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Genome‑wide association study 
identified candidate genes 
for seed size and seed composition 
improvement in M. truncatula
Zhijuan Chen1, Vanessa Lancon‑Verdier2,5, Christine Le Signor3, Yi‑Min She2,6, Yun Kang4 & 
Jerome Verdier1,2*

Grain legumes are highly valuable plant species, as they produce seeds with high protein content. 
Increasing seed protein production and improving seed nutritional quality represent an agronomical 
challenge in order to promote plant protein consumption of a growing population. In this study, 
we used the genetic diversity, naturally present in Medicago truncatula, a model plant for legumes, 
to identify genes/loci regulating seed traits. Indeed, using sequencing data of 162 accessions from 
the Medicago HAPMAP collection, we performed genome-wide association study for 32 seed traits 
related to seed size and seed composition such as seed protein content/concentration, sulfur content/
concentration. Using different GWAS and postGWAS methods, we identified 79 quantitative trait 
nucleotides (QTNs) as regulating seed size, 41 QTNs for seed composition related to nitrogen (i.e. 
storage protein) and sulfur (i.e. sulfur-containing amino acid) concentrations/contents. Furthermore, 
a strong positive correlation between seed size and protein content was revealed within the selected 
Medicago HAPMAP collection. In addition, several QTNs showed highly significant associations 
in different seed phenotypes for further functional validation studies, including one near an RNA-
Binding Domain protein, which represents a valuable candidate as central regulator determining 
both seed size and composition. Finally, our findings in M. truncatula represent valuable resources to 
be exploitable in many legume crop species such as pea, common bean, and soybean due to its high 
synteny, which enable rapid transfer of these results into breeding programs and eventually help the 
improvement of legume grain production.

Legume seeds are an important source to provide human food and animal feed. The high contents in proteins 
and carbohydrates, as well as fibers and minerals in legumes are an essential component of human diets 1. With 
the world population growing and the increasing need of plant proteins, producing highly nutritious seeds with 
high protein content, essential amino acids and minerals is in great demand.

Compared to grains, legume seeds have naturally high protein contents; however, they are deficient in sulfur-
containing amino acids and have lower concentrations of certain dietary minerals such as Fe, Ca and Zn com-
pared to animal proteins2. Increasing seed protein production and improving seed nutritional quality have been 
a challenge in the agronomic field.

The existing natural diversity of legume could help identify key molecular players in achieving these chal-
lenges by understanding its underlying molecular mechanisms and by identifying molecular markers. Medicago 
truncatula is a Mediterranean originated plant and has been a model plant of legumes from 19903,4. Its genome 
was sequenced and has still been under development with a recent fifth release5.

Several quantitative trait loci (QTL) analyses have been performed in M. truncatula to identify loci affecting 
seed protein and mineral compositions6,7. Nevertheless, QTL identification depends on mapping population 
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genetics of a few parents limited its use in exploratory genetic approach. Genome-wide association studies 
(GWAS) use a broad panel of natural accessions with high genetic diversity and could overcome QTL analysis 
limitations8. Nowadays, GWAS has become a useful approach to explore the genetics of natural accessions and 
agronomic traits. A Medicago HAPMAP collection of over 200 natural accessions has been developed, which 
contains several millions of single nucleotide polymorphisms (SNPs)9. This Medicago GWAS panel has been 
successfully employed to identify candidate loci/genes associated with various agronomic traits4 such as seed 
protein composition7.

In this study, we performed GWAS focusing on seed traits related to seed size and seed composition using 
162 accessions from the M. truncatula HAPMAP collection. Moreover, we performed association studies using 
both single and multi-locus models as well as several postGWAS analyses in order to identify potential loci/genes 
that could be involved in seed nutritional qualities in M. truncatula.

Results
Phenotypic evaluation of seed traits among the HAPMAP seed collection.  We evaluated the 
phenotypic variation of 162 Medicago accessions on 16 seed traits regarding seed size and composition, plus 
16 additional traits related to seed mineral composition in a subset of 88 accessions. Seed size was determined 
by weight measurement, area, perimeter, length (called ‘majellipse’ for major axis of ellipse) and width (called 
‘minellipse’ for minor axis of ellipse)10. Seed color variations (called CH1, CH2 and CH3) potentially reflected 
the secondary metabolite composition in the seed coat. Global seed composition was characterized including 
carbon, hydrogen, nitrogen and sulfur percentages (w/w) (called %C, %H, %N, %S). From these concentration 
values of nitrogen and sulfur, we estimated the nitrogen and sulfur contents per seed of each accession based 
on individual seed weights (traits called N Content and S Content and expressed in milligram per seed). Nitro-
gen concentration/content is a good indicator of the global protein content in seed and is commonly used for 
total protein determination in food products. Indeed, a predefined coefficient factor, Jones Factor11, is used to 
convert the nitrogen concentration into total protein content. This coefficient is 6.25, but might vary between 
species and plant tissues. We also calculated the ratio between carbon and nitrogen (C/N), which corresponds 
to a global seed composition estimation. Sulfur concentrations/contents were also characterized, which reflected 
high-quality storage proteins. Indeed, legume seeds generally have a low level of sulfur-containing amino acids, 
which were shown to be tightly regulated by plant sulfur status12,13. Finally, other minerals (i.e. macro- and 
micro-elements) were quantified in seeds from a subset of 88 accessions. Concentrations of macro- (P, K, Mg, 
Ca, Na) and micro- (Fe, Mn, Zn, Cu, Mo, Co, Ni, V) elements were determined in mature seeds. All phenotypic 
values for the analyzed accessions are provided in the Supplemental Table S1.

Phenotypic diversity and correlation between seed traits and Impact of geographical loca‑
tion.  A wide range of phenotypic variation was observed among the different accessions tested (Supplemen-
tary Figure S1 and Supplemental Table S1) with a coefficient of variation (CV) ranging from 1% for the most 
stable traits such as carbon and hydrogen concentrations, to 84% for Fe concentration. Other seed traits showed 
a high variability such as seed weight, N content and S content with CVs around 20%. In general, seed mineral 
concentrations showed the highest phenotypic diversity with Fe, Zn and Na displaying higher CV values. All the 
phenotypic values and CVs are provided in Supplementary Table S1.

Due to the availability of geographical locations of each accession origin, we allocated different accessions 
to three geographical values (i.e. longitude, latitude, altimeter) and 19 bioclimatic values obtained from the 
WorldClim database (http://world​clim.org). These bioclimatic values (called BIO1 to BIO19) mainly repre-
sent temperature and rainfall values measured monthly, quarterly or annually (see details in Fig. 1 legend). A 
global correlation analysis was performed to identify correlations between seed phenotypic traits themselves 
and with their geographical and bioclimatic values (Fig. 1). Results showed that all seed traits related to seed size 
(i.e. weight, area, perimeter, minellipse and majellipse) were highly correlated (Pearson coefficient correlation, 
PCC > 0.9), which validated the accuracy of our measurements. Similar results were obtained for seed color 
values (i.e. PCC > 0.85 for CH1, CH2, CH3).

Regarding seed content, we observed that nitrogen and sulfur contents were also highly correlated with seed 
size traits (PCC > 0.89 for N content and 0.74 for S content), which suggested that variations in seed content were 
predominantly determined by seed size. Regarding mineral composition in seeds, we observed positive correla-
tions between concentrations of some elements such as Ca, Mg, Fe, Cu and Na (PCC > 0.7) but also between the 
macro-elements P and K (PCC > 0.75, Fig. 1).

With the addition of the geographical values, we observed a moderate positive correlation between acces-
sion longitudes and seed C/N ratio (see the legend in Fig. 1), which indicated that accessions collected from the 
East tended to have higher C/N ratio (i.e. less nitrogen). To explain this difference, we also observed moderate 
positive correlations (PCC > 0.35) between seed size, seed contents (N and S) and temperature (i.e. BIO 9, 10), 
and at the opposite moderate negative correlations (PCC < -0.3) between seed weight, N content and precipita-
tions (i.e. BIO 14, 17, 18). The integration of the bioclimatic data suggested that temperature and precipitation 
played an important role in accession adaptability to final seed size determination, with outcome in sulfur and 
nitrogen contents.

Genome‑wide association analysis of seed traits.  In order to perform genome-wide association 
analysis, we first, used the Box-Cox procedure14 to estimate the appropriate lambda to transform our phenotypic 
data and, therefore, validate the assumption of normality required when performing GWAS prediction. Out of 
the 32 measured seed phenotypes, 26 traits were normalized using respective lambdas to finally display a normal 
distribution according to Shapiro–Wilk test (Fig.  2, Supplementary Table  S1 and Supplementary Figure  S1). 

http://worldclim.org
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However, six seed traits corresponding to the perimeter, CH1, %C, %H, C/H ratio and Arsenic (As) concentra-
tion were discarded from subsequent GWA analyses since, even after transformation, these traits did not reach 
normality.

In this study, two different models for genome-wide association predictions were applied to normalized 
phenotypes: a classical single-locus mixed linear model (EMMA15) with kinship and population structure as 
inputs, and a multi-locus model (FarmCPU16) with correction of population structure. When performing the 
multi-locus FarmCPU model, we observed QQ plots with a better fit between the expected and observed results 
following the expected null-hypothesis distribution of p-values (Supplementary Figure S2). These QQ plots 
reflected that most of the tested SNPs have no significant p-values, except for a few SNPs that have a strong and 
significant effect. Moreover, QQ plots obtained after performing the EMMA algorithm generally showed a curve 
corresponding to observed results below the theoretical curve (i.e. deflated curve), which suggested that this 
model was not appropriate for this association study. Regarding the Manhattan plots obtained from different 

Figure 1.   Correlation matrix between Medicago seed traits, and in relation to their geographical locations 
and climatic data. Only Pearson correlation coefficients (PCC) with adjusted p-values below 5% are indicated 
after BH procedure to control false discovery rate. Red color indicates PCC above 0.2 and green color indicates 
PCC below − 0.2. Longitude is expressed in degrees with negative degrees representing west and positive 
degrees representing east. Latitude is also expressed in degrees with negative degrees representing south and 
positive degrees representing north. Climatic data are from WorldClim. BIO1 annual mean temperature, 
BIO2 mean diurnal range, BIO3 isothermality, BIO4 temperature seasonality, BIO5 max temperature of warmest 
month, BIO6 min temperature of coldest month, BIO7 temperature annual range, BIO8 mean temperature 
of wettest quarter, BIO9 mean temperature of driest quarter, BIO10 mean temperature of warmest quarter, 
BIO11 mean temperature of coldest quarter, BIO12 annual precipitation, BIO13 precipitation of wettest month, 
BIO14 precipitation of driest month, BIO15 precipitation seasonality, BIO16 precipitation of wettest quarter, 
BIO17 precipitation of driest quarter, BIO18 precipitation of warmest quarter, BIO19 precipitation of coldest 
quarter.
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models, we also observed differences between EMMA and FarmCPU (Supplementary Figure S2). In general, we 
obtained less background noise with FarmCPU, with more precise location and lower p-values of SNPs than the 
ones obtained from Mixed Linear Model (MLM), especially when statistical analysis showed highly significant 
SNPs. Manhattan plots obtained from MLM displayed broader “peaks” made of multiple significant SNPs (i.e. 
SNP clusters). Overall, we note that most of the highest significant SNPs were identified in both methods but 
FarmCPU provided more power detection and accuracy to identify quantitative trait nucleotides (QTNs) (Sup-
plementary Figure S2). Therefore, we decided to focus on the multi-locus mixed model with FarmCPU in the 
subsequent analyses. All results (Manhattan and QQ plots) obtained from FarmCPU in this study are provided 
as Supplementary figures S3-S7. Moreover, gwas files directly readable on any genome browsers such as the 
web-accessible JBrowse17 or desktop genome viewer such Integrative Genome Viewer (IGV18) are also provided 
as Supplemental Tables S2-S5.

As previously described, we observed two contrasting situations regarding association studies and their result-
ing Manhattan plots: identification of highly significant QTNs with clear genomic location and identification of 
clusters of SNPs indicating associated loci. As preliminary results of these analyses, we clearly identified highly 
significant QTNs associated with seed size (Supplementary Figure S3) and seed composition (Supplementary 
Figure S4) present on several chromosomes. For instance, we observed five, six, four and six QTNs highly 
associated respectively with seed area, seed length, seed width and seed weight with a -log10(p-value) > 10 (i.e. 
p-value < 10–10). Regarding seed color (Supplementary Figure S5) and seed mineral concentrations (Supplemen-
tary Figure S6, S7), QTN p-values were significantly lower and nearer to background noise, which allowed only 
identification of specific genomic regions (i.e. SNP clusters), rather than highly significant individual QTNs.

To identify relevant QTNs, we combined association results from highly correlated seed traits. For instance, 
we combined FarmCPU results from weight, area, majellipse and minellipse (Fig. 3a) and identified common 
QTNs between seed size traits such as MtrunA17Chr4_56801315 on Chromosome 4. Interestingly, this QTN 
showed high p-values with all four seed size traits (10–18, 10–25, 10–21, 10–10 with respective area, majellipse, 
minellipse and weight), suggesting a reliable QTN regulating seed size. This QTN is located within the genomic 
sequence encoding for a protein containing an RNA binding motif (gene ID MtrunA17Chr4g0065741). Another 
potentially reliable QTN (MtrunA17Chr1_35506650) was identified from three different seed size phenotypes 
with highly significant p-values of 10–9, 10–8, 10–19 for area, minellipse and weight, respectively. This QTN located 
on chromosome 1, closely related to a genomic sequence encoding a WD40-LIKE transcription factor (gene ID 
MtrunA17Chr1g0185101).

Similarly, we compared association studies between sulfur content and sulfur concentration to identify four 
major QTNs shared between these two traits with low p-values (Fig. 3b). MtrunA17Chr1_31627600 on chro-
mosome 1, located within the coding sequence of the EXPORTIN5 protein (MtrunA17Chr1g0180461) closely 
related to Arabidopsis HASTY1 protein, which was shown to act as a nucleocytoplasmic transporter involved 
in the nuclear export of small RNAs19. MtrunA17Chr4_32623172 in chromosome 4, located in a chromosomic 
region rich in transposable elements. MtrunA17Chr5_8051955 present in chromosome 5 and is close to a gene 
encoding a salicylate methyltransferase (SAMT, MtrunA17Chr5g0404631), which catalyzes the methylation of 
salicylic acid with S-adenosyl-L-methionine to form methyl salicylate (MeSA), mainly in response to stress20. 
MtrunA17Chr8_48959923 on chromosome 8, located in the promoter region of a gene encoding a histidine 
kinase (MtrunA17Chr8g0392301).

Regarding nitrogen composition, we compared association studies between nitrogen concentration, nitrogen 
content and CN ratio in seeds (Fig. 3c). Following this experiment, it was more difficult to identify clear QTNs 
such as the N concentration and the CN ratio result showed more genomic regions that individual and distinct 
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Figure 2.   Distribution histograms of seed size and composition phenotypes in different Medicago accessions. 
Corresponding distribution curves are indicated on histograms. Different x-axes represent the corresponding 
values of the phenotypes.
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Figure 3.   Genome-wide association studies of the Medicago seed traits with Manhattan plots and QQ plots 
obtained from FarmCPU. (A) Combination of association studies regarding seed size (weight, area, majellipse, 
minellipse). (B) Combination of association studies regarding seed sulfur content (mg/seed) and sulfur 
concentration (%, w/w). (C) Combination of association studies regarding seed protein content (nitrogen 
content (mg/seed); nitrogen concentration (%, w/w); carbon/nitrogen ratio).

QTNs associated with these phenotypes. However, it appeared that regions mainly located on chromosomes 1, 2, 
6 and 8 showed strong associations between seed nitrogen composition and different accession polymorphisms, 
which suggested that these regions could play a role in seed nitrogen composition. Moreover, some particular 
QTNs were highly relevant for further analyses and indicated in Table 1. For instance, first, we identified a highly 
significant QTN (MtrunA17Chr6_7310002) associated with both protein concentration and C/N ratio, which is 
closely located to a genomic sequence encoding a putative amino acid transporter (MtrunA17Chr2g0333321). 
Second, we also identified a highly significant p-value for the QTN MtrunA17Chr4, which was already identified 
in the four seed size traits, in the N content association study. This result was predictable due to the high PCC 
between seed size and nitrogen content, which suggested that this QTN could be a regulator of both traits, mak-
ing this QTN a potentially interesting candidate to improve concomitantly seed size and seed protein content.

Regarding seed color and seed mineral concentrations, several loci were identified by combining results 
from CH2 and CH3 and from all macro- and micro-element concentrations. However, no major QTNs (i.e. 
p-values > 10–10) and precise location of SNP clusters were identified. This absence of highly significant QTNs 
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GWAS (FarmCPU) LD and putative causal gene(s) (PLINK) Expression (RNA-seq) TPM Annotations

Traits Chromosome SNP ID (Chr_position) P-Value

Number of 
potential SNP  in 
LD according to 
PLINK (including 
QTN) Associated gene(s) Pod Blade Flower Nodule Root Root_all Shoot_all Description

Seed size

Area 4 MtrunA17Chr4_56799264 1.40E−18 1 MtrunA17Chr4g0065741 1.12 1.42 1.22 0.60 1.62 3.89 11.25
RNA-binding (RRM RBD 
RNP motif) family

Area 4 MtrunA17Chr4_15564603 2.00E−15 1

Area 7 MtrunA17Chr7_49921035 1.53E−14 1 MtrunA17Chr7g0267081 5.19 1.67 6.29 4.57 4.19 8.56 7.49
Probable CCR4-associated 
factor 1 homolog 11

Area 3 MtrunA17Chr3_34669807 6.93E−13 1 MtrunA17Chr3g0112751 2.92 0.77 7.64 8.62 11.33 36.22 12.29
Hypothetical protein 
MTR_3g069670

Area 3 MtrunA17Chr3_57001194 1.96E−12 1 MtrunA17Chr3g0143421

Area MtrunA17Chr3g0143431 0.00 0.00 0.05 1.85 4.26 52.45 2.45 Syringolide-induced 14-1-1

Area MtrunA17Chr3g0143441 11.60 2.33 11.12 25.66 16.91 76.05 25.55
24-methylenesterol 
C-methyltransferase 2

Majellip 4 MtrunA17Chr4_56801315 7.74E−25 1 MtrunA17Chr4g0065741 1.12 1.42 1.22 0.60 1.62 3.89 11.25
RNA-binding (RRM RBD 
RNP motif) family

Majellip MtrunA17Chr4g0065751 3.05 6.48 10.23 5.50 11.43 31.59 16.96
DUF21 domain-containing 
At4g14240-like

Majellip 5 MtrunA17Chr5_7453281 7.83E−17 1

Majellip 6 MtrunA17Chr6_20728994 3.78E−12 1

Majellip 2 MtrunA17Chr2_11271424 1.10E−11 1 MtrunA17Chr2g0292281 0.00 0.00 0.00 0.00 0.00 0.45 0.11 Peroxidase family

Majellip MtrunA17Chr2g0292291 0.00 0.03 0.00 1.23 76.96 602.07 0.00 Peroxidase family

Majellip 1 MtrunA17Chr1_34226006 9.20E−11 1 MtrunA17Chr1g0183471 2.04 0.56 8.05 5.46 4.05 3.49 2.62
Hypothetical protein 
MTR_1g069640

Majellip MtrunA17Chr1g0183481 2.44 1.39 4.30 6.04 3.33 0.00 0.00 unknown

Minellip 4 MtrunA17Chr4_56799264 4.31E−21 1 MtrunA17Chr4g0065741 1.12 1.42 1.22 0.60 1.62 3.89 11.25
RNA-binding (RRM RBD 
RNP motif) family

Minellip 3 MtrunA17Chr3_24325917 5.75E−13 1 MtrunA17Chr3g0099571 0.00 0.00 0.04 0.78 4.94 8.94 0.06
Disease resistance (CC-NBS-
LRR class) family

Minellip MtrunA17Chr3g0099581 0.06 0.00 0.00 0.75 2.95 7.38 0.27
Probable disease resistance 
At4g27220

Minellip MtrunA17Chr3g0099591 0.86 3.27 1.95 0.08 0.33 1.03 14.96
Disease resistance (CC-NBS-
LRR class) family

Minellip 8 MtrunA17Chr8_628023 4.46E−11 1 MtrunA17Chr8g0334971 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DUF247 domain

Minellip 4 MtrunA17Chr4_15564603 5.65E−11 1

Minellip 5 MtrunA17Chr5_39987332 1.23E−09 1 MtrunA17Chr5g0441651 4.40 2.36 22.68 16.31 11.53 33.46 14.26 Dihydropyrimidinase

Minellip MtrunA17Chr5g0441661 0.58 0.00 39.34 0.00 0.00 0.00 0.00
RPM1-interacting 4 (RIN4) 
family

Minellip MtrunA17Chr5g0441671 11.02 4.34 26.25 30.95 42.28 163.92 77.69 Splicing factor 3B subunit 6

Minellip MtrunA17Chr5g0441681

Minellip MtrunA17Chr5g0441691 0.58 0.66 7.45 0.18 0.51 0.57 2.74 Calcium-dependent kinase 17

Minellip MtrunA17Chr5g1024447

Weight 1 MtrunA17Chr1_35506650 1.33E−19 1 MtrunA17Chr1g0185101 2.79 2.49 4.33 12.71 12.22 22.03 4.59
BEACH domain-containing 
lvsA

Weight 8 MtrunA17Chr8_5914802 1.74E−12 1

Weight 7 MtrunA17Chr7_49559389 1.66E−11 1 MtrunA17Chr7g0266521 202.23 7.53 100.55 140.68 41.92 39.45 24.23
Transmembrane protein, 
putative

Weight MtrunA17Chr7g0266531 70.18 1.94 27.86 52.11 14.60 17.34 10.28
Transmembrane protein, 
putative

Weight MtrunA17Chr7g0266541 43.90 4.20 9.31 30.74 0.00 0.35 0.00
Hypothetical protein 
MtrDRAFT_AC150442g27v2

Weight MtrunA17Chr7g0266551 0.00 0.00 0.00 0.85 0.00 0.41 0.00
Hypothetical protein 
MTR_7g104915

Weight MtrunA17Chr7g0266561 9.53 3.25 13.63 10.84 14.31 30.07 19.35
Probable small nuclear 
ribonucleo G

Weight 3 MtrunA17Chr3_20500592 6.27E−11 1

Weight 4 MtrunA17Chr4_56799264 6.39E−10 1 MtrunA17Chr4g0065741 1.12 1.42 1.22 0.60 1.62 3.89 11.25
RNA-binding (RRM RBD 
RNP motif) family

Seed 
composi-
tion

S content 5 MtrunA17Chr5_7518926 7.21E−17 1 MtrunA17Chr5g0403771 0.02 1.48 0.59 0.16 0.18 2.86 1.68
Vicilin-like antimicrobial 
peptides 2-2

S content MtrunA17Chr5g0403781 5.98 11.36 8.86 2.58 2.27 8.34 94.20 Probable phosphatase 2C 80

S content 2 MtrunA17Chr2_45988522 2.09E−12 1 MtrunA17Chr2g0326151 0.21 0.38 1.99 0.54 0.13 0.50 0.70
Pre-mRNA-processing-
splicing factor 8

S content MtrunA17Chr2g0326161 0.00 0.00 0.00 0.00 0.00 0.42 0.00 Allergen gly M Bd 28 kDa

S content 5 MtrunA17Chr5_42555471 5.47E−12 1 MtrunA17Chr5g0445531 0.00 0.00 52.16 0.00 0.00 0.00 0.08 Cytochrome P450 family 71

S content MtrunA17Chr5g0445541 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cytochrome P450 family 71

S content MtrunA17Chr5g0445551 0.00 5.07 0.00 4.75 0.00 0.00 0.00 Cytochrome P450 family 71

S content MtrunA17Chr5g0445561 0.00 0.00 0.00 0.00 0.00 0.17 0.00
Zinc C3HC4 type (RING 
finger)

S content 6 MtrunA17Chr6_30934715 8.09E−10 1

S content 1 MtrunA17Chr1_31627600 9.84E−10 1 MtrunA17Chr1g0180461 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HASTY 1

S content MtrunA17Chr1g0180471 0.00 0.20 0.00 0.00 0.00 0.00 0.64 HASTY 1

S content MtrunA17Chr1g0180481 0.07 0.12 0.00 0.00 0.00 0.00 1.09 HASTY 1

%S 5 MtrunA17Chr5_8051955 2.76E−08 3 MtrunA17Chr5g0404631 0.00 0.04 57.28 0.24 0.26 5.92 0.23 Salicylate O-methyltransferase

%S MtrunA17Chr5g0404641 0.00 0.00 0.11 0.83 0.00 0.83 0.33
Heavy-metal-associated 
domain

N content 4 MtrunA17Chr4_56799264 6.14E−12 1 MtrunA17Chr4g0065741 1.12 1.42 1.22 0.60 1.62 3.89 11.25
RNA-binding (RRM RBD 
RNP motif) family

N content 6 MtrunA17Chr6_13176638 1.33E−11 1

Continued
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GWAS (FarmCPU) LD and putative causal gene(s) (PLINK) Expression (RNA-seq) TPM Annotations

Traits Chromosome SNP ID (Chr_position) P-Value

Number of 
potential SNP  in 
LD according to 
PLINK (including 
QTN) Associated gene(s) Pod Blade Flower Nodule Root Root_all Shoot_all Description

N content 1 MtrunA17Chr1_17611945 7.77E−11 1 MtrunA17Chr1g0168711 34.54 36.56 59.95 28.95 53.04 113.94 152.11
3-isopropylmalate dehy-
dratase large subunit-like

N content 3 MtrunA17Chr3_7317464 4.52E−09 1 MtrunA17Chr3g0085931 0.03 0.00 0.00 2.64 3.37 8.18 0.06
NBS-LRR type disease 
resistance

N content MtrunA17Chr3g0085941 0.00 0.00 0.00 0.00 0.09 0.00 0.00
Cytochrome C biogenesis 
ccsA

N content 7 MtrunA17Chr7_55339972 1.45E−08 1 MtrunA17Chr7g0275391 0.97 4.94 2.71 0.45 1.11 3.07 12.83
Copper-transporting ATPase 
chloroplastic-like isoform X1

%N 6 MtrunA17Chr6_7310002 3.07E−09 1 MtrunA17Chr6g0457641 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cytochrome C biogenesis 
ccsA

%N MtrunA17Chr6g0457651 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Transmembrane protein, 
putative

%N MtrunA17Chr6g0457661 2.52 1.51 5.22 5.25 3.84 21.16 13.28
Zinc transporter 5-like 
isoform X2

%N MtrunA17Chr6g0457671 4.90 2.09 9.93 6.56 8.10 15.08 9.78 Zinc transporter 5

%N 2 MtrunA17Chr2_39997412 7.52E−09 27 MtrunA17Chr2g0318301 4.50 1.66 5.76 11.51 8.44 25.57 15.99 Receptor kinase THESEUS 1

%N MtrunA17Chr2g0318311 0.00 0.00 0.07 0.00 1.92 4.68 0.05 Root cap late embryogenesis

%N MtrunA17Chr2g0318321 0.00 0.80 1.10 0.00 0.00 0.00 0.00
RNA polymerase beta partial 
(chloroplast)

%N MtrunA17Chr2g0318331 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Receptor kinase THESEUS 1

%N MtrunA17Chr2g0318341 0.00 0.06 0.00 0.15 67.70 88.60 0.00 Root cap late embryogenesis

%N MtrunA17Chr2g0318351 28.50 12.81 54.94 39.90 53.20 110.12 69.26
Hypothetical protein 
MTR_2g080270

%N MtrunA17Chr2g0318361 0.00 0.00 0.00 0.00 0.00 0.83 0.00
Hypothetical protein 
MTR_2g080280

%N MtrunA17Chr2g0318371 4.61 28.32 12.88 1.56 6.66 7.97 66.65
Transmembrane protein, 
putative

%N MtrunA17Chr2g0318381 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pentatricopeptide repeat-
containing At1g20230-like

%N 1 MtrunA17Chr1_10142836 8.00E−09 4 MtrunA17Chr1g0159441 7.70 8.39 21.83 25.52 29.94 65.42 22.63
Transcriptional corepressor 
SEUSS

%N MtrunA17Chr1g0159451 2.40 3.50 7.74 6.58 10.84 19.75 9.76
Small RNA degrading 
nuclease 5

%N 2 MtrunA17Chr2_51147031 1.03E−08 1 MtrunA17Chr2g0333321 1.01 0.71 3.17 3.07 2.20 3.40 2.02
Probable sodium-coupled 
neutral amino acid trans-
porter 6

%N 2 MtrunA17Chr2_17222898 1.07E−08 4 MtrunA17Chr2g0299211

%N MtrunA17Chr2g0299221 0.00 0.00 0.00 1.87 0.00 0.00 0.00 Little zipper

%N MtrunA17Chr2g0299231 0.00 0.00 0.00 0.20 0.00 0.00 0.00
Hypothetical protein 
MTR_2g039220

%N MtrunA17Chr2g0299241 0.00 0.00 0.31 9.33 0.63 0.00 0.00
Nodule-specific Glycine 
Rich Peptide

%N MtrunA17Chr2g0299251 0.00 0.00 0.00 0.30 0.00 0.00 0.00 NA

%N MtrunA17Chr2g0299261 0.08 0.00 0.34 274.55 0.23 0.05 0.00
Nodule-specific Glycine 
Rich Peptide

%N MtrunA17Chr2g0299271 41.21 10.74 67.19 90.53 54.34 111.62 71.08
WD-40 repeat-containing 
MSI4

CN ratio 6 MtrunA17Chr6_7310002 3.36E−08 1 MtrunA17Chr6g0457641 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cytochrome C biogenesis 
ccsA

CN ratio MtrunA17Chr6g0457651 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Transmembrane protein, 
putative

CN ratio MtrunA17Chr6g0457661 2.52 1.51 5.22 5.25 3.84 21.16 13.28
Zinc transporter 5-like 
isoform X2

CN ratio MtrunA17Chr6g0457671 4.90 2.09 9.93 6.56 8.10 15.08 9.78 Zinc transporter 5

CN ratio 1 MtrunA17Chr1_10142836 3.75E−08 4 MtrunA17Chr1g0159441 7.70 8.39 21.83 25.52 29.94 65.42 22.63
Transcriptional corepressor 
SEUSS

CN ratio MtrunA17Chr1g0159451 2.40 3.50 7.74 6.58 10.84 19.75 9.76
Small RNA degrading 
nuclease 5

CN ratio 2 MtrunA17Chr2_51147031 4.35E−08 1 MtrunA17Chr2g0333321 1.01 0.71 3.17 3.07 2.20 3.40 2.02
Probable sodium-coupled 
neutral amino acid trans-
porter 6

CN ratio 7 MtrunA17Chr7_13129833 5.48E−08 30 MtrunA17Chr7g0227971 0.00 0.18 0.00 0.28 0.00 0.40 0.92 Nucleoporin GLE1

CN ratio MtrunA17Chr7g0227981 4.76 3.46 18.54 13.53 13.39 18.60 19.11
N-terminal glutamine 
amidohydrolase

CN ratio MtrunA17Chr7g0227991 0.00 0.00 0.18 0.00 0.00 0.00 0.00
Subtilisin-like serine endo-
peptidase family

CN ratio 2 MtrunA17Chr2_49391628 5.58E−08 1 MtrunA17Chr2g0330811 0.55 1.00 2.15 1.25 0.77 3.27 8.91
Chloroplastic group IIA 
intron splicing facilitator 
chloroplastic isoform X1

CN ratio MtrunA17Chr2g0330821 0.45 0.72 1.86 1.74 3.10 6.44 2.60
Heat shock transcription 
factor A8

CN ratio MtrunA17Chr2g0330831 0.00 0.00 8.21 6.70 3.44 2.69 1.71 NA

CN ratio MtrunA17Chr2g0330841 0.33 0.21 0.83 1.34 0.74 5.49 2.23
Heat stress transcription 
factor A-5-like

Table 1.   Top five QTNs significantly associated with different seed size traits (i.e. weight, area, majellipse, 
minellipse) and seed compositions (S content, N content, %S, %N and C/N ratio). SNP/QTN names, positions 
and p-values are indicated from FarmCPU. Numbers of potential associated SNP(s) and putative causal genes 
are indicated from PLINK analysis. Gene expression in major Medicago plant organs, as well as tentative 
gene annotations are indicated. A more exhaustive list of highly significant QTNs related to all seed traits is 
provided as Supplementary Table S6, and complete lists of SNPs and their associated p-values are provided as 
Supplementary Tables S2 to S5.
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regarding seed mineral concentrations could be explained by the small population size used in this specific 
analysis (i.e. subset of 88 accessions).

PostGWAS analyses to identify putative causal genes.  To shorten the list of candidate QTNs, we 
used p-value threshold of 10–7 when association studies displayed high SNP power detection such as seed size 
and seed composition phenotypes, and a p-value threshold of 10–5 when association analyses displayed low SNP 
power detection such as seed color and seed mineral concentrations. Then, the linkage disequilibrium (LD) was 
considered to identify putative causal genes associated with selected QTNs. Considering that in the Medicago 
HAPMAP collection, the average LD decay was determined around 15kb21, we performed genome-wide cor-
relations between selected SNPs present within this genomic range (i.e. ± 15 kb from QTNs) using PLINK22. A 
threshold correlation of 0.7 was used to identify SNPs potentially in LD within these genomic regions. From this 
analysis, we established a list of SNPs correlated to the selected QTNs due to LD and therefore potential causal 
genes. From this list, we revealed 56 putative causal genes related to the 34 QTNs with highly significant p-values 
that are potentially involved in seed size determination, 123 putative causal genes related to the 56 QTNs poten-
tially involved in seed composition, 90 putative causal genes related to the 45 QTNs potentially involved in seed 
color and 906 putative causal genes related to the 597 QTNs potentially involved in seed mineral composition 
(Table 1 and Supplementary Table S1). Due to the relatively low number of ecotypes used for the QTN identifica-
tion related to seed nutritional composition, which might affect the statistical accuracy of the study, we decided 
to provide these results as supplementary data but we will not analyze them further.

In order to identify functional classes that could be involved in regulating these different seed phenotypes, we 
performed over-representation gene ontology (GO) analyses with corresponding lists of putative causal genes 
for each phenotype (Table 2). Interestingly, we observed that list of putative causal genes regulating seed size 
were enriched in GO terms related to the U12-type spliceosomal complex (GO:0005689). Similarly, using list of 
putative causal genes regulating seed protein content/concentration, we observed enrichment of genes with GO 
terms referring to nutrient reservoir activity (GO:0045735), amino acid transport (GO:0015171, GO:0003333) 
and oxalate metabolic pathway (GO:0033609, GO:0046564), which are all functional classes closely related to 
biosynthesis or transport of amino acids23. From putative genes regulating the seed color, we revealed that the 
GO terms referring to flavonoid biosynthesis were enriched (i.e. GO:0080043, GO:0080044, GO:0052696), and it 
has been shown that, indeed, flavonoid composition/concentration is closely related to seed coat color24. Finally, 
we observed enrichment of the GO term related to the protein amino acid autophosphorylation (GO:0046777) 
concerning genes potentially regulating mineral concentrations, which was less intuitive and presumably has 
indirect relations.

In order to identify potential specific regulator of seed traits, we also focused on seed expression specificity 
and compared list of genes specifically expressed in seeds and pods with our list of candidate causal genes related 
to seed traits. Expression analysis in different Medicago plant organs was performed using publicly available 
information. To compare with our data, we mapped these reads to the Medicago genome version 55 and quanti-
fied transcript expression using the Salmon pipeline25. Out of 44,473 transcripts in the Medicago genome (v5). 
375 were identified as specifically or preferentially expressed in pods/seeds (Supplementary Table S7). After 
combining a list of seed-specific genes and our list of putative causal genes from GWA studies, we revealed 
two seed-specific genes potentially regulating seed nitrogen concentration: a zinc-finger transcription factor 
(MtrunA17Chr7g0217321) and a CAAT-Binding Transcription factor (CBF, MtrunA17Chr2g0318461), and eight 
seed-specific genes potentially regulating various mineral concentrations in seeds (Supplementary Table S6).

Table 2.   Enrichment analysis of Gene Ontology (GO) terms on putative causal genes regulating different seed 
traits (i.e. size, composition and color).  Enrichment p-values from hypergeometrical tests and q-values from 
Bonferroni corrections are indicated, as well as the number of genes annotated (count). Results were generated 
with R package “ClusterProfiler”.

ID Description p value q value Count

Size

GO:0005689 U12-type spliceosomal complex 0.0004 0.0267 2

Composition

GO:0045735 Nutrient reservoir activity 0.0000 0.0004 5

GO:0033609 Oxalate metabolic process 0.0000 0.0004 4

GO:0046564 Oxalate decarboxylase activity 0.0000 0.0004 4

GO:0030145 Manganese ion binding 0.0001 0.0011 4

GO:0015171 Amino acid transmembrane transporter activity 0.0002 0.0019 4

GO:0003333 Amino acid transmembrane transport 0.0002 0.0023 4

Color

GO:0080043 Quercetin 3-O-glucosyltransferase activity 0.0003 0.0054 4

GO:0080044 Quercetin 7-O-glucosyltransferase activity 0.0003 0.0054 4

GO:0052696 Flavonoid glucuronidation 0.0004 0.0054 4
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Discussion
Improving seed protein content in M. truncatula seeds by increasing seed size.  Grain legumes 
play a key role in providing plant proteins for food and feed. Therefore, understanding how to increase seed 
protein content and to produce storage proteins with high nutritional values (i.e. containing essential amino acid 
and sulfur-containing amino acids) represents a technological breakthrough that has to be yet overcome. In this 
study, we observed significant genetic variabilities regarding seed traits such as size, nitrogen content (i.e. storage 
protein content) and sulfur content (i.e. sulfur-containing amino acid content), which makes the Medicago HAP-
MAP collection a great tool to improve these agronomical traits. Interestingly, our correlation matrix between 
these different seed traits within the Hapmap population revealed a strong correlation (PCC > 0.9) between 
seed size and protein content (Fig. 1), which suggested that increasing seed protein content could be directly 
achieved by increasing seed size. This hypothesis could, first, be confirmed by identification of colocalized QTLs 
of seed size and seed protein content in garden pea26, soybean27, Common Bean28 and cowpea29. In parallel, even 
if several genetic studies already highlighted genes controlling seed size, which generally act via regulation of 
mitotic activity in embryo and endosperm, such as SBT1.130 and DASH31in M. truncatula, but also via regulation 
of cell elongation in endosperm and seed coat such as ZHOUPI32 and TTG233 in A. thaliana (for review34). The 
hypothesis that increasing seed size would increase protein content is difficult to validate from literature because 
mutant lines displaying larger seeds were not tested for their protein contents and inversely, mutant lines affected 
in protein content were not tested for seed size. One exception is the gene AP2 in Arabidopsis, which produced 
larger seeds in mutant plants combined with an increase in protein and fatty acid content35, which validate our 
hypothesis. Finally, numerous correlation analyses between seed size and protein content have been conducted 
on cereals and legumes but no general trend was observed. Indeed, even if several studies concluded about clear 
positive correlations between seed size and seed protein content in pigeon pea36, soybean37 and this study in 
Medicago, many others did not, suggesting genotype-environment effects. As mentioned earlier, these results 
are undoubtedly dependent on plant genetic background, favorable growth conditions and optimal agricultural 
practices. Indeed, in our study, we revealed that the geographical and bioclimatic origins of Medicago accessions 
played an important role in plant adaptation with correlations between seed size, seed content, temperature and 
precipitation during the reproductive phase (Table 1). These accessions showed a phenotypic adaptability to 
produce larger and higher seed protein content. Moreover, the variations of these traits within the same genetic 
backgrounds are also to consider as abiotic stress is known to affect proper seed development in Medicago38. 
Finally, one essential aspect to validate this positive correlation between seed size and protein content is the non-
limiting nitrogen supply, which could be achieved via intensive nitrogen fertilization or via nitrogen fixation in 
legumes, which is still active during seed filling. In this study, we highlighted genes/loci potentially involved in 
seed size, but also in both seed size and seed protein content, which could potentially improve simultaneously 
seed nutritional values and agronomical performances, as it is already well documented that larger seeds tend to 
improve germination vigor and plantlet establishment (for review39).

Efficiency of GWAS and post‑GWAS algorithms.  In the past 10 years due to the rapid development 
of genome sequencing technologies and phenotypic capacities, numerous genome-wide association studies 
(GWAS) have been performed in many species. This powerful tool is becoming a standard in forward genetic 
study to identify genes/loci controlling various traits. Its rapid development has been accompanied by the devel-
opment of mainly two association study methodologies: classical single-locus GWAS methods based on Gen-
eral Linear Model (GLM) and Mixed Linear Model (MLM) (e.g. EMMA15; SUPER40), and recently developed 
multi-locus GWAS methods such as MLMM41, FASTmrEMMA42 and FarmCPU43. In the single-locus method, 
statistical tests are performed one locus at each time, whereas multi-locus methods consider the information of 
all loci simultaneously and consequently do not require false discovery rate correction, leading to higher QTN 
detection power44. In our study, we compared a single-locus method, EMMA, and a multi-locus method, Farm-
CPU, and we had two observations. (i) When association studies revealed highly significant candidate QTNs, 
FarmCPU (i.e. multi-locus method) resulted in more significant QTNs with lower p-values and more precise 
chromosome positions. Indeed, EMMA (i.e. the single-locus method) showed higher QTN p-values, closer to 
the background noise, which led to the identification of loci represented by broader “peaks” containing multiple 
significant SNPs (i.e. SNP clusters) in Manhattan plots, therefore more difficult to precisely locate on chromo-
somes (Figure S2). However, even if FarmCPU identified more significant QTNs with more precise locations, 
most of the highly significant QTNs were observed using both methods. (Figure S2A-B). (ii) When association 
studies did not reveal significant QTNs, single and multi-locus methods performed similarly (Figure S2C). In 
conclusion, from our study, it appeared that FarmCPU, the multi-locus method, globally performed better than 
the single-locus method, which explains why we focused on this method to identify candidate QTNs. Better 
performances of GWAS multi-locus models have also been observed in several other studies such as in Xu et al.45 
related to starch properties in maize, Jaiswal et al.46 related to agronomic traits in wheat, and Li et al.47 related to 
fiber quality in Cotton, rendering these methods attractive for association studies.

Potential regulation of seed size and protein content via RNA regulation.  In order to determine 
reliable QTNs and mine for causal candidate genes controlling seed size and composition, we performed postG-
WAS analyses. First, we considered a 15 kb LD decay (r2 > 0.7), as determined in Medicago hapmap collection21, 
to identify associated SNPs due to LD. Then, depending on the association results, we used different approaches 
to refine candidate gene selection: combination of association results from correlated phenotypes to identify 
putative causal genes, use of over-representation analysis to identify key functional classes regulating pheno-
types, and integration of transcriptomics.
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Regarding seed size, we mined two highly significant QTNs associated with multiple seed size phenotypes 
by combining GWAS results of weight, area, majellipse and minellipse. First, MtrunA17Chr1_35506650, a QTN 
detected in three association studies (i.e. weight, minellipse and area), is near a gene encoding a WD40/BEACH 
domain protein (MtrunA17Chr1g0185101) (Table 1 and Supplemental Table S6). A potential ortholog of this 
gene in Arabidopsis, called SPIRRIG (SPI, AT1G03060), has been shown to be involved in cell morphogenesis 
via interaction with processing bodies (i.e. p-bodies)48, which is known to regulate mRNA processing during 
development or stress (for review49). In Arabidopsis, spi mutant lines displayed many developmental defects50 
including reduced seed coat mucilage and plant growth impairment under salt stress51. Interestingly, the second 
QTN (MtrunA17Chr4_56801315) detected in all four association studies related to seed size was closely related 
with a gene encoding an RNA-binding domain (RBD, MtrunA17Chr4g0065741), which is also a gene involved 
in the regulation of RNA. RDB proteins belong to a large protein family, which are known to determine RNA 
fate from synthesis to degradation. Few of them have been functionally characterized and depending on their 
RNA targets, they could play tissue- and developmental stage-specific roles52. For instance, one of RDB protein 
family functionally characterized in Arabidopsis seed development is SUPPRESSOR OF ABI3 (SUA, AT3G54230), 
which controls alternative splicing of the ABI3, a master regulator of seed development and maturation53. This 
QTN identified from several seed size association studies was also detected in association with the seed nitrogen 
content (Table 2), which indicated the important role of this gene in regulating both seed size and protein content.

This role of RNA processing/regulation to regulate seed size was further highlighted by the over-representa-
tion analysis of all highly significant QTNs associated with seed size, which revealed that the “U12-type spliceo-
somal complex” class was over-represented. This complex is part of the minor spliceosome, which plays a crucial 
role in splicing regulation of the rare U12 introns. It has been shown in Arabidopsis that homozygote mutant lines 
impaired in the U12 spliceosome complex displayed premature embryo abortion, whereas heterozygote mutants 
were defective for seed maturation, indicating an essential role of this complex during embryonic development54. 
Moreover, proper splicing and alternative splicing have been shown to be crucial in normal embryo formation 
(for review55) and embryo development, which is a key stage in controlling the final seed size.

Methods
Medicago plant accession and growth.  Accessions from the HapMap germplasm collection were 
requested from the dedicated website (http://www.Medic​agoha​pmap.org/hapma​p/germp​lasm). Around 200 
accessions were grown in growth chambers (20 °C/18 °C, 16 h photoperiod at 200 mmol m−2 s−1) until maturity. 
Mature seeds of 162 accessions were collected in sufficient quantity to perform different phenotyping experi-
ments.

Seed size and color determination.  Individual seed weights of 162 accessions were estimated by weight-
ing 50 seeds in triplicate using a precision balance at an accuracy ± 0.1 mg and displayed as mg per seed. To 
complete seed size phenotyping, image analyses were performed on 150 seeds of each accession using GrainS-
can software10 to automatically measure individual seed areas (i.e. pixel number, called “area”), seed perimeters 
(“perimeter”), seed lengths (“majellip”) and seed widths (“minellip”). These seed size parameters were averaged 
for each of the 162 accessions and used for the subsequent analyses. Image analysis also allowed us to determine 
seed color values using GrainScan, which measured three color channels (i.e. CH1, CH2, CH3) from raw RGB 
values, reflecting seed coat pigmentation.

Seed composition analysis with elemental CHNS analyzer (162 accessions).  Seed composi-
tion was characterized using a CHNS elemental analyser, which measured the percentage (w/w) of carbon (C), 
hydrogen (H), nitrogen (N) and sulfur (S). Mature seeds were ground in liquid nitrogen and dried in an oven at 
90 °C for 48 h. Then, triplicates of approximately 5 mg of powder were analyzed using an Elementar Vario Micro 
cube analyzer (Germany) using flash combustion of the sample based on the “Dumas” method. Concentrations 
of C, H, N, S were determined by the Elementar Vario software based on exact seed weights. From which, car-
bon–nitrogen ratios (C/N ratio) were calculated to provide an accurate overview of the global seed composition. 
Nitrogen and sulfur contents per seed for each accession (i.e. N content, S content) were calculated using average 
seed weights of each lot.

Macro‑ and micro‑element concentrations.  A subset of 88 accessions was analyzed to determine ele-
mental concentrations for P, K, Mg, Ca, Na, Fe, Mn, Zn, Cu, Mo, V, Co, Ni, Ti, As, Cr using Induced Coupled 
Plasma-Mass Spectrometry (ICP-MS, Perkin Elmer model NexION 300D). Seed powders were dried in a heat-
ing oven at 75 °C for overnight. Approximately 5 mg of seed powder were accurately weighed and transferred to 
a glass container with 3 ml of concentrated nitric acid (HNO3). After digestion for 15 min at 200 °C, deionized 
water was added to adjust the final volume to 10.0 ml and samples were injected into the ICP-MS for measure-
ment. A blank sample containing 5% HNO3 was used for background subtraction. Concentrations (i.e. ppb or 
mg/L) of each element were calculated based on an internal standard mix (Perkin Elmer, ref. 9301721) and nor-
malized according to a weight normalization procedure using the NexION software (Perkin Elmer).

Correlation analysis.  Correlation matrix was performed on averages of phenotype values. Each pairwise 
comparison was performed using Pearson correlation calculated using the complete pairwise correlation of the 
‘corr.test’ function from the R package ‘psych’. P-values were adjusted using Benjamini-Hochberg (BH) to control 
false discovery rate and statistical significance threshold was set below 5% of adjusted p-values.

http://www.Medicagohapmap.org/hapmap/germplasm
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Phenotype normality distributions.  All traits were checked and transformed to reach normality as it is 
required to perform genome wide association studies. Box Cox algorithm14 was used to determine the appro-
priate transformation for each trait, and each trait was transformed separately according to the most suitable 
lambda values given by the Box Cox function implemented in the R package MASS56. After transformation, 
Shapiro–Wilk tests57 were performed to validate the normality and traits that did not reach normality were 
discarded of following GWAS analyses. Supplementary Table S1 provides seed trait values before and after Box 
Cox transformation, respective lambda values for each trait and corresponding p-values of the Shapiro–Wilk 
test after transformation.

Genome‑wide association studies and post‑GWAS analyses.  Single nucleotide polymorphisms 
(SNP) data were obtained by whole genome sequencing of the 262 Medicago accessions from the M. trunca-
tula Hapmap project9. From the 6 million SNPs originally identified in Medicago genome version 4, 4,852,061 
SNPs were successfully mapped to the fifth version of the Medicago genome (Mtv55) and were used for subse-
quent analyses. The population structure and the kinship matrix used in this study were the same as previously 
described in Bonhomme et al.58 and le Signor et al.7, respectively. Two models were used to perform GWAS: (1) 
a classical single locus method using a mixed linear model called EMMA (Efficient Mixed-Model Association15 
with the kindship matrix and the population structure as inputs; (2) a multi-locus model called FarmCPU (Fixed 
and random model Circulating Probability Unification16) with correction of the population structure, both with 
a statistical test p-value threshold of 1%. The Manhattan and quantile–quantile (QQ) plots were plotted using 
the R package rMVP (https​://githu​b.com/xiaol​ei-lab/rMVP). PostGWAS analysis was performed to correct for 
the linkage disequilibrium (LD) using PLINK algorithm22 with the “clump” function and the following options: 
clumb-kb-radius of 15, which represents the genomic range (in kilobases) to identify SNP in LD and clump-r2 
of 0.7, which represents the r-squared threshold to identify correlation between SNPs. All GWAS result files 
were transformed into gwas files (Supplementary Tables S2 to S5) readable in web-application JBrowse17 con-
taining the M. truncatula genome version 5 such as https​://Medic​ago.toulo​use.inra.fr/Mtrun​A17r5​.0-ANR/ or 
in personal desktop genome viewer such as the freely available Integrative Genome Viewer (IGV18, http://softw​
are.broad​insti​tute.org/softw​are/igv/). Over-representation analyses (ORA) of candidate genes were performed 
using ClusterProfiler package available in R using hypergeometrical test (p-values) with a Bonferroni correction 
(q-values)59.

RNA‑seq analysis in major plant organs.  Expression of Medicago transcripts in major plant organs 
was determined from existing experiments. Sequenced short reads (i.e. raw fastq files) were downloaded from 
the Sequencing Read Archive (SRA, https​://www.ncbi.nlm.nih.gov/sra) from different experiments and dif-
ferent Medicago plant organs: nodule (SRX099057), seed pod (including seeds, SRX099058), 4-week blade 
(SRX099059), flower (SRX099061), 4-week root (SRX099062), all root system (SRX2943065, SRX2943064, 
SRX2943063) and all shoot system (SRX2943062, SRX2943058). Raw read files were mapped against the 
Medicago transcriptome version 5 (https​://Medic​ago.toulo​use.inra.fr/Mtrun​A17r5​.0-ANR/) and quantified as 
counts using Salmon algorithm25. Counts were normalized to corresponding library sizes (equivalent to count 
per million, CPM) then length of transcripts (Transcript per million, TPM) and displayed as TPM in our study.

Data availability
All data generated or analyzed during this study are included in this published article (and its supplementary 
information files).
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