3 (indicating increased reaction times and increased MMN
latency). Conversely, subgroup 1 had higher values in PC 4
(indicating better performance in set-shifting and higher ampli-
tudes in P50 suppression) compared to subgroup 2.

We found no significant differences in between the two patient
subgroups with regard to age, gender, PANSS subscores, amisul-
pride dose, or use of alcohol, tobacco, cannabis or benzodiaze-
pines (Table 1).

Prediction of treatment response

SVM analyses of the predictive value of psychopathology showed
that PANSS baseline subscores reached an accuracy of 67.4%
(Table 1), which were significantly (P=0.017) higher than 58.1% in
‘baseline accuracy’. ‘Baseline accuracy’ is defined as the accuracy
for the simplest classification rule, that is, predicting the majority
class for each observation. With PANSS follow-up subscores, SVM
reached 50% compared to baseline accuracy of 55.6%. Using
changes in PANSS subscores (baseline —follow-up), that is, the
treatment effect, the SVM analysis reached an accuracy of 74.3%,
significantly (P=0.003) higher than baseline accuracy (54.2%;
Figure 4).

DISCUSSION

Our multivariate analyses of multimodal non-biased data in a
sample of first-episode antipsychotic-naive schizophrenia patients
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Table 1. Demographic and clinical data on controls and the two identified subgroups of patients: PANSS data, baseline, follow-up and difference
Measure Group N Mean (s.d.) P SVM Acc SVM p
Controls 53 30/23
Gender (m/f) 1 26 17/9 0.168 —
2 18 8/10
Controls 53 24.79 (5.98)
Age 1 26 23.46 (4.55) 0.197 —
2 18 26.06 (7.39)
PANSS positive, B 1 25 19.92 (3.93) 0.727
2 18 20.39 (4.80)
PANSS negative, B 1 25 20.32 (6.48) 0.545 0.674 0.017
2 18 21.67 (7.99)
PANSS general, B 1 25 41.64 (7.84) 0.380
2 18 39.22 (10.03)
PANSS positive, Fu 1 20 13.10 (3.75) 0.091
2 16 15.31 (3.84)
PANSS negative, Fu 1 20 18.15 (6.05) 0.916 0.500
2 16 17.94 (5.84)
PANSS general, Fu 1 20 29.95 (8.13) 0.753
2 16 30.81 (8.10)
PANSS positive, B-Fu 1 19 6.42 (4.90) 0.401
2 16 5.13 (3.95)
PANSS negative, B-Fu 1 19 —-0.37 (5.20) 0.056 0.743 0.003
2 16 3.31 (5.79)
PANSS general, B-Fu 1 19 10.47 (6.82) 0.187
2 16 7.13 (7.88)
Amisulpride doses, Fu 1 17 276.47 (146.97) 0.890 —
2 16 284.38 (176.75)
Alcohol (users) 1 26 21 0.506 —
2 18 13
Tobacco (users) 1 26 17 0.307 —
2 18 9
Cannabis (users) 1 26 9 0.189 —
2 18 3
Benzodiazepines (users) 1 26 0 — —
2 18 0
Abbreviations: B, baseline; Fu, follow-up; PANSS, Positive and Negative Syndrome Scale; SVM, support vector machine. P-value for the t-test for the difference
between schizophrenia subgroups (x*test for gender and substance use). Support vector machine accuracy (SVM Acc) and P-value from the permutation test
for significance of the SVM (SVM p). Significant P-values (P < 0.05) are in bold.

support the notion that the clinical diagnosis of schizophrenia
encompasses biologically separable subgroups. Specifically, our
data suggest the presence of two distinct subgroups of
schizophrenia with regard to early information processing and
higher cognitive functions. Univariate analyses showed no
significant differences in demographic or clinical data at baseline
or at follow-up. However, the SVM analyses showed that subgroup
status can significantly be associated with the treatment effect
after 6 weeks. Moreover, subgroups status was also associated
with baseline PANSS subscores.

The change in PANSS scores reflects the overall clinical
treatment response on positive, negative and general symptoms
after 6 weeks of amisulpride monotherapy. Specifically, the
accuracy of 74.3% was driven primarily by differences in PANSS
negative and general scores (Table 1). Interestingly, subgroup 2
tended to improve in negative symptoms, whereas negative

symptoms in subgroup 1 did not change after treatment.
Amisulpride is the only antipsychotic compound that is approved
for treatment of negative symptoms, yet the results from
subsequent clinical studies have been inconsistent (for meta-
analysis see Leucht™). A reduction in negative symptoms of three
points on the PANSS scale represents the ‘clinical gain’. The
modest clinical gain compared with the ‘high cost’ of the present
data acquisition and analyses do not support direct implementa-
tion of electrophysiological- and cognitive examinations as part of
the routine work-up to predict treatment response to amisulpride.
Nevertheless, the previously observed variable clinical trajectories
in the response of amisulpride on negative symptoms* may be
explained by subgroups as identified in the current study.

To our knowledge, this is the first study applying both cognitive
and electrophysiological measures in order to subgroup first-
episode schizophrenia patients. One previous study identified

Translational Psychiatry (2017), 1-8
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Figure 3.

Leave-one-out estimate of test error (negative log likelihood). Calculated for model dimension, that is, number of subgroups=1,2,

..., 10. Lowest value at model dimension =2, indicating that a model with two subgroups best-fit the test data. Values on Y axis are arbitrary.
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Figure 4. (a) The two subgroups in 3D PANSS change subscores with
SVM decision surface. The decision surface is determined by PANSS
negative and PANSS general subscore changes while PANSS positive
change scores seems to have limited to no influence. (b) Confusion
matrix presenting actual vs predicted group. PANSS, Positive and
Negative Syndrome Scale; SVM, support vector machines.

three ‘biotypes’ across schizophrenia, bipolar disorder and
schizoaffective disorder using the same type of measures.?®
Another study identified five subgroups of chronic schizophrenia
patients based on aggregate cognitive scores of seven
a priori defined domains.*® These studies investigated different
diagnostic categories and included chronic, antipsychotic-treated
patients and have in essence addressed the validity of the
current diagnostic criteria.*” To our knowledge, the current study
is also the first to demonstrate that more homogeneous
samples of antipsychotic-naive, first-episode schizophrenia
patients display both biologically and clinically relevant subgroup
structures.
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The two subgroups of schizophrenia identified in this study
were identified among 44 first-episode schizophrenia patients.
Although, effects of chronicity or previous antipsychotic exposure
are ruled out, the findings call for replication in larger,
independent samples. Unsupervised algorithms as used in this
study usually require more observations than supervised algo-
rithms to reach stable models.*® In machine learning terms, our
number of observations is relatively low, and stresses the
importance that the optimal number of latent variables and the
optimal number of subgroups is identified properly, as recom-
mended in a recent comprehensive review.*® The approach in the
present study follows these guidelines. Another risk with
unsupervised machine learning is that the structures/subgroups
identified with might be associated with irrelevant traits, for
example, head size, rather than the relevant traits, for example,
clinical outcome. Our identified subgroups seem clinically
relevant. Although supervised learning can generalize known
statistical relations to new data, we have demonstrated the
explorative potential of unsupervised learning to identify new
generalizable statistical structure.

In the present study, we have only included data from two
commonly used modalities in schizophrenia research (cognition
and electrophysiology). Clearly, inclusion of more independent
modalities may refine the structure and number of subgroups of
schizophrenia patients. For example, functional magnetic reso-
nance imaging has been shown to contain information to identify
subgroups in schizophrenia.®® These modalities could include
genetic variability, magnetic resonance imaging and in vivo
receptor imaging with positron emission tomography or single-
photon emission computed tomography. Moreover, ‘treatment
response’ in the context of this study is limited to 6 weeks, and the
individual long-term course of illness may be subject to other
trajectories. Finally, prediction of treatment response to other
antipsychotic compounds than amisulpride, cannot be inferred
from this study.

Overall, this proof of principle study supports the presence of
biological, clinically relevant subgroups of schizophrenia and
implies that stratification of patients is required to recognize
specific treatment needs in individual subgroups. The current
results encourage further endeavors to apply data-driven, multi-
variate and multimodal models to facilitate progress from



symptom-based psychiatry toward individualized treatment

regimens.
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