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Charge transport mechanism 
in the forming‑free memristor 
based on silicon nitride
Andrei A. Gismatulin1,2, Gennadiy N. Kamaev1, Vladimir N. Kruchinin1, 
Vladimir A. Gritsenko1,2,3, Oleg M. Orlov4,5* & Albert Chin6

Nonstoichiometric silicon nitride  SiNx is a promising material for developing a new generation of high‑
speed, reliable flash memory device based on the resistive effect. The advantage of silicon nitride over 
other dielectrics is its compatibility with the silicon technology. In the present work, a silicon nitride‑
based memristor deposited by the plasma‑enhanced chemical vapor deposition method was studied. 
To develop a memristor based on silicon nitride, it is necessary to understand the charge transport 
mechanisms in all states. In the present work, it was established that the charge transport in high‑
resistance states is not described by the Frenkel effect model of Coulomb isolated trap ionization, Hill–
Adachi model of overlapping Coulomb potentials, Makram–Ebeid and Lannoo model of multiphonon 
isolated trap ionization, Nasyrov–Gritsenko model of phonon‑assisted tunneling between 
traps, Shklovskii–Efros percolation model, Schottky model and the thermally assisted tunneling 
mechanisms. It is established that, in the initial state, low‑resistance state, intermediate‑resistance 
state and high‑resistance state, the charge transport in the forming‑free  SiNx‑based memristor is 
described by the space charge limited current model. The trap parameters responsible for the charge 
transport in various memristor states are determined.

Amorphous oxide  SiO2 and silicon nitride  Si3N4 are two key dielectrics in silicon devices. Silicon oxide has a 
low density of surface states at the interface with silicon and a low trap concentration in the dielectric bulk. 
Silicon nitride, on the contrary, has high electron and hole trap  concentrations1. The ability to localize electrons 
and holes injected into silicon nitride allows one to use it as a storage medium in TaN-Al2O3-Si3N4-Si (TANOS) 
charge trap flash  memories2–4.

Currently, non-volatile memristor-based memories are intensively developed. A memristor-based Resistive 
Random-Access Memory (ReRAM) that stores information for 10 years at 85 °C is developed. On the other 
hand, the memristor imitates the synapse properties, and it opens up prospects for the neuromorphic electronic 
device development that mimics brain  activities5.

The memristor effect is the dielectric reversibly changes from a high-resistance to a low-resistance state when 
a short current pulse is applied. The memristor effect is observed in a wide class of dielectrics, such as  Ta2O5

6, 
 HfO2

7,  ZrO8,  TiO2
9–12,  Al2O3

13,  Nb2O5
14,  SiOx

15–18,  GeO2
19,  Si3N4

20–24,  NiO25,  perovskites26,27, organic  films28, etc. 
An important role of oxygen vacancies in the memristor switching was  established29.

An important issue in the memristor memory is the forming process. In most cases, memristors can only 
switch after applying a first high voltage pulse (compared to the switching voltage). For example, the forming 
voltage of a 10 nm thick tantalum oxide memristor is 6 V, while the switching voltage is 1 V30. The forming pro-
cess takes place in the pre breakdown dielectric field, which significantly reduces the memristor reliability due 
to the possibility of breakdown. In Ref.31, to suppress the memristor forming process, it was proposed to use the 
non-stoichiometric oxide enriched in the metal, in which there is a high oxygen vacancy concentration. There 
are several ways to achieve high oxygen vacancy concentration: by introducing an active metallic impurity in the 
oxide  layer32, adding a non-stoichiometric oxide layer to the stoichiometric  layer33,34 and applying a thin metal 
layer with a chemically active metal on the stoichiometric oxide  layer35.
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Silicon nitride is widely used in the silicon technology. The physical properties of non-stoichiometric silicon 
nitride vary over a wide range with a change in the chemical composition. Thus, the non-stoichiometric  SiNx 
bandgap varies in the range from 1.6 eV (amorphous  Si36) to 4.5 eV (amorphous  Si3N4

37).
The memristor leakage currents in the high and low-resistance states set the power necessary for the mem-

ristor switching. Its power consumption needs to be reduced, especially in devices for mobile applications. The 
leakage current is determined by the charge transport mechanism in the memristor. Therefore, the study of the 
charge transport mechanism in the memristor is an urgent and important task.

Charge transport mechanisms can depend on the technology for producing silicon nitride in a memristor. The 
charge transport in silicon nitride is described by the multiphonon mechanism of isolated trap ionization with the 
energy of Wt = 1.6 eV1,38. The charge transport in the memristor based on silicon nitride in the low-resistance state 
was interpreted in terms of the Schottky  effect39,40. However, similar results were interpreted based on the Frenkel 
 effect20,24,39. The phonon-assisted tunneling between traps was used to explain the charge transport in Ref.23. In 
Refs.22,41, the memristor charge transport is interpreted based on the model of space charge limited currents.

Thus, at present, various mechanisms are assumed in the charge transport interpretation in  SiNx-based mem-
ristors. Perhaps, this is due to the fact that charge transport mechanisms depend on the silicon nitride fabrication 
technology in the memristor structure.

The aim of this work is to study the charge transport mechanism of a  SiNx-based memristor synthesized by 
the Plasma-Enhanced Chemical Vapor Deposition (PECVD) method. To unambiguously establish the charge 
transport mechanism, the memristor current–voltage characteristics were measured at different temperatures in 
all states. We have chosen the temperature measurement range 300–400 K. At a low temperature, the conductiv-
ity is no longer determined by the thermal generation of free charge carriers, and the charge transport at a low 
voltage can be different, but, at a high voltage, the main charge transport mechanism remains the  same42. We 
assume that this temperature range is enough to find the main charge transport mechanism.

Results
The ellipsometric mapping of refractive index n and thickness d of the  p+-Si/SiNx/Ni memristor structure (at 
hν = 1.96 eV) synthesized by PECVD is shown in Fig. 1. The  SiNx dielectric film has the high homogeneity in 
thickness d = 33 nm (~ 2.4%) and refractive index n = 1.689 (~ 0.5%).

The current–voltage (I–V) characteristic of the memristor switching cycle at the voltage sweep is shown in 
Fig. 2. When a negative voltage is applied to the Ni electrode, the memristor structure is immediately in a highly 
conductive state. At voltage − 1.1 V, the switching from the initial virgin state to the low-resistance state begins. 
At voltage − 7 V, the memristor is switched to the high-resistance state through the memristor intermediate 
resistance states. The breakdown voltage of our nitride-based memristors is 19 constant voltage. When the posi-
tive voltage of + 7 V is applied to the Ni electrode, the memristor is switched from the high-resistance state to the 
low-resistance state and at + 10 V it gets the full switching to the LRS (Fig. 2). With the entire switching cycle, four 
memristor states can be distinguished: initial/virgin State (VS), high-resistance state (HRS), low-resistance state 
(LRS) and intermediate-resistance state (IRS). After 5 cycles we can see that − 13 V is not enough to switch from 
the LRS to HRS, we need to apply − 15 V to switch to the HRS. The reset voltage is gradually increasing from one 
switching cycle to the other and is stopped at 10 cycles at around − 18 V. Typically, the forming process voltage is 
greater than the memristor set/reset voltage, and the current before the forming process is less than in the HRS. 
In our case, the forming process voltage is less than the set/reset voltage and the current is greater than in the 
LRS. Although, in our memristor, there is the process similar to the forming process, this process requires a low 
voltage, which is an advantage of our memristor. As our memristor does not require a prebreakdown voltage as 
the forming process in a classical memristor and it needs a less voltage value to switch to the working resistance 
than set/reset voltage, it can be said that our memristor is forming-free.

Figure 1.  Ellipsometric mapping of refractive index n and thickness d of  p+-Si/SiNx/Ni memristor structure 
(hν = 1.96 eV).
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The  p+-Si/SiNx/Ni memristor structure is the laboratory structure for study the charge transport mechanism. 
The 33 nm film was used because it is easier to control the thickness and composition of the obtained  SiNx layer 
by optical methods. Therefore, the  SiNx-based 33 nm thick memristor does not have many applications as a 
memristor due to the very high set/reset voltage. But the obtained results can be extrapolated to thinner (4–5 nm) 
and, thereby, more realistic PECVD memristor  structures24 and a metal–nitride–oxide–silicon  memristor43,44.

The typical endurance characteristic was measured by reading the resistance values at the  Vread = -1 V pulse 
between 18 V and -19 V pulses which change the resistance state (see Fig. 3a). The memristor endurance with 
a resistance ratio of about one order holds at least 5000 switching cycles. The memristor memory window was 
increasing with more cycles. But the HRS became less stable. In Fig. 3b is the memristor retention at 85 °C in the 
HRS and LRS. The experimental data approximation on the retention in the LRS and HRS by 10 years was carried 
out. By 10 years, the ratio of current in the LRS to the ratio of current in the HRS at − 1 V is about one order. The 
endurance and retention measurements allow us to show that this  SiNx-based structure not only exhibits the 
memristor properties but also preserves them over time. There is a difference in the LRS in Fig. 3a and b. This 
difference is mainly due to the fact that the LRS resistance was measured in the pulse mode for Fig. 3a and in the 

Figure 2.  I–V characteristics of  p+-Si/SiNx/Ni memristor cycles.

Figure 3.  (a) Endurance of  p+-Si/SiNx/Ni memristor cycles. (b) Retention of  p+-Si/SiNx/Ni memristor cycles at 
85 °C.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2417  | https://doi.org/10.1038/s41598-021-82159-7

www.nature.com/scientificreports/

DC mode for Fig. 3b. This difference is typical of memristors and was observed in numerous  reports45–47. Most 
likely, the resistive switching from the HRS to LRS occurs not fully in the pulse mode.

To identify the charge transport mechanism, the current temperature dependences in all states were measured 
(Fig. 4). The current temperature dependence of the VS is low at a low voltage and does not exist at a high voltage. 
But, at the increasing temperature, the current at a low voltage in the VS is still increasing. The I–V characteristics 
in the  SiNx-based memristor in the VS are similar to I–V characteristics in  SiOx-based memristor in the  VS18. 
This mean filament can only be composed of Si or more silicon-rich  SiNy than  SiNx.

The charge transport in the HRS was analyzed by Schottky  effect48, thermally assisted tunneling (TAT)49,50, 
 Frenkel51,52, Hill–Adachi (H–A)53,54, Makram-Ebeid and Lannoo (ME–L)55, Nasyrov–Gritsenko (N–G)56, Shk-
lovskii–Efros (S–E)57,58 and the space charge limited current (SCLC)59–62. Since other resistance states very weakly 
depend on temperature at a high voltage values, they could be simulated only by Fowler  Nordheim63 and SCLC 
models. The VS has the temperature dependence at a low voltage and does not have the temperature dependence 
at a high voltage. The charge transport mechanism models do not account for dynamic processes at low voltage 
values. Therefore the VS could be simulated only by Fowler  Nordheim63 at a high voltage. The SCLC model can 
simulate the VS in the whole voltage range because it consists of two different parts.

The simulation parameters by the Schottky effect, TAT, Frenkel, Hill–Adachi, Shklovskii–Efros, Makram-
Ebeid and Lannoo and Nasyrov–Gritsenko models of the experimental data of the memristor in the HRS are 
presented in Table 1.

The unphysically small effective mass value m* = 0.6 × 10–12 me and large high-frequency dielectric constant 
value ε∞ = 12.3 (from ellipsometry measurements ε∞ = n2 = 1.692 = 2.86) obtained from the Schottky model simu-
lation indicate the inapplicability of this model (Table 1) for the HRS. When fitting the experimental HRS data 
by the TAT model, the large effective mass value m* = 6 me and small potential barrier height at the Ni/SiNx 
interface W0 = 0.1 eV are obtained. Therefore, the model is not applicable to describing the charge transport in 
the  SiNx-based memristor in the HRS. The unphysically small trap concentration value N = 0.4 cm−3 and large 

Figure 4.  I–V characteristics of  p+-Si/SiNx/Ni in VS, IRS, LRS and HRS at different temperatures in a double 
logarithmic scale.

Table 1.  Fitting different model parameters for simulating the I–V characteristics of the  SiNx-based 
memristor.

State Schottky effect TAT Frenkel effect H–A ME–L N–G S–E

HRS
W0 = 0.2 eV
m* = 0.6 × 10–12 me
ε∞ = 12.3

W0 = 0.1 eV
m* = 6 me
S = 2  nm2

N = 0.4 cm−3

W = 0.23 eV
ν = 5.6 × 1013 s−1

ε = 50

N = 3.5 × 1021 cm−3

W = 0.3 eV
ν = 10–52 s−1

ε = 2.86

N = 4 cm−3

m* = 0.5me
Wt = 0.25 eV
Wopt = 0.5 eV

N = 3.5 × 1021 cm−3

m* = 90 me
Wt = 0.3 eV
Wopt = 0.6 eV

j0 = 3 × 10–5 A/cm2

W = 0.24 eV
V0 = 0.5 eV
a = 0.8 nm

Fowler–Nordheim model

IS m* = 0.5me; W = 1.21 eV

LRS m* = 0.5me; W = 0.1.15 eV

VS m* = 0.5me; W = 0.4 eV
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high-frequency dielectric permittivity value ε∞ = 50 are obtained from the Frenkel effect model simulation. 
Thus, the Frenkel effect model does not describe the charge transport in the  SiNx-based memristor in the HRS 
(Table 1). When simulating at 300 K by the H–A model, reasonable values of the trap concentration, ioniza-
tion energy and high-frequency dielectric constant are obtained (Table 1). But the H-A model gives an inverse 
temperature dependence in contrast to the experimental data. Thus, the H-A model does not describe the 
charge transport in the  SiNx-based memristor in the HRS (Table 1). The simulation by the ME–L model gives 
the unphysically low trap concentration value N = 4 cm−3. Thus, the ME–L model does not describe the charge 
transport in the HRS (Table 1). The simulation by the N-G model yields the anomalously large effective electron 
mass m* = 90  me. Hence, the N-G model does not describe the charge transport in the  SiNx-based memristor in 
the HRS (Table 1). The comparison of the experimental data with the S-E percolation model gives the following 
parameters: I0 = 3 × 10–5 A, W = 0.24 eV, V0 = 0.5 eV and a = 0.8 nm. The percolation model does not take into 
account the possibility of tunneling through the barriers, but, when a is 0.8 nm, the classical approximation 
condition for applying the model does not work. Hence, the S–E model does not describe the charge transport 
in the  SiNx-based memristor in the HRS (Table 1).

The Fowler–Nordheim model does not describe the charge transport mechanism in the VS, IRS and LRS. 
The fitting parameters in Table 1 are only in case when the Fowler–Nordheim simulated curve intersects with 
the experimental data curve from the VS, IRS and LRS.

Space‑charge‑limited current model. In the classical case, the  SCLC64,65 mechanism explains a similar 
conductivity as can be seen in Fig. 4. The classical SCLC model does not explain the bipolar switching and the 
change in the size of the filament from resistance to resistance. Currently, the charge transport analysis in the 
memristor was carried out by the SCLC model but without an in-depth analysis of the model  parameters66–68. To 
account for the differences in memristors from the classical SCLC model, in different resistance states the fila-
ment size is changed. With these assumptions, the I-V characteristics can be explained by the SCLC  model59–62.

The memristor I-V characteristics in the VS are presented in Fig. 5a on a double logarithmic scale. It is shown 
in the figure that there are 3 regions in the experimental data: quadratic region, transition region and, again, 
quadratic region. To describe the transport mechanism, the following empirical formula derived from  SCLC62 
was used:

Here S—average efficient conductive area, μ—electron mobility, ε—static dielectric constant, ε0—dielectric 
constant, d—dielectric thickness, θ—the fraction of free electrons from all injected (trapped and free), A, B, 
C—transition region empirical parameters for stitching two quadratic regions, Nc—effective density of states, 
Ea—donor activation energy, k—Boltzmann constant, T—temperature, Nt—trap concentration, Wt—trap energy, 
m*—electron effective mass and h—Planck constant.

There are many selection parameters in the SCLC model. To reduce their number, the effective mass was 
taken as m* = 0.5  me and the filament mobility was taken as the amorphous silicon mobility μ = 1  cm2/(V sec). 
The static dielectric constant value of 9 for  SiNx was taken from the range 7 for  Si3N4 and 12 for Si. The third 
quadratic region was used for obtaining other parameters. Comparing the experiment and the SCLC model, 
we obtained the parameters: Nt = 1 × 1018 cm−3, Wt = 0.057 eV and r = 4230 nm. In a real memristor, the filament 
radius is about 10–100 nm. The effective radius 4230 nm is a model approximation of many filaments that we 
assume to be present in the initial VS, due to similarity with the I-V characteristics in a  SiOx-based  memristor18. 
Different empirical A, B, C parameters were obtained for different temperatures (Table 2). To obtain a more accu-
rate formula for the transition region, it is necessary to numerically solve the equation system of dimensionless 
current and voltage and 3 dimensionless  parameters62.

The LRS is described by the  SCLC59–62 model with ohmic and quadratic parts:

Here S—average efficient filament cross-section area, e—electron charge; μ—electron mobility, n—free electron 
concentration in the dielectric, d—dielectric thickness, ε—static dielectric constant, ε0—dielectric constant, θ—
the fraction of free electrons from all injected (trapped and free), Nd—donor-like defect concentration, g—degen-
eracy factor, Nc—effective density of states, Ea—donor-like defect activation energy, k—Boltzmann constant, 
T—temperature, Nt—trap concentration, Wt—trap energy, m*—electron effective mass and h—Planck constant.

The current in the LRS has a weak temperature dependence (Fig. 5b). The I–V characteristic in the LRS is 
similar to the current behavior in the SCLC model with filled  traps59–62. This means that parameter θ is equal 
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to 1. Fitting the experimental I-V characteristics for the LRS by the SCLC model gives the following parameter 
values: the filament radius r is 109 nm, the donor-like defect ionization energy is Ea = 0.05 eV, donor-like defect 
concentration—Nd = 8∙1 cm-3 at other fixed parameters.

The current in the IRS has also a weak temperature dependence at a low voltage (Fig. 5c). This state is also 
described by the SCLC model with filled  traps59–62. The conductive area radius r = 29 nm decreases further. 
The fitting parameter of the donor-like defect ionization energy was Ea = 0.095 eV, and the donor-like defect 
concentration was Nd = 1.1 × 1019 cm−3. We must take into account that the IRS in our  SiNx-based memristor is 
not controllable and not very stable: that is, our memristor has intermediate states, but it is not possible to get 
to the one that we need.

Figure 5.  I–V characteristics and of  p+-Si/SiNx/Ni and simulation by SCLC model in (a) VS, (b) LRS, (c) IRS, 
(d) HRS.

Table 2.  Transition region empirical parameters for SCLC model in VS.

Temperature A B C

VS

300 K 0.5 0.1 1.05

320 K 0.5 0.1 1.06

340 K 0.5 0.1 1.07

360 K 0.5 0.1 1.085

380 K 0.47 0.1 1.01

400 K 0.44 0.1 1.012
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In the HRS, the temperature dependence is the strongest of all states and the formula is applied for the filling 
traps (Fig. 5d). At high voltages, the curve slope is not proportional to the square, that is, you need to use the 
formula for the SCLC case of exponential trap  distribution60,69:

where l = Tt/T, Tt is the temperature parameter that characterizes the exponential trap distribution. From the 
curve slope, we get U at the degree equal to 2.5. Therefore, l is equal to 1.5. The simulation showed that, when 
switching to this state, the filament radius is decreased to 4.2 nm. The donor-like defect concentration was 
7 × 1018 cm−3 and their activation energy was 0.23 eV. In the HRS state, the SCLC current flows in the trap-
mediated mode with the trap concentration of Nt = 7 × 1018 cm−3 and the (trap ionization energy) depth of 0.09 eV.

Discussion
We found that the Frenkel effect model of Coulomb isolated trap ionization, Hill-Adachi model of overlapping 
Coulomb potentials, Makram-Ebeid and Lannoo model of multiphonon isolated trap ionization, Nasyrov–Grit-
senko model of phonon-assisted tunneling between traps, Shklovskii–Efros percolation model, Schottky model 
and the TAT mechanisms do not describe the charge transport in the  SiNx-based memristor due to the fitting 
parameter values are unphysical or do not correspond to the  SiNx material.

All resistance states are described by the SCLC model; switching to other resistances is explained by a decrease 
in the conducting filament area. In the VS state, the filament radius is r = 4230 nm. We assume that a large effective 
filament area with such radius is explained by the presence of a larger filament number. When switching in the 
LRS state, the conductive region is decreased (r = 109 nm), that is, most of the filaments break or dissolve and, in 
the future, only a few major filaments are to be involved in the transport. Since we assume in the simulation that 
only the main filament is involved in a further switching and, during the switching, the area changes around it, 
in order to return to the initial resistance from the HRS, it is necessary to apply a voltage much higher than the 
operating switching voltage, which leads to an irreversible breakdown of the structure. The donor-like defect 
concentration sets the slope of the theoretical I–V curve in the ohmic part and the donor-like defect activation 
energy sets the current temperature dependence. The trap concentration and trap ionization energy give the 
curve slope and current temperature dependence in the SCLC part.

The following assumptions were made to simulate all states in the SCLC model. The conductive filament 
thickness does not change, although, in a real memristor, especially in the HRS, the conductive channel is dis-
solved partially or completely. In addition, we did not take into account the possibility of structural changes in 
the conductive channel during the resistance switching.

Conclusion
In conclusion, two contact-limited and five bulk-limited models were applied to the simulation of the experi-
mental charge transport of the forming-free  SiNx-based memristor fabricated by the PECVD method in various 
states. The Schottky model, thermally assisted tunneling model, Frenkel model of isolated Coulombic trap ioniza-
tion, Hill–Adachi model of overlapping Coulombic centers, Makram-Ebeid and Lannoo multiphonon isolated 
trap ionization model, Nasyrov-Gritsenko model of phonon-assisted electron tunneling between nearby traps 
and Shklovskii–Efros percolation model do not describe the charge transport in the  SiNx-based memristor. The 
experimental I–V characteristics of the forming-free  SiNx-based memristor fabricated by the PECVD method 
in the initial, high-resistance, intermediate and low-resistance states are quantitatively described by the space 
charge limited current model. The empirical SCLC formula was used to describe the transition region in the 
initial state, but the trap parameters were obtained from the quadratic SCLC model. The charge transport in 
the intermediate and low-resistance states of the  SiNx-based memristor is described by the SCLC model with 
filled traps. The charge transport in the high-resistance state is described by SCLC with the exponential trap 
distribution. The decrease in the conductive region is explained by the resistance switching from the initial state 
to the high-resistance state.

Methods
Non-stoichiometric silicon nitrides (a-SiNx:H) were obtained by plasma-enhanced chemical vapor deposition 
(PECVD) from a  SiH4-N2 gas mixture under a controlled gas flow. Homogeneous a-SiNx:H films were depos-
ited onto  p++-type Si wafers purified from natural oxide at the PECVD reactor with a wide-aperture source and 
inductive excitation (at excitation frequency 13.56 MHz). The residual pressure in the working chamber was less 
than  10–6 torr, and it was reached by using a turbomolecular pump. The monosilane flow (gas mixture of 10% 
 SiH4 diluted with Ar) supplied to the reaction zone was constant and amounted 10  cm3/min. The a-SiNx:H films 
of various compositions were obtained by changing the  N2 flow rate in the range from 4 to 10  cm3/min and the 
generator high-frequency power of 200 W. The substrate temperature was maintained at 200 °C.

To study the memristor properties, a-SiNx:H films with a thickness of ~ 33 nm were grown. The upper nickel 
electrodes with a thickness of ~ 200 nm and with the area of ~ 0.5  mm2 were deposited through a metal mask by 
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the magnetron sputtering in the Ar atmosphere. To improve the bottom electrode contact, a continuous nickel 
layer of the same thickness was deposited on the heavily doped substrate backside.

With the aim of high-spatial scanning ellipsometer Microscan-3 M (ISP SB RAS)70 central region (12 × 15 
 mm2), the sample was mapped. The mapping steps (x, y) were: 0.2 mm, and the light beam (hν = 1.96 eV) angle 
on the sample was 60°. The laser beam was focalized into a 10 μm light spot with a high-quality non-polarizing 
microlens. The ellipsometer is equipped with the computer-operated scanning stage that allows measuring opti-
cal parameters distribution over a sample surface up to 150 × 150  mm2. A four-zone measurement technique 
was used followed by averaging over all  zones24,70. The thickness in each scanning point of the  SiNx layer was 
calculated independently by solving the numerical-inversion problem of ellipsometry for the simple optical 
 model24: Si—SiNx (n = 1.689).

To compare the experimental data and theoretical model, the simulation method of least absolute deviations 
(LAD) was  used71. It consists of the theoretical model parameter selection process until the maximum deviation 
value (20%) of the theory from the experiment is reached. With this simulation method at Δmax < 20%, we have the 
following accuracy of parameters: r = r ± 2 nm, μ = μ ± 0.02  cm2/(V s), Ea = Ea ± 0.01, Wt = Wt ± 0.01, Nd = Nd ± 0.1, 
Nt = Nt ± 0.1, m* = m* ± 0.02.

The voltage ramp-rate used for the I–V measurement was 0.9 V/sec. The endurance of the  SiNx-based memris-
tor at room temperature was measured with these parameters: Vread = − 1 V, Pulse width = 5 ms, Vset =  + 18 V, 
Vreset = − 19 V.

To measure the retention, the memristor was switched to the measured state at a temperature of 85 °C, and, 
every 0.1 s, a measurement was carried out at constant voltage − 1 V for about 4400 s. The experimental data 
approximation on the retention in the LRS and HRS was carried out from 4400 s to 10 years using the tangent 
of the experimental data. This approximation to 10 years is rough and can contain up to 30% errors. The sup-
plementary material contain a detailed description and formulas of other charge transport models which used 
in this paper.
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