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Abstract

Nitrogen (N) is important for the growth of crops. Leaf nitrogen content (LNC) serves as a

crucial indicator of the growth status of crops and can help determine the dose of N fertilizer.

Laser-induced fluorescence (LIF) technology and the reflectance spectra of crops are widely

used to detect the biochemical content of leaves. Many vegetation indices (VIs) and fluores-

cence parameters have been developed to estimate LNC. However, the comparison among

VIs and between fluorescence parameters and VIs has been rarely studied in the estimation

of LNC. In this study, the performances of several published empirical VIs and fluorescence

parameters for the estimation of paddy rice LNC were analyzed using the support vector

machine (SVM) algorithm. Then, the optimal VIs (TVI, MTVI1, MTVI2, and MSAVI) and fluo-

rescence parameters (F735/F460 and F685/F460), which were suitable for LNC monitoring

in this study, were chosen. In addition, the combination of the VIs and fluorescence parame-

ters was proposed as the input variables in the SVM model and used to estimate the LNC.

Experimental results exhibited the promising potential of the LIF technology combined with

reflectance for the accurate estimation of LNC, which provided guidance for monitoring the

LNC.

Introduction

Paddy rice is an important crop and a daily necessity to one-third of the world population. In

China, approximately 30 million hectares of farming land are utilized each year to cultivate

paddy rice. China is the leading producer of paddy rice in the world [1, 2]. Numerous studies

have indicated that nitrogen (N) is a major nutrient element in crops and closely related to

cereal crop yield [3–5]. To improve crop yield, excessive amounts of N fertilizers have been

consumed and resulted in serious environmental problems. Thus, monitoring the N status of

crops accurately will not only reduce the application amount of N fertilizers but also guarantee

the quality of crops. Related studies have demonstrated that leaf nitrogen content (LNC) is a

crucial indicator for estimating the dose of N level in crops. Numerous passive and active

remote sensing technologies have been utilized to monitor LNC in cereal crops [6–9].
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In passive remote sensing, several research groups reported that reflectance spectra are

closely related to LNC [10] in that LNC can be determined by using reflectance spectra in the

visible and near infrared regions of a leaf or canopy. Numerous vegetation indices (VIs) have

been proposed to establish the correlation between VIs and LNC and used to estimate the lat-

ter. Several studies documented the high correlation of VIs (measured by various instruments)

and LNC [11–13]. In addition, light detection and ranging (LiDAR) has also been successfully

applied in the field of remote sensing as an active sensor. This technology can measure the

three-dimensional information of the target surface and is useful in investigating certain bio-

chemical properties [14–16]. The backscattered intensity of echoes is valuable in retrieving

plant leaf chlorophyll content [17], LNC [18], and leaf water content[19]. Passive and active

remote sensing technologies have been maturely utilized in satellite and airborne platforms

and provide useful information for agricultural production and vegetation monitoring [20].

Laser-induced chlorophyll fluorescence, which differs from the reflectance spectra of

remote sensing and LiDAR, was proposed by Chappelle et al. [21] to monitor crop growth sta-

tus. Related studies have demonstrated that various nutrient stresses can be obtained through

chlorophyll content monitoring. In addition, chlorophyll is a typical fluorophore in leaves,

where chlorophyll fluorescence is widely applied to detect the photosynthetic activity of plants

and monitor the effect of various nutrient stress factors on chlorophyll content [8, 22]. LNC

monitoring has been investigated using different chlorophyll fluorescence parameters. The

results displayed its advantages of rapidity, non-destructiveness, and high sensitivity [8, 23–

25].

Several VIs based on reflectance spectra and fluorescence parameters based on fluorescence

spectra have been designed to estimate LNC in crops on a leaf or canopy scale. However,

the performances of published empirical VIs and fluorescence parameters have rarely been

systematically tested in monitoring LNC in paddy rice. Comparisons between VIs and fluores-

cence parameters in terms of their estimation of LNC on a leaf scale are still rare. In addition,

few studies have investigated the estimation of paddy rice LNC on the basis of the combination

of VIs and fluorescence parameters. Therefore, the present study aims to (1) systematically

analyze the performance of published empirical VIs and fluorescence parameters in the

estimation of LNC using the support vector machine (SVM) algorithm, (2) compare the per-

formances of VIs and fluorescence parameters in monitoring LNC, and (3) discuss the effec-

tiveness of the proposed combination of VIs and fluorescence parameters in improving the

monitoring accuracy of LNC.

Materials and methods

Ethics statement

Permission to access private lands, on which several sites were located, was obtained from

landowners. Species surveys were conducted in accordance with the laws of the People’s

Republic of China.

Materials and experimental design

Yongyou 4949 of the three-line indica/japonica hybrid rice and Yangliangyou 6 hybrid indica

rice were planted on April 27, 2014 and April 30, 2015, in experimental stations established in

Junchuan County, Suizhou City, and Huazhong Agricultural University (HAU) in Wuhan

City, China, respectively. During the entire growth period, six (0, 189, 229.5, 270, 310.5, and

351 kg/ha) and four (0, 120, 180, and 240 kg/ha) different doses of N fertilization of urea were

utilized in 2014 and 2015, respectively. The most optimal doses of N fertilization were 270 and

180 kg/ha in 2014 and 2015, respectively, in accordance with the advice of the local farm
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extension service. N fertilization was divided into four splits (30% at seeding, 20% at tillering,

25% at shooting and 25% at booting) in 2014 and into three splits (60% at seeding, 20% at tillering

and 20% at shooting) in 2015. The experimental field had a block design with three replications

for each treatment under the same cultivation conditions [26]. The leaves of paddy rice were gath-

ered on July 15, 2014 and July 26, 2015, which corresponded to the tillering stage of rice.

Measurements of laser-induced fluorescence

The LIF system was built in a laboratory and consisted of three parts, namely, an excitation light

source, optical receiver assembly and data collection system, and treatment part. The excitation

light source is a neodymium-doped yttrium aluminum garnet laser and a third-harmonic gen-

eration. The emitted wavelength was 355 nm, and the width per pulse and output power were 5

ns and 1.5 mJ, respectively. The excitation light was transmitted perpendicular to the targets

after passing several completely reflecting mirrors. To collect the back-emission fluorescence

signal, a Maksutov-Cassegrain telescope was utilized in this system. An additional long-pass fil-

ter (Semrock BLP01-355R-25 with edge of 361 nm and 93% transmittance at 364.9–900 nm)

was placed behind the telescope and used to eliminate the reflected light from the laser entering

the optical fiber. Then, a single-mode optical fiber with a diameter of 200 μm was utilized to

transmit the fluorescence collected between the telescope and spectrograph (Princeton Instru-

ment SP2500i with spectral resolution of 0.5 nm). An intensified charge coupled device camera

was utilized to detect the excited fluorescence signals passing through the spectrograph. A per-

sonal computer was utilized to store and post-process these fluorescence data conveniently. In

this study, the fluorescence spectra ranged from 360 nm to 800 nm, and the sampling interval

was 0.5 nm. To eliminate the oscillation of the excitation light, each leaf sample was measured

five times to calculate the average fluorescence spectral curve for each sample.

Acquisition of leaf reflectance spectra

In this study, leaf reflectance spectra were obtained using an ASD FieldSpec Pro FR (Analytical

Spectral Devices, Inc., Boulder, USA) which is a commercial passive instrument. The spectral

acquisition process was conducted following the study of Pu et al. [27]. A 100 W halogen

reflectorized lamp served as the light source. Each paddy rice leaf sample was measured thrice

to acquire an average reflectance spectrum for each sample at the same position where the

fluorescence was measured. All reflectance spectra were obtained at the nadir direction of the

radiometer, and the field angle of the receiving optical fiber was 25˚. The distance between the

leaf sample and the optical fiber probe was approximately 4 cm. The entire reflectance spectral

radiance changed from 350 nm to 2500 nm with a 1 nm spectral resolution. A reference stan-

dard whiteboard (Spectralon, Labsphere, Inc., North Sutton, NH, USA, 10 cm × 10 cm, reflec-

tance nearly 99%) was utilized as the reference for converting the raw leaf radiance to spectral

reflectance. The whiteboard was measured every 10 min during the entire leaf radiance mea-

surement procedure [28]. The leaf reflectance spectrum could be obtained as follows:

Rl ¼ RLðlÞ=RRðlÞ ð1Þ

where RL(λ) and RR(λ) represent the leaf and reference standard white board radiances at

wavelength λ, respectively.

Measurement of leaf nitrogen content

Leaves were destructively sampled by randomly cutting six fully expanded the second leaves

from the top with three replicates in each experimental field. These paddy rice leaves were

sealed in plastic bags, stored in an ice chest, and immediately transported to the laboratory for
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reflectance and fluorescence spectral measurements [28]. All samples were immediately sent to

Wuhan Academy of Agricultural Science and Technology for the confirmation of LNC after

spectral measurements. The traditional Kjeldahl method was utilized to measure the LNC [29].

VIs of spectral reflectance and fluorescence parameters

In this study, 67 published empirical VIs (formula and detailed description in Appendix) [6, 11,

16, 18, 30–34] were used to analyze the paddy rice LNC measured by ASD. All VIs could be uti-

lized in this investigation because the reflectance spectral range was 350 nm to 2500 nm. The

spectral resolution was 1 nm, and the corresponding spectral reflectance was utilized to calculate

these VIs. For the fluorescence spectra, seven published empirical fluorescence parameters

(F740/F685, F740/F460, F685/F460, F685/F525, F740/F525, (F460-F685)/(F460+F685), and (F460-F740)/

(F460+F740). F740, F685, F525, and F460 denoted the intensity of fluorescence at 740, 685, 525, and

460 nm, respectively) [23, 35, 36] were employed to estimate the LNC through LIF.

Analytical method

SVM, which is a classical supervised learning algorithm that has the capacity to construct lin-

ear and nonlinear inversions, was implemented in this investigation. In comparison with the

artificial neural network, SVM has a strong theoretical foundation in statistical theory and

exhibits remarkable performance (accuracy on test sets) in practice. Furthermore, SVM is

insensitive to the dimension number of training samples and requires a small number of train-

ing samples. Detailed description of SVM can be found in the references [37, 38]. In addition,

the kernel function is a crucial part of SVM analysis. According to related studies [39], the

analysis of variance kernel, which is a radial basis function kernel and just as the Gaussian and

Laplacian kernels, was utilized as a Kernel function of SVM and could be written as follows:

KðXi;YiÞ ¼
X

i

expð� gðXi � YiÞ
2
Þ

� �d
ð2Þ

where γ denotes a kernel parameter, Yi represents the training output, Xi stands for the train-

ing inputs, and d is a constant.

Wavelet transform is similar to Fourier transform but uses a completely different merit

function. The capability of wavelets to provide multiresolution low entropy makes them an

ideal tool for studying spectra [40]. Before analysis, the spectra were denoised and smoothened

through wavelet transform [41]. The fluorescence parameters and VIs were calculated, and

these measured datasets were then randomly divided into four equal parts. Four-fold cross val-

idation was utilized to analyze the performance of these parameters in the estimation of LNC.

Three-fourths of the data were utilized to train the SVM model, and the remaining quarter

was utilized in the testing. This procedure was conducted four times, utilizing a different quar-

ter of data as the test sets each time. The coefficient of determination (R2), root mean square

error (RMSE), and relative error (RE) in the prediction were utilized to discuss the perfor-

mance of the model on the basis of different spectral characteristics. RMSE and RE can be writ-

ten as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðXp;i � Xo;iÞ
2

s

ð3Þ

RE ¼
100

�X o
RMSE ð4Þ
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Where n denotes the number of samples, Xp,i represents the predicted values, Xo,i corresponds

to the measured values, and �X o represents the mean of the measured values. Low RMSE and

RE and high R2 indicate a high accuracy and precision of a model in predicting LNC [26, 42].

Results

Fluorescence and reflectance spectra

Fig 1 shows the completely different spectral characteristics exhibited by the fluorescence and

reflectance spectra.

The fluorescence spectra ranged from 360 nm to 800 nm and exhibited three main fluores-

cence peaks at 440–465 nm, 680–690 nm, and 730–740 nm. According to previous studies [43,

44], the center wavelengths of the three fluorescence peaks were 460, 685, and 735 nm. Then,

published empirical fluorescence parameters calculated by these fluorescence peaks were uti-

lized to analyze LNC.

The red solid line shown in Fig 1 is the typical plant reflectance. The reflectance spectrum

has a wider spectral range than the fluorescence spectrum. However, the spectral information,

which is closely related to LNC, was limited. LNC was assessed using the reflective spectral

characteristics, which is a method that has been proven by numerous researchers. A total of 67

published empirical VIs were calculated in this study by utilizing the acquired reflectance

through ASD.

Relationship of VIs and fluorescence parameters with LNC

Fig 2 shows the correlation between each of the VIs and LNC.

Fig 1. Change in fluorescence intensity (measured by LIF system) and leaf reflectance (measured by ASD) with

wavelength. The black and red solid lines denote the fluorescence and reflectance spectra, respectively. The minimal

graph exhibits the same wavelength range for the fluorescence and reflectance spectra.

https://doi.org/10.1371/journal.pone.0191068.g001
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As shown in Fig 2, the different VIs exhibited varying correlations. The experimental results

demonstrated that TVI, MTVI1, MTVI2, and MSAVI displayed higher correlations (R2 values

were 0.79, 0.77, 0.78, and 0.70 for 2014 and 0.72, 0.73, 0.65, and 0.66 for 2015) than the other

VIs. The correlation between the fluorescence parameters and LNC was investigated in our

previous study [45]. The investigation demonstrated that fluorescence ratios F735/F460 and

F685/F460 were closely related to LNC in paddy rice [46].

Performance of VIs and fluorescence parameters in estimating LNC

To analyze the performances of all VIs and fluorescence parameters in estimating LNC, each

of the parameters was used as a single input variable to predict LNC through SVM. Fig 3 pres-

ents the R2 of the linear regression of predicted and measured LNC.

Fig 3 shows the performance of single VIs in monitoring LNC in paddy rice. The experi-

mental results indicated that TVI, MTVI1, MTVI2, and MSAVI were superior to the other VIs

with higher R2 values for the two growing years (2014 and 2015). A detailed analysis of the per-

formance of fluorescence parameters in estimating LNC in paddy rice is found in reference

[45]. In our previous investigation, the results demonstrated that the F735/F460 and F685/

F460 were superior to the other fluorescence parameters in estimating LNC. Then, the combi-

nation of the four VIs and the two fluorescence parameters was proposed to estimate LNC.

Estimation of LNC using SVM model

To compare the performances of the three different types of characteristics parameters (VIs,

fluorescence parameters, and the combination of VIs and fluorescence parameters), SVM was

utilized to estimate LNC. The measured dataset was automatically divided into four equal

parts, and four-fold cross validation was used. Fig 4 presents the relationships between pre-

dicted and measured LNC.

Fig 4 shows the relationship between observed LNC and that predicted using SVM with dif-

ferent characteristic parameters for growth years 2014 and 2015. The blue solid lines show the

linear regression between the predicted and observed values, whereas the dotted lines repre-

sent the 1:1 line. Ideally, the blue solid line should coincide with the 1:1 line. By comparing

Fig 2. Coefficient of determination (R2) between different vegetation indices (VIs) based on the reflectance spectra and leaf nitrogen content (LNC) in growing years (a)

2014 and (b) 2015.

https://doi.org/10.1371/journal.pone.0191068.g002
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these results and identifying high R2 and low RMSE and RE, Fig 4 demonstrates that fluores-

cence parameters (R2 = 0.83 and 0.81 for 2014 and 2015, respectively) were superior to the VIs

(R2 = 0.80 and 0.74 for 2014 and 2015, respectively). In addition, the combination of VIs and

fluorescence parameters provided higher accuracy in LNC monitoring than either fluores-

cence parameters or VIs alone. The R2 of the regression analysis between the predicted and

measured LNC reached 0.89 and 0.88 for 2014 and 2015, respectively.

Discussion

At present, the amount of VIs based on reflectance and LIF spectral data has already been uti-

lized to analyze the growth status of vegetation, but only a few studies have compared VIs and

fluorescence parameters in term of estimating LNC in paddy rice. [30, 47, 48]. In this investi-

gation, published empirical VIs and fluorescence parameters were utilized to monitor LNC.

The experimental results demonstrated that TVI, MTVI1, MTVI2, and MSAVI had higher R2

and lower RMSE and RE than other VIs and therefore were suitable for estimating LNC in

paddy rice [49, 50]. The spectral bands of these VIs are 550 nm, 670 nm, 750 nm, and 800 nm.

These bands were good indicator bands for LNC detection, as demonstrated in relative studies

[30]. In addition, LNC can be influenced by the leaf area index of vegetation, and the latter

may be the main factor that controls the reflectance spectra in the visible and near-infrared

regions [32]. Haboudane et al. concluded that these VIs were developed to eliminate the effects

of interference factors on the detection of vegetation [50].

In this study, fluorescence spectra exhibited three main fluorescence peaks at 440–465 nm,

680–690 nm, and 730–740 nm. According to previous studies [43, 44], the fluorescence peak at

460 nm was attributed to nicotinamide adenine dinucleotide, whereas those at 685 and 735

nm were responsible for the chlorophyll a of Photosystem II and antenna chlorophyll of photo-

systems I and II, respectively. Related studies have demonstrated that LNC is closely related to

the fluorescence peaks (685 and 735 nm) [36, 51]. The current research demonstrated that

fluorescence parameters (R2 = 0.83, 0.81 for 2014 and 2015, respectively) were superior to VIs

(R2 = 0.80 and 0.74 for 2014 and 2015, respectively) in the estimation of LNC. The probable

interpretation is that the fluorescence parameters were influenced by the re-absorption of leaf

internal fluorophore and were relatively unsusceptible to ambient factors in comparison with

Fig 3. Coefficient of determination (R2) between predicted LNC using single vegetation indices (VIs) obtained through SVM model and measured LNC in growing

years (a) 2014 and (b) 2015.

https://doi.org/10.1371/journal.pone.0191068.g003
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the VIs [52, 53]. Meanwhile, LIF technology is widely implemented in the detection of crop

physiological property and a popular topic in the field of remote sensing [8, 24, 45]. Male-

novsky et al. confirmed that the chlorophyll content in leaves degrade and decrease rapidly,

and lutein then turns into a major pigment component when LNC in the leaf is reduced to

threshold levels, thereby in turn affect the fluorescence characteristics of leaves [46]. The pro-

posed combination of VIs with fluorescence parameters provided a more accurate monitoring

of LNC in comparison with either fluorescence parameters or VIs alone through the SVM

model (R2 = 0.89 and 0.88 for 2014 and 2015, respectively) [54]. The satisfactory results of the

SVM model based on the combination of VIs and fluorescence parameters indicated their

promising potential in the monitoring of LNC in paddy rice.

Fig 4. Relationship between predicted and measured LNC using different types of characteristic parameters ((a)

and (b): four VIs; (c) and (d): two fluorescence parameters; and (e) and (f): four VIs combined with two fluorescence

parameters) from different growth years and calculated using SVM. (a), (c), and (e): 2014; (b), (d), and (f): 2015. The

dotted line denotes the 1:1 line; the blue solid line represents the fitted curves for the regression model.

https://doi.org/10.1371/journal.pone.0191068.g004
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In this investigation, the performances of VIs and fluorescence parameters in estimating

LNC were compared in detail. In addition, the combination of VIs with fluorescence parame-

ters was proposed to estimate LNC in paddy rice. However, this preliminary investigation only

compared the VIs and fluorescence parameters in terms of monitoring LNC in paddy rice

using the SVM model. Certain limitations should be considered in future studies. For the

SVM algorithm, the kernel function is a key factor, and the effect of different kernel functions

on LNC monitoring needs to be discussed in future work. Furthermore, to obtain a solid con-

clusion and improve the generalization capability of the proposed approach, additional paddy

rice cultivars, growth seasons, and other crops should be considered in future studies.

Conclusion

This research investigated the performances of VIs and fluorescence parameters ub the estima-

tion of LNC in paddy rice. The experimental results demonstrated that TVI, MTVI1, MTVI2,

and MSAVI were superior to the other VIs in monitoring LNC. In addition, the comparison of

the VIs and fluorescence parameters for the estimation of LNC through SVM demonstrated

that the fluorescence parameters (R2 = 0.83 and 0.81 in 2014 and 2015, respectively) were supe-

rior to the VIs (R2 = 0.80 and 0.74 in 2014 and 2015, respectively). Finally, the combination of

VIs and fluorescence parameters was proposed to estimate LNC. The experimental results

demonstrated that the proposed combination could effectively improve the accuracy of LNC

estimation (R2 = 0.89 and 0.88 in 2014 and 2015, respectively). Thus, the LNC in paddy rice

could be accurately evaluated by implementing the LIF technology combined with hyperspec-

tral reflectance. Nevertheless, further studies using additional crops cultivars and growth years

are still required to obtain a solid conclusion and improve the generalization capability of the

proposed approach.

Appendix

Formula of vegetation indices

Vegetation indices (VIs) based on reflectance spectra and the corresponding calculation for-

mula in this paper [6, 11, 16, 18, 30–34].

Normalized difference vegetation index:

NDVI1 ¼ ðR800 � R670Þ=ðR800 þ R670Þ ð1Þ

NDVI2 ¼ ðR780 � R670Þ=ðR780 þ R670Þ ð2Þ

NDVI3 ¼ ðR573 � R440Þ=ðR573 þ R440Þ ð3Þ

NDVI4 ¼ ðR410 � R365Þ=ðR410 þ R365Þ ð4Þ

NDVI5 ¼ ðR503 � R483Þ=ðR503 þ R483Þ ð5Þ

NDVI6 ¼ ðR800 � R680Þ=ðR800 þ R680Þ ð6Þ

NDVI7 ¼ ðR1220 � R710Þ=ðR1220 þ R710Þ ð7Þ

NDVI8 ¼ ðR801 � R550Þ=ðR801 þ R550Þ ð8Þ
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Normalized difference index:

NDI1 ¼ ðR790 � R720Þ=ðR790 þ R720Þ ð9Þ

NDI2 ¼ ðR860 � R720Þ=ðR860 þ R720Þ ð10Þ

NDI3 ¼ ðR750 � R705Þ=ðR750 þ R705Þ ð11Þ

NDI4 ¼ ðR570 � R531Þ=ðR570 þ R531Þ ð12Þ

NDI5 ¼ ðR780 � R710Þ=ðR780 � R680Þ ð13Þ

NDI6 ¼ ðR850 � R710Þ=ðR850 � R680Þ ð14Þ

NDI7 ¼ ðR734 � R747Þ=ðR715 þ R726Þ ð15Þ

mNDI ¼ ðR750 � R705Þ=ðR750 þ R705 � 2� R445Þ ð16Þ

Simple ratio vegetation index

SR1 ¼ R700=R670 ð17Þ

SR2 ¼ R750=R550 ð18Þ

SR3 ¼ R750=R700 ð19Þ

SR4 ¼ R780=R670 ð20Þ

SR5 ¼ R787=R765 ð21Þ

SR6 ¼ R553=R537 ð22Þ

SR7 ¼ R545=R538 ð23Þ

SR8 ¼ R554=R677 ð24Þ

SR9 ¼ R801=R670 ð25Þ

SR10 ¼ R800=R550 ð26Þ

SR11 ¼ R740=R720 ð27Þ

SR12 ¼ R670=ðR700 � R650Þ ð28Þ

SR13 ¼ R672=ðR708 � R550Þ ð29Þ

SR14 ¼ R860=ðR708 � R550Þ ð30Þ
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PSSRa ¼ R800=R680 ð31Þ

PSSRb ¼ R800=R635 ð32Þ

SR15 ¼ R750=R705 ð33Þ

SR16 ¼ R950=R660 ð34Þ

SR17 ¼ R990=R720 ð35Þ

SR18 ¼ R780=R740 ð36Þ

SR19 ¼ R0
743
=R0

1316
ð37Þ

SR20 ¼ R0
730
=R0

705
ð38Þ

Zarco-Tejada&Miller:

ZTM ¼ R760=R710 ð39Þ

Optimized vegetation index

VIopt2 ¼ R760=R730 ð40Þ

MSR1 ¼ ðR800=R670 � 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R800=R670 þ 1

q

ð41Þ

MSR2 ¼ ðR750=R705 � 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R750=R705 þ 1

q

ð42Þ

Chlorophyll absorption ratio index:

CARI ¼ ðR700 � R670Þ � 0:2� ðR700 þ R550Þ ð43Þ

Modified chlorophyll absorption ratio index:

MCARI1 ¼ ½ðR700 � R670Þ � 0:2� ðR700 � R550Þ� � ðR700=R670Þ ð44Þ

MCARI2 ¼ ½ðR750 � R705Þ � 0:2� ðR750 � R550Þ� � ðR750=R705Þ ð45Þ

Transformed chlorophyll absorption ratio index:

TCARI ¼ 3� ½ðR700 � R670Þ � 0:2� ðR700 � R550ÞðR700=R670Þ� ð46Þ

Triangular vegetation index:

TVI¼ 0:5� ½120� ðR750 � R550Þ � 200� ðR670 � R550Þ� ð47Þ
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Modified Triangular vegetation index:

MTVI1¼ 1:2� ½1:2� ðR800 � R550Þ � 2:5� ðR670 � R550Þ� ð48Þ

MTVI2 ¼
1:5� ½1:2� ðR800 � R550Þ � 2:5� ðR670 � R550Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2� R800 þ 1Þ
2
� ð6� R800 � 5�

ffiffiffiffiffiffiffiffi
R670

p
Þ � 0:5

q ð49Þ

Red edge position linear:

REP ¼ 710þ 50�
0:5� ðR810 þ R660Þ � R710

R760 þ R710

ð50Þ

Optimized soil adjusted vegetation index:

OSAVI1 ¼ ð1þ 0:16Þ �
R800 � R670

R700 þ R670 þ 0:16
ð51Þ

OSAVI2 ¼ ð1þ 0:16Þ �
R750 � R705

R750 þ R705 þ 0:16
ð52Þ

MSAVI ¼ 0:5� ½2� R800 þ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2� R800 þ 1Þ
2
� 8� ðR800 � R670Þ

q

� ð53Þ

TBI1 ¼ R705=ðR717 þ R491Þ ð54Þ

TBI2 ¼ R1310=ðR1720 þ R730Þ ð55Þ

TBI3 ¼ ðR924 � R703 þ 2R423Þ=ðR924 þ R703 � 2R423Þ ð56Þ

Red edge model index:

R M ¼ R750=R720 � 1 ð57Þ

Green model index:

G M ¼ R750=R550 � 1 ð58Þ

PNC ¼ exp½2:5 � 23:5�
R503 � R483

R503 þ R483

� ð59Þ

TCARIi=OSAVIj ðj ¼ 1; 2Þ ð60Þ

CARI=OSAVI j ðj ¼ 1; 2Þ ð61Þ

MCARIi=OSAVI j ði ¼ 1; 2; j ¼ 1; 2Þ ð62Þ
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