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ABSTRACT Whereas 16S rRNA gene amplicon sequencing quantifies relative abun-
dances of bacterial taxa, variation in total bacterial load between samples restricts its
ability to reflect absolute concentrations of individual bacterial species. Quantitative
PCR (qPCR) can quantify individual species, but it is not practical to develop a suite
of qPCR assays for every bacterium present in a diverse sample. We sought to deter-
mine the accuracy of an inferred measure of bacterial concentration using total bac-
terial load and relative abundance. We analyzed 1,320 samples from 20 women with
a history of frequent bacterial vaginosis who self-collected vaginal swabs daily over
60 days. We inferred bacterial concentrations by taking the product of species rela-
tive abundance (assessed by 16S rRNA gene amplicon sequencing) and bacterial
load (measured by broad-range 16S rRNA gene qPCR). Log10-converted inferred con-
centrations correlated with targeted qPCR (r � 0. 935, P � 2.2e–16) for seven key
bacterial species. The mean inferred concentration error varied across bacteria, with
rarer bacteria associated with larger errors. A total of 92% of the �0.5-log10 errors
occurred when the relative abundance was �10%. Many errors occurred during
early bacterial expansion from or late contraction to low abundance. When the rela-
tive abundance of a species is �10%, inferred concentrations are reliable proxies for
targeted qPCR in the vaginal microbiome. However, targeted qPCR is required to cap-
ture bacteria at low relative abundance and is preferable for characterizing growth and
decay kinetics of single species.

IMPORTANCE Microbiome studies primarily use 16S rRNA gene amplicon se-
quencing to assess the relative abundance of bacterial taxa in a community.
However, these measurements do not accurately reflect absolute taxon concentra-
tions. We sought to determine whether the product of species’ relative abundance
and total bacterial load measured by broad-range qPCR is an accurate proxy for in-
dividual species’ concentrations, as measured by taxon-specific qPCR assays. Overall,
the inferred bacterial concentrations were a reasonable proxy of species-specific
qPCR values, particularly when bacteria are present at a higher relative abundance.
This approach offers an opportunity to assess the concentrations of bacterial species
and how they change in a community over time without developing individual
qPCR assays for each taxon.
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For most infectious diseases, the absolute concentration of a single pathogen is
often the most specific marker of disease severity and therapeutic response (1–3).

In contrast, studies of bacterial communities usually rely on broad-range consensus
sequence PCR of taxonomically informative genes (such as 16S rRNA) coupled with
next-generation sequencing (NGS) to assess relative, but not absolute abundances of
bacteria. At a mechanistic level, specific combinations of bacteria and bacterial gene
products are thought to play a causative role in the pathogenesis of many microbiome
associated conditions (4–6), and this approach of characterizing the microbiota is
valuable. However, the absolute concentrations of individual bacterial taxa within
communities may be a better predictor of biological activity or disease risk compared
to relative abundances of these taxa. Quantitating absolute concentrations of individual
species with qPCR is time intensive, requires the generation of a standard curve for
each organism using known concentrations of DNA, is expensive, and is only available
in specialized laboratories. Moreover, each qPCR assay requires significant development
and validation costs. qPCR is therefore not typically comprehensive for all species in a
community. In addition, selection of the most appropriate species for analysis may
reflect investigator bias.

A method to infer absolute concentration of multiple bacterial species from NGS
data would be extremely useful for the field, including studies of the vaginal micro-
biome. NGS amplicon sequencing is a fractional approach that has been used to help
define conditions such as bacterial vaginosis (7–10) and to identify enhanced risk for
other sexually transmitted infections and preterm delivery (11, 12). However, total
bacterial load may vary significantly between and within individuals over time even
over the course of a single day (8). Therefore, relative abundances may not accurately
represent absolute concentrations. Consequently, as shown recently in the gut micro-
biome, relative abundances may identify spurious disease associations which may in
fact be driven by total microbial load (13).

Here, we demonstrate that multiplying relative abundance data (composition) by
estimates of total bacterial DNA as measured by a broad-range 16S rRNA gene qPCR
assay provides useful estimates of absolute concentrations of bacterial DNA for a given
species in a sample. This technique has already been used in studies of the penile
microbiome, though without formal validation (14), and in the fecal microbiome with
limited validation (15). Here, we validate inferred concentrations by comparison of
absolute concentrations measured by targeted qPCR assay for seven key species in the
vaginal microbiome. We found that whereas inferred concentrations are accurate for
most samples, they are prone to error when relative abundance is low and may
misrepresent kinetics of individual species during critical periods of expansion from low
bacterial abundance and during clearance.

RESULTS
Comparison of longitudinal profiles highlight differences between relative

abundance and absolute concentration measurements. We compared absolute
concentration and relative abundance from the same samples measured within indi-
viduals over the course of the study. The bacterial kinetics observed for a single
participant are shown in Fig. 1a and b. The individual shown underwent dynamic
changes in bacterial profile with notable shifts between low to high diversity states. The
bacterial kinetics of the other 19 participants can be found in Fig. S1 in the supple-
mental material.

In five of the participants, shifts in composition appear less abruptly when measured
by single-species qPCR than by NGS (Fig. S1). For example, for the participant shown in
Fig. 1, the absolute concentration of A. vaginae increases on day 17 (h 415), but its
relative abundance does not show a consistent increase until day 28 (h 671), although
there are some nonzero abundances in 4/9 samples before this point. From day 0 to day
7 (h 168), the participant received metronidazole for bacterial vaginosis (BV): qPCR
shows an exponential decline in BV-associated species absolute concentrations in
accordance with previous studies (16); yet, NGS shows a much more abrupt shift toward
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Lactobacillus iners predominance. NGS can also fail to capture low-level colonization of
bacteria, such as that of Gardnerella vaginalis on days 6 to 11 (h 150 and 261). Several
high-diversity samples have highly prevalent species which were not measured with
qPCR in this study, such as Prevotella bivia, from day 28 onward (h 671). As previously
noted, high diversity states are often concurrent with high absolute concentrations of
Gardnerella vaginalis, Atopobium vaginae, BVAB2, and Megasphaera, which all have
been associated with BV (8, 10, 17). These observations, which can be made for many
of the individuals in this cohort, highlight that qPCR provides more granular estimates
for measuring single species kinetics, while NGS is optimal to estimate bacterial
diversity in high diversity communities.

We next focused on comparing relative abundance and absolute concentration for
individual species’ kinetics. Examples for two species, L. crispatus and Megasphaera sp.,
are shown in Fig. 2 (examples for the remaining five species are in Fig. S2 in the
supplemental material). There were time points at which the absolute and relative
abundance measures demonstrated opposing or differing kinetics, often due to con-
current large shifts in the total bacterial load or single species abundance. These are
indicated by arrows in Fig. 2. Thus, the relative abundance may misrepresent the
absolute concentration when not accounting for total bacterial load. Together, these
observations identify a potential role for inferred concentrations, which can be calcu-
lated for all bacterial species present in the sample by NGS, when characterizing the
microbiota.

Noise detection analysis indicates limited impact of sampling variance in
observed dynamics. We next sought to assess whether observed shifts in qPCR values

FIG 1 Complex bacterial kinetics in the vaginal niche in a representative study participant. Daily samples from a woman, participant 18, who performed
self-swabbing of the vagina were analyzed by targeted qPCR of seven specific species (a), high-throughput sequencing using 16S rRNA (b), and inferred
concentration for species with a relative abundance above 1% (c). Boxes around taxa indicate they were measured using qPCR. qPCR allows measures of the
absolute concentration, whereas broad-range PCR with sequencing provides a measure of the bacterial diversity in a given sample. Targeted qPCR often detects
shifts in single species prior to NGS. Inferred concentration follows qPCR more closely than does the relative abundance and may project the concentration
of species for which targeted qPCR assays are not available. Traces for the remaining participants can be found in Fig. S1.
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could be a result of noise related to sampling or laboratory variability rather than true
longitudinal shifts in abundance. We used detection theory to estimate the sampling
noise from our longitudinal data of absolute concentration. This technique decomposes
the data into two parts: a signal (true concentration in a sample) and noise, the source
of which may be biological, technical, sampling, or any combination of these. Further
details of the technique can be found in the methods section.

In Fig. 3a and b, we show the longitudinal profile of L. iners and BVAB2 for two
participants. We found that the detected signal (shown in red) closely follows the
measured data (shown in black), with only slight deviations. The same trend was
identified in all other participants, and for each species. In Fig. 3c and d, we show the
distribution of the detected noise for L. iners and BVAB2 across all participants. The
detected noise had a mean of zero and a small variance [0.19 and 0.41 log10(16S rRNA
gene copies per swab), respectively]. The same was found for the total bacterial load
and all other species (Fig. S3).

In our study, species are observed to undergo a change of up to 8.2 log10, and the
total bacterial load can change 4.9 log10 over 60 days. These observed changes are
much greater than the noise being estimated by our technique, which suggests that
the dynamics being captured are most likely biological rather than noise.

Inferred concentrations are predictive of absolute concentrations measured by
qPCR. For each species we calculated inferred concentrations by multiplying total
bacterial load by NGS-relative abundance, as shown in equation 1. We then compared
these with absolute concentration as measured by targeted qPCR assay for the seven
key species. For each species, inferred bacterial concentration closely tracked absolute
concentration for most samples (Fig. 1c; see also the dotted line in Fig. 2 and Fig. S2).
In many instances and for most species, there were no obvious extreme discordance
noted (Fig. 2a and Fig. S2). For some species, however, such as Megasphaera and
BVAB2, inferred concentration consistently overestimated the absolute concentration
by an order of magnitude (Fig. 2b and Fig. S2d). In a subset of samples, for all species,
inferred concentration was zero while qPCR levels were positive, leading to profound
discordance between the inferred and absolute concentrations: this was most often
noted at low absolute concentration (Fig. 2).

We compared the correlation between the relative abundance and the absolute
concentration (r � 0.932, P � 2.2e–16; Fig. 4a) to the correlation between the inferred
concentration and the absolute concentration (r � 0.935, P � 2.2e–16; Fig. 4b). The two
correlation coefficients are not statistically different (Hittner test, P � 0.08) (18). Species-
specific correlations are noted. For the inferred concentrations, Megasphaera and

FIG 2 Relative abundance estimates can misrepresent actual concentrations due to shifts in total bacterial load. Examples of species-specific profiles in two
participants for two different species L. crispatus, participant 06 (a), and Megasphaera, participant 17 (b). Vertical bars show the relative abundance (%, left y
axis), solid lines indicate the absolute concentrations measured by qPCR, the gray line indicates the total bacterial load, and the dashed lines indicate inferred
concentrations (all right y axis). The dashed black line indicates detection threshold for qPCR data (93.8 16S rRNA gene copies per swab). Arrows indicate time
points when the relative abundance changes are discordant from the absolute concentration changes, which often occur when bacterial loads shift dramatically
or when the relative abundance is low. Examples for the remaining species can be found in Fig. S2.
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BVAB2 produced the strongest correlation, followed by L. crispatus, A. vaginae, and L.
jensenii; G. vaginalis and L. iners, which are often present at moderate concentrations
(�106 16S rRNA gene copies per swab), had the weakest correlations, though the
correlation coefficients for all species were high (Table 1). Simple linear regression
showed a significant relationship between inferred and absolute concentrations for
each individual species (Fig. S4). The slope coefficient varied between species, with L.
iners reporting the highest value (�1 � 0.88) and BVAB2 presenting the lowest (�0 �

0.59).
We defined error of inferred concentration (IC) error as shown in equation 2.

Although there was a large range in errors for nonzero inferred concentrations [Fig. 5a;
range, �7.32 log10 (16S rRNA gene copies per swab) – 2.66 log10(16S rRNA gene copies
per swab)], the mean IC error [�0.319 log10(16S rRNA gene copies per swab)] and
standard deviations [0.999 log10(16S rRNA gene copies per swab)] were low. Moreover,
the median IC error for most species approximated zero with samples within the
interquartile range (IQR), demonstrating a minimal IC error (Fig. 5a). However, for

FIG 3 Noise detection analysis indicates small sampling variance. The signal and noise decomposition of two longitudinal profiles is shown. Measurements
from targeted qPCR assays are indicated in black, signal detected by 25% low-pass filter is indicated in red for L. iners (a) and BVAB2 (b) in separate participants.
In both cases, the signal closely matches the absolute concentration measurements. Consequently, the noise detected is of very low amplitude. The distribution
of noise across all 20 participants is shown for L. iners (c) and BVAB2 (d). The noise distribution is low for both species, though a narrower range of noises is
reported for L. iners than for BVAB2. The noise for both measurements has a mean of zero and a variance of 0.19 and 0.41 log10(16S rRNA gene copies per swab),
respectively.
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BVAB2 and Megasphaera, the IQR of the IC error, while narrow, was all �0, implying
consistent overestimation of the absolute concentration by the IC (pairwise t test,
P � 0.05). There was also a trend toward global underestimation of G. vaginalis using
inferred concentration (Fig. 5a).

Low relative abundance is the major source of IC error. The variance in the
relationship with absolute concentration tended to be inversely proportional to species
concentrations (Breusch-Pagan test; P � 0.06), highlighting that a larger range of IC
errors tended to be reported at lower species-specific bacterial loads (Fig. 4b). Accord-
ingly, 93% of �0.5 IC errors were accounted for by relative abundances below 10 and
85% by relative abundances below 1%. Many of these IC errors occurred on double
negatives: samples for which the inferred concentration was zero and the absolute
concentration was reported at threshold. When these samples were removed from the
analysis, 84% of �0.5 IC errors were accounted for by relative abundances of �10, and
66% were accounted for by relative abundances below 1% (Fig. 5b). The median
absolute concentration above the limit of detection for �0.5 IC errors was 5.95
log10(16S rRNA gene copies per swab) (IQR, 4.03 to 7.88; range, 1.97 to 10.39).

FIG 4 The inferred concentration slightly improves correlation with the absolute concentration compared to the relative abundance. (a) Scatterplot of the
absolute concentration versus the relative abundance. Pearson correlation coefficient (PCC): r � 0.932 and P � 2.2e–16. (b) Scatterplot of the absolute
concentration versus the inferred concentration. PCC: r is 0.935 and P � 2.2e–16. Both axes are plotted on a logarithmic scale. Samples which were determined
to be negative by NGS but not by targeted qPCR are plotted on the x axis, while samples negative by targeted qPCR but determined to be positive by NGS
are listed on the reported threshold for targeted qPCR (93.8 16S rRNA gene copies per swab). The relative abundances and inferred concentrations were
generally falsely negative at low absolute concentrations. Variance in the relationship between the absolute concentration and the relative abundance is
inversely proportional to species concentrations (Breusch-Pagan test, P � 2e–3), whereas this relationship was not statistically significant between the absolute
concentration and the inferred abundance (Breusch-Pagan test, P � 0.06).

TABLE 1 Pearson correlation coefficients of single species between absolute
concentration versus relative abundance and inferred concentration

Species

Pearson correlation coefficient

Relative abundance Inferred abundance

Megasphaera 0.949 0.978
BVAB2 0.902 0.952
Lactobacillus crispatus 0.958 0.920
Atopobium vaginae 0.901 0.916
Lactobacillus jensenii 0.894 0.911
Gardnerella vaginalis 0.869 0.890
Lactobacillus iners 0.889 0.872
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We defined false-positive samples as nonzero inferred concentration values when
the absolute concentration qPCR values were at or below the detection threshold, and
we defined false negatives as zero values for the inferred concentration when absolute
concentrations were above the detection threshold. False negatives were more com-
mon (23.6% of samples) than false positives (3.17% of samples), which demonstrates
that targeted qPCR is more sensitive for single species detection than is NGS.

The incidence of false negatives was not equal across species, with G. vaginalis
having the highest percentage of false negatives, followed by L. inners and A. vaginae
(L. crispatus, 13.8%; L. jensenii, 31.1%; L. iners, 35.1%; G. vaginalis, 60.4%; A. vaginae,
35.3%; Megasphaera, 5.40%; BVAB2, 9.84%). The higher percentages of false negatives
for some species occurred because they are often present at moderate concentrations,
near the relative abundance error threshold. The median qPCR value for false-negative
samples was 3.92 log10(16S rRNA gene copies per swab) (IQR, 2.88 to 4.82; range, 1.97
to 7.84), again showing that IC errors generally occur at lower bacterial loads.

The total bacterial load measured by broad-range qPCR assay was frequently below
the sum of the concentration of all seven species measured by targeted qPCR assays
(37.6% per species per sample). Nonzero inferred single species concentrations from
samples with underestimates of total bacterial load consistently overpredicted absolute
concentration (one-tailed t test, P � 2.6e– 4) and did so more than at other points
(pair-wise t test, P � 2.2e–16) (Fig. 5c). Nonzero inferred concentrations from samples
with suspected underestimates of total bacterial load (samples where BR16S is lower
than the sum of concentrations of the seven targeted species) had a median IC error of
0.171 log10(16S rRNA gene copies per swab) (IQR, – 0.138 to 0.447; range, –7.31 to 2.66)
compared to �0.368 log10(16S rRNA gene copies per swab) (IQR, �0.638 to �0.143;
range, �6.54 to 1.42) in other samples.

L. crispatus had the highest percentage of false positives (L. crispatus, 8.42%; L.
jensenii 1.08%; L. iners, 3.56%; G. vaginalis, 0.46%; A. vaginae, 3.07%; Megasphaera,
1.12%; BVAB2, 1.79%). The median relative abundance of false positives across all
samples was extremely low at 0.06% (IQR, 0.04 to 0.11%; range, 0.0007 to 36.8%).

Concentrations inferred from NGS predict observed absolute concentration
regardless of sample diversity or sequencing depth. Inferred concentrations did not

FIG 5 Low relative bacterial abundance is the major predictor of IC error for inferred concentrations compared to absolute concentrations. (a) Boxplots
displaying IC error (equation 2), with zero inferred concentrations removed, indicate low IC error rates overall. Inferred values are consistent overestimates for
BVAB2 and Megasphaera spp. Boxes indicate the interquartile range, whiskers are 1.5� the IQR, and dots are samples outside this range. Red crosses are means.
(b) Bar chart of incidence of �0.5 IC error by relative abundance group. Black bars include double negatives (0 inferred concentration and threshold absolute
concentration): 93% of �0.5 IC errors are accounted for by relative abundances of �10% (85% by relative abundances �1%). For the gray bars, concurrent
negative samples are removed: 84% of �0.5 IC errors are accounted for by relative abundances of �10% (66% by relative abundances �1%). (c) Boxplots
displaying the IC errors for samples with unconfirmed and confirmed underestimates of total bacterial load by broad-range qPCR assay (samples where BR16S
is lower than the sum of concentrations of the seven targeted species). Data points with zero inferred concentrations were removed. Samples with
underestimates of total bacterial load overestimate the single-species concentration more than do other samples. Overall, however, the range of IC error is
comparable between both groups. Boxes are the interquartile range, whiskers are 1.5� the IQR, and dots are samples outside this range. Crosses indicate means.
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disproportionally record misleading results from low- or high-diversity samples, as
measured by the Shannon diversity index (Fig. 6a). Moreover, we observed occasional
large absolute IC errors across all sequencing depths (Fig. 6b). Low bacterial abundance
was the primary source of absolute IC error regardless of diversity or sequencing depth
(Fig. 6a and b). A �0.5 absolute IC error was observed across all raw species counts, but
the largest absolute IC errors (�2) were almost exclusively associated with raw species
counts below 100 (Fig. 6c).

Inferred concentration estimates are predictive of most temporal changes in
single species bacterial load. We next examined whether inferred concentration is a
useful tool for evaluating individual species kinetics by determining changes in bacte-
rial levels over the course of a day. The rates of change in relative abundances
correlated only weakly with absolute concentrations (r � 0.271, P � 2.2e–16). More-
over, 23.2% of the time, we observed a change in relative abundance in the opposite
direction to that of absolute concentration (see the top-left and bottom-right quad-
rants of Fig. 7a). This type of error occurred commonly for both the most abundant (e.g.,
L. crispatus) and rarer species (e.g., BVAB2).

The rates of change in the inferred concentration showed improved correlation with
the rates of change in the absolute concentration (r � 0.392, P � 2.2e–16). The mean
rIC error (defined in Materials and Methods) was low [�2.71 � 10�3, standard deviation
(SD) � 1.54 log10(16S rRNA gene copies per swab) per hour], though the range of rIC
errors was high [�9.29 to 9.31 log10(16S rRNA gene copies per swab) per hour],
indicating occasional samples with very poor prediction. The inferred concentrations
decreased the sign rIC error rate by �50% (from 23.2 to 7.97%, Fig. 7b).

Figure 8a shows a typical profile of A. vaginae absolute levels and sample-to-sample
change to demonstrate the two types of rIC errors that were most common to the data.
The first were large positive or negative rates which occurred when one of two
consecutive points had an inferred concentration of zero (single positives), while the
absolute concentration was detectable by qPCR. These points resulted in dramatic
overestimation of growth or contraction rates for individual species across all samples
(Fig. 7b and 8b, right-upper and left-lower quadrants). Such rIC errors often occurred
when species were transitioning to or from a low concentration (�106 16S rRNA gene
copies per swab). The second type of rIC error occurred when two consecutive points
had inferred concentrations of zero (double negatives), resulting in underestimation of

FIG 6 Sample diversity, sequencing depth, and species counts do not impact the IC error of the inferred concentration. Scatterplots color-coded by IC error
are shown. Each dot is a sample for a specific species from a single participant. (a) Relative abundance versus Shannon diversity index. A high IC error
predominantly occurred at a low relative abundance but across both low and high diversity samples. (b) Relative abundance versus sequencing depth. A high
IC error predominantly occurred at a low relative abundance but across various levels of sequencing depth. (c) Sequencing depth versus species counts. A high
IC error occurred at species counts below 100, although a �0.5 IC error is observed across all species counts.
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growth or contraction rates for individual species (Fig. 8b). This phenomenon also
commonly occurred when a species was transitioning to or from a low concentration
(�106 16S rRNA gene copies per swab). These two forms of transitions accounted for
91.7% of rIC error � 0.05 (Fig. 8c). If all transitions involving a zero value were elimi-
nated from the analysis, we observed excellent correlation between inferred and
observed rate of change (r � 0.876, P � 2.2e–16; Fig. 8b). It follows that inferred
concentrations do not capture kinetics during microbial blooming or contraction, when
bacteria are at low concentration or not detected using the less sensitive broad-range
PCR with NGS approach. However, inferred concentrations can be used to estimate

FIG 7 Inferred concentrations allow somewhat accurate inference of kinetic changes between two sequential samples. (a) Scatterplot of the change in the
absolute abundance versus the change in the relative concentration shows poor correlation. Pearson correlation coefficient (PCC): r is 0.271 and P � 2.2e–16.
A high percentage of the observed changes in the relative abundance is in the opposite direction to those in the absolute concentration (left-upper and
right-lower error quadrants marked with percentages). (b) A scatterplot of the absolute concentration versus the inferred concentration shows improved
correlation. Both axes are plotted on a logarithmic scale. PCC: r is 0.392 and P � 2.2e–16. The percentages correspond to the number of data points that fall
within the error quadrants and are lower than for the relative abundance. The inferred values misreport the direction of kinetics less frequently.

FIG 8 Inferred concentration measures allow accurate inference of kinetic changes between two sequential nonnegative samples. (a, top) Levels of A. vaginae
over time in a single participant (dotted is inferred and solid is absolute concentration); (bottom) rate of change in levels of A. vaginae over time in the same
participant (dotted is inferred and solid absolute concentration). The divergence in swab-to-swab levels between inferred and absolute concentrations varies
only when the inferred concentration is zero in one of the sequential samples. (b) Scatterplot of rate of change of inferred concentration as predicted by NGS
versus qPCR observed values. Both axes are plotted on a logarithmic scale. The data are the same as in Fig. 7a and b. The triangles correspond to panel a. Points
are colored according to whether consecutive samples were double positive (both �0 inferred concentration), single positive (one �0 and one 0 inferred
concentration), or double negative (both 0 inferred concentration). Data points in which both samples are positive (no zeroes) are much more highly correlated
(r is 0.876 and P � 2.2e–16). (c) A majority of rIC errors � 0.05 occur during transitions between positive and negative samples (single positives).
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individual species growth and contraction rates when bacteria are present at higher
concentrations, such as �106 16S rRNA gene copies per swab.

Complete linkage clustering by inferred and absolute concentrations shows
general agreement. To assess whether inferred concentrations provide similar or
disparate classification of samples, we clustered samples using complete linkage hier-
archical clustering based on Euclidean distances (19) by inferred and absolute concen-
trations of the seven species for which the two measures are available (Fig. S5). We
compared the resulting dendrograms using the entanglement coefficient from the
dendextend package in R (20), where a value of 1 corresponds to complete discordance
and a value of 0 indicates perfect alignment. The two dendrograms were found to be
in agreement, with a low entanglement coefficient 0.11.

We next determined the number of clusters using NbClust package in R (21). The
absolute concentration identifies two, whereas the inferred concentration identifies
three clusters. The third cluster arose from a general distinction between samples
dominated by L. crispatus from L. iners as the inferred concentrations had a lower
threshold (1 16S rRNA gene copy per swab) than the qPCR (93.8 16S rRNA gene copies
per swab).

Inferred concentration may provide the most comprehensive overview of
individual species kinetics. Inferred concentrations can be calculated for all species
captured by NGS. In Fig. 1 and Fig. S1, we show the inferred concentrations of the most
abundant species across all samples. We imposed a 1% relative abundance threshold to
limit the possible 0.5 IC error described in Fig. 5b. This relative abundance cutoff results
in abrupt appearance and disappearance of organisms. Although we cannot validate
our projections for species outside the seven key bacterial species for which we have
targeted qPCR assays, inferred concentrations have the potential to describe the
kinetics of relevant species present at moderate to high concentrations during bacterial
shifts in the microbiome.

We carried out complete linkage hierarchical clustering based on the Euclidean
distance by inferred concentration and relative abundance for the 20 most abundant
species of the data set (Fig. S6). The resulting dendrograms showed general agreement,
with an entanglement coefficient of 0.12. Both techniques identified two clusters
defined by high-concentration G. vaginalis and high diversity versus Lactobacillus
predominance (21).

DISCUSSION

An ideal assay that characterizes bacterial communities in an ecological niche would
capture several metrics, including species composition, diversity, and quantity, as
reflected by the absolute concentrations of all species present. Broad-range PCR of
phylogenetically informative genes, followed by NGS, is the most commonly used
approach and captures the first two metrics. However, because total bacterial levels
may shift dramatically over narrow time intervals, relative abundance measures by NGS
do not reflect absolute concentration. Although it is possible to circumvent this issue
with targeted (taxon-specific) qPCR, these assays are expensive, time-consuming, and
only available in specialized laboratories. Invariably, the absolute concentration of
many relevant species is left unmeasured due to these constraints.

This measurement gap is highly relevant to clinical studies of the human micro-
biome, in which the total bacterial load may not be stable. It is biologically plausible
that the absolute levels of critical species are more predictive of health and disease
states than relative levels, as is the case with classical single-pathogen infectious
diseases. Moreover, serial measurements of absolute levels are necessary to fully
capture nonlinear microbial dynamic changes which relate to interspecies competition
for limited resources.

Using a large longitudinal data set of the vaginal microbiome notable for frequent
changes between low and high diversity states, we demonstrate that the absolute
concentration of a given species can be inferred by multiplying the total bacterial
quantity by its relative abundance as measured by NGS. Given that quantitating total
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bacterial load is affordable and available to many laboratories, this simple approach
may allow estimation of absolute concentration without needing to perform qPCR on
all samples.

Our technique is remarkably predictive of absolute concentration with certain key
exceptions. Species such as BVAB2 and Megasphaera, which were often present at low
absolute concentrations, were notable for high precision but slight inaccuracy: inferred
concentration consistently slightly overestimated the abundance for these species. This
result highlights that individual comparisons between inferred and absolute concen-
tration must be considered for all species of interest. Other than in an exploratory
fashion, we do not advocate the use of inferred concentration for species that have not
been validated in depth with targeted qPCR assays and compared to the absolute
concentration.

Second, our approach has a very high IC error rate when the relative abundance is
low or zero. In our qPCR data set, low-level colonization of certain species often
precedes a surge in levels prior to this species predominating. Because qPCR is more
sensitive than NGS for small amounts of bacterial DNA and because inferred concen-
tration relies on NGS, the inferred concentration will often miss persistent low-level
colonization, as well as the critical early growth phase or late contraction phase of
relevant species. Despite this fact, the inferred concentration performs remarkably well
at estimating growth and decay rates at the single species level, provided these rates
are estimated based on positive sequential samples. One might be able to improve the
accuracy of the inferred concentrations by increasing the sequencing depth or improv-
ing the accuracy of measurements of the total bacterial load.

A final issue not addressed by our technique is the limitation inherent to comparing
bacterial quantities between species using qPCR based on differing amplification
efficiencies of different assays. This variability may arise from different bacterial targets
having various GC contents, secondary structures, and amplification product sizes. In
this sense, absolute concentration by qPCR may not be a perfect gold standard for
comparing inferred concentration.

Further work is needed to validate the use of inferred concentrations, including the
identification of the relative abundance threshold above which it is accurate, in other
microbiota samples. In our study, the primers used to measure total bacterial loads
target the same region, V3-V4, that we use for the NGS assay. The concordance that we
see may not be applicable when there are differences in the variable regions used for
measuring total bacterial concentrations and for NGS.

In summary, we developed and validated a simple, user-friendly method to estimate
absolute species concentration in complex polymicrobial vaginal communities. This
method is best employed when species are present at a �10% relative abundance and
must be validated for each species of interest. Ultimately, the inferred concentration of
one or several species may serve as a more predictive variable of disease association,
compared to relative abundance, and may advance our understanding of how specific
environmental and host factors influence microbial concentrations.

MATERIALS AND METHODS
Ethics statement. Vaginal samples were collected using protocol 417, which was approved by the

institutional review board (IRB) at the University of Washington (approval STUDY00000398). All partici-
pants provided written informed consent prior to study enrollment. The study was approved by the IRB
as part of protocol 417.

Study population. The study population was comprised of 20 women enrolled in a longitudinal
study of bacterial vaginosis (BV) natural history at the University of Washington Virology Research clinic
between 2015 and 2017. At enrollment, participants were given sufficient swabs for three times daily
swabs over 60 days for self-collection of vaginal swabs. Diagnosis, sample collection, storage, and
processing of swabs are as described in (22). Participants were also given a study diary to record vaginal
odor and discharge, two symptoms that are characteristic of BV, antibiotic use, menstruation, sexual
activity, and other medical events. Participants returned a median of 160 vaginal swabs, and we analyzed
1,320 data points for each of the seven key species.

DNA extraction and quantitative PCR. DNA was extracted from vaginal swabs using the BiOstic
Bacteremia DNA isolation kit (Mobio, Carlsbad, CA). Sham swabs without human contact were extracted
in parallel to assess contamination from reaction buffers or the collection swabs. No template water
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controls were included to determine whether there was any contamination from PCR reagents. Each
sample was evaluated for PCR inhibition (23), and total bacterial concentrations in each sample were
measured using a qPCR assay that targets the V3-V4 region of the 16S rRNA gene of most bacteria,
including the seven bacterial species evaluated in this study (24). Concentrations of specific vaginal
bacteria were measured using qPCR assays targeting seven key vaginal bacteria: Atopobium vaginae,
BV-associated bacterium 2 (BVAB2), Gardnerella vaginalis, Lactobacillus crispatus, Lactobacillus jensenii,
Lactobacillus iners, and Megasphaera (combined species 1 and 2), species originally developed in other
studies (12, 24, 25). The primers, probes, and assay conditions are listed in Table S1 in the supplemental
material. For qPCR assays using standard cycling, each 15-�l reaction mixture contained 1� buffer A (Life
Technologies, Carlsbad, CA), 3 mM magnesium chloride, a 1 mM deoxynucleoside triphosphate blend
containing dUTPs, 0.8 �M concentrations of each primer, 150 to 300 nM probe, 0.03 U of uracil-N-
glycosylase, and 0.3 to 1.0 U of AmpliTaq Gold DNA polymerase (Life Technologies). For qPCR assays
using FAST cycling, each 15-�l reaction mixture contained 1� TaqMan Fast Advanced Master Mix (Life
Technologies), 0.8 �M concentrations of each primer, and 150 to 200 nM probe. Assays were run on a
QuantStudio 6 instrument (Life Technologies) in a 384-well format. The limit of quantification for the
seven specific vaginal bacterial assays is 2.5 16S rRNA gene copies per swab with a linear range to 108

16S rRNA gene copies per swab. The BR-16S rRNA gene qPCR has a limit of quantification of 10 16S rRNA
gene copies per swab with a linear range to 108 16S rRNA gene copies per swab as described previously
(12, 24, 25).

We measured the relative abundances of bacterial taxa using broad-range PCR targeting the V3-V4
region of the 16S rRNA gene with NGS on the Illumina MiSeq instrument (Illumina, San Diego, CA) (26).
The DADA2 pipeline was used to infer sequence variants from raw reads for subsequent analysis (27).
Sequences were classified using the phylogenetic placement tool pplacer (28) and a curated reference
set of vaginal bacteria (8). The median sequencing depth was 23,304 reads (IQR, 16,237 to 31,292.5;
range, 19 to 118,436). Only two samples had sequencing depths below 1,000; the remaining samples
were all above 3,540. We used NGS to refer to data generated using broad-range PCR and sequencing.
The sequence reads have been submitted to the NCBI Short Read Archive (SRA; BioProject PRJNA549339).
The relative abundances and absolute concentrations of specific vaginal bacteria were measured on all
samples in two participants and in daily morning samples for the remaining 18. We performed qPCR on
all samples collected from each participant, but for the purpose of this work we only consider the
morning samples.

All data generated or analyzed during this study are included in the supplemental material (Tables
S2, S3, and S4).

Statistical considerations. We calculated inferred concentrations using equation 1:

IC �16S rRNA gene copies/swab� �

RA �%� � TBL �16S rRNA gene copies/swab�
(1)

where IC is the inferred concentration, RA is the relative abundance, and TBL is the total bacterial load.
We present many of the plots and related calculations on a log10 scale. To keep all values finite when
working with a log10 scale, the zero relative abundance (%) was mapped to 1/(sequencing depth). Zero
inferred concentrations were mapped to 1. The choice of this mapping can impact some of the numerical
results presented here, namely, the correlation coefficient and the clustering class of the samples.
However, the general observations are consistent with any sensible choice of mapping.

We employed the smooth.fft function (19) to impose a low-pass filter to isolate the variance in our
longitudinal qPCR data sets. The technique uses Fourier transforms to recognize and remove high-
frequency signals. We assumed the high frequencies to be noise generated by either sampling or
laboratory variability. For the results contained here, we apply a 25% filter, although we have found the
results to be consistent across several different thresholds.

We defined the error of inferred concentration (IC error) according to equation 2 as follows:

IC error � log10�AC� � log10�IC� (2)

where IC is the inferred concentration, and AC is the absolute concentration. The rates of change per day
were calculated between any two consecutive time points that were 18 to 36 h apart. Rates were
calculated from log10 converted values for relative abundance and inferred and absolute concentration.
We defined the error in rates from inferred concentrations (rIC error) as follows:

rIC error � rates�AC� � rates�IC� (3)

where IC is the inferred concentration, and AC is the absolute concentration. Comparison of the means
was done using the t.test function in R (19). We used Pearson’s correlation coefficient and linear
regression for all correlation analysis. This was done using the lm.test and cor.test function in the stats
package in R (19). We denote the gradient and intercept of this model as �0 and the gradient as �1.
Pearson’s correlation coefficients were compared using the Cocor package in R (18). The suite provides
10 tests for overlapping correlations, i.e., measurements taken from the same data set. All tests were
significant, but we report the value of the Hittner test here for simplicity.

The Breusch-Pagan test was used to test the heteroskedasticity of the linear regression model of the
relative abundance and inferred concentration versus the absolute concentration. It tests whether the
variance of the errors from a regression is dependent on the values of the independent variables. This
was implemented using the bptest of the lmtest package in R (29).

We constructed the dendrograms for clustering analysis by complete linkage hierarchical clustering
of species abundance and/or concentration based on Euclidean distance between all sample pairs. We
tested concordance between pairs of dendrograms using the entanglement coefficient found in the
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dendextend package in R (20). To calculate the coefficient, all of the samples are first numbered in the
order they appear for each tree. The coefficient is then calculated by taking the Euclidean distance of
these two vectors, which is then normalized by the worst-case entanglement value (i.e., the Euclidean
distance when the order of the two dendrograms is opposite). The entanglement coefficient thus defined
ranges from 0 to 1, with “0” indicating perfect alignment between the dendrograms and “1” indicating
a complete mismatch.

Data availability. The relative abundance and absolute concentration for the seven species com-
pared here can be found in Tables S2 and S3, respectively. The raw counts from high-throughput
sequencing can be found in Table S4. Sequence reads are available on the NCBI Short Read Archive
(BioProject PRJNA549339).
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