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ABSTRACT Bacillus licheniformis SMIA-2, a thermophilic and thermostable enzyme-
producing bacterium, is found to be active against several strains of Staphylococcus
aureus and several Bacillus species. Here, we report the 4.30-Mbp draft genome and
bioinformatic predictions supporting gene inventories for amylase, protease, cellu-
lase, xylanase, and antimicrobial compound biosynthesis.

Bacillus sp. SMIA-2 is an important Brazilian strain for the production of industrially
relevant thermostable enzymes such as amylases (1), xylanases (2), proteases (3),

and cellulases (4, 5) utilizing diverse industrial fermentation substrates such as whey,
sugarcane bagasse, corn steep liquor, and food waste (6, 7). SMIA-2 was isolated in 2001
from the soil in Rio de Janeiro, Brazil. Serially diluted soil was plated on tryptone-saline-
yeast extract agar (TSYA) and incubated at 65°C for 24 h, and the single-colony isolate
SMIA-2 was maintained on TSYA (8). The strain was phylogenetically categorized in
thermophilic Bacillus group 5, with 94% similarity to Bacillus caldoxylolyticus (GenBank
accession number AH010483.2) (8). Our resequencing of the 16S rRNA gene
(MN645931) revealed that SMIA-2 is 100% identical to the type strain Bacillus licheni-
formis Gibson 46. We embarked on sequencing the genome of SMIA-2 because it is an
important strain used in agricultural waste fermentation (6), laundry detergent devel-
opment (9), and thermostable enzyme production (4–7) for second-generation bio-
ethanol production in Brazil.

Genomic DNA was purified from a 12-h culture grown at 50°C in brain heart infusion
broth (at 200 rpm) by using the DNeasy blood and tissue kit (Qiagen) following the
manufacturer’s protocol for Gram-positive bacterial DNA extraction. DNA was quanti-
fied using a Qubit 2.0 fluorometer, and sequencing libraries were created using the
Nextera XT DNA library preparation kit (Illumina, San Diego, CA) and sequenced using
the NextSeq reagent kit (2 � 150 bp). Default parameters were used for all software
unless otherwise specified. FastQC v0.11.8 (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc) was used to inspect the quality of the sequences, and quality trimming
was based on Phred quality scores of 20 with SolexaQA v3.0 (10). Trimmed reads were
de novo assembled using IDBA-UD v1.1.1 (11), implemented in the Microbial Genomes
Atlas (MiGA) Pipeline v0.3.6.2 (12). The draft genome sequence was annotated using
the NCBI PGAP v4.8 (13). Taxonomic classification was established using MiGA v0.5.0.0
(12), the average nucleotide identity (ANI) was calculated using the OrthoANIu v0.90
server (14), and digital DNA-DNA hybridization (dDDH) values were determined using
the Genome-to-Genome Distance Calculator (GGDC) v2.1 server (15).

The SMIA-2 genome showed an ANI of 99.71% and alignment fraction of 0.97 with
Bacillus sp. strain H15-1, whereas a comparison with the closest type strain, B. licheni-
formis Gibson 46, yielded an ANI of 99.57% (alignment fraction, 0.95), supporting the
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placement of SMIA-2 in the species B. licheniformis. SMIA-2 is a novel strain, as revealed
by dDDH values of �79% (formula 2). Paired-end sequencing yielded 46,616,926 reads
(233� coverage). The draft genome is 4,292,816 bp in 34 contigs (N50, 317,403 bp), with
a G�C content of 45.85%.

Genome annotation detected 4,322 coding sequences, 11 rRNA genes, and 79
tRNAs. The genome contains gene inventories supporting thermostable enzyme pro-
duction, while a total of 13 gene clusters for putative biosynthetic secondary metab-
olites were predicted using antiSMASH v5 (16). A summary of the genome scan
highlights 5 of the 10 clusters (Table 1). Lastly, the thermostable enzymatic activities of
SMIA-2 (1–4) can be supported by gene inventories, including 5 amylase genes, 13 loci
for xylose metabolism, 55 protein degradation-associated loci, and 3 cellulolytic en-
zyme loci under a putative cellulosome complex (17).

Data availability. The whole-genome project for Bacillus licheniformis SMIA-2 has
been deposited in DDBJ/ENA/GenBank under accession number JAACZZ000000000.
The version described in this paper is the first version (JAACZZ010000000), under
BioProject number PRJNA602865, BioSample number SAMN13909444, and Sequence
Read Archive (SRA) number SRX7638223.
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