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Intensity instability and correlation 
in amplified multimode wave 
mixing
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The dynamics of optical nonlinearity in the presence of gain and feedback can be complex leading to 
chaos in certain regimes. Temporal, spectral, spatial, or polarization instability of optical fields can 
emerge from chaotic response of an optical χ(2) or χ(3) nonlinear medium placed between two cavity 
mirrors or before a single feedback mirror. The complex mode dynamics, high-order correlations, and 
transition to instability in these systems are not well known. We consider a χ(3) medium with amplified 
four-wave mixing process and study noise and correlation between multiple optical modes. Although 
individual modes show intensity instability, we observe relative intensity noise reduction close to the 
standard quantum noise, limited by the camera speed. We observe a relative noise reduction of more 
than 20 dB and fourth-order intensity correlation between four spatial modes. More than 100 distinct 
correlated quadruple modes can be generated using this process.

Nonlinear optical media are being investigated for the generation of quantum optical states in both continuous 
variable and discrete variable regimes. The χ(2) nonlinearity in certain crystals can be used to generate squeezed 
states of light1 and two-photon correlations2 via the parametric down-conversion process. The χ(3) nonlinearity 
can also be used to generate bright or vacuum squeezed states of light in multiple spatial modes3–7.

It is known that nonlinear optical media inside resonators can exhibit instabilities in space and time as a mani-
festation of chaotic response of nonlinearity in presence of feedback. Above some gain threshold, the feedback 
provided by the resonator can lead to a chaotic response or bi-stabilities in some degrees of freedom8–10. The 
χ(3) nonlinearity that emerges from the multi-wave mixing process was previously considered in this context11, 
where temporal and spatial instabilities have been observed for transverse modes. An effective resonator can be 
created from counter-propagating pumps. In this way, the Bragg grating induced by the standing-wave pump12–15, 
supports amplified multi-wave mixing (AMWM) for distinct spatial modes. Above certain gain values, temporal 
and spatial instabilities of the individual Stokes and anti-Stokes modes can be observed10. Although the dynamic 
and dependency on experimental parameters are complex, the mathematical derivation of instability against 
transverse perturbations is straightforward16. Nevertheless, the nature of the dynamic and static instabilities, and 
multimode correlations that appear, despite the intensity instability of individual modes, is not well understood. 
The sensitivity of the process to the initial conditions, size, power etc, can enable investigation of spatial and 
spectral phase transitions17–19 for sensing and optical switching applications in both classical and, in principle, 
quantum regimes.

A counter-propagating pump creates an atomic Bragg reflector while the multi-wave mixing process is pri-
marily amplified for atoms with zero velocity. As the result, Stokes and anti-Stokes photons are generated sym-
metrically with respect to the pump axis (see Fig. 1). We observe that in some detuning regimes, a flower-like 
scattering pattern20 of Stokes and anti-Stokes light emerges with signatures of instability. The instability can 
be static (constant spatial patterns in time) or dynamic (oscillating patterns in time). Although the scattering 
patterns are instable, the Stokes and anti-Stokes modes can still be correlated. Two-mode correlation of this 
kind has been shown using AMWM process in an Na vapor cell11. Here, we study amplified four-wave mixing 
between multiple spatial modes (or AMWM) in Rb vapor and characterize the correlation using single-photon 
Electron-multiplying CCD (EMCCD) cameras. The camera enables us to simultaneously study correlation, noise 
and instability in the counter-propagating modes.

A schematic of the experimental setup is illustrated in Fig. 1. A 10 cm atomic vapor cell containing 85 Rb 
atoms was heated to about 95 ◦ C and enclosed by a magnetic µ-metal shielding. A pump laser beam of wave-
length about 795 nm was retro-reflected to serve as the counter-propagating pump inside the cell. The pump was 
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typically red-detuned from the transition frequency between the lower ground state (52S1/2 , F=2) and the excited 
state (52P1/2 ). The pump detuning from the resonance, � , was typically in the range of 0.6 GHz ≤ �/2π ≤ 1.5 
GHz, generating Stokes and anti-Stokes scattering. The pump beam was collimated to 1/e2 beam diameter of 3.6 
mm with a power in the range of 200–325 µ W. The linearly polarized pump was pulsed with an acousto-optic 
modulator (AOM). The reason for pulsing the pump light as opposed to using continuous pump was to avoid 
artifact in images caused by the camera. Excessive illumination of light during frame-transfer process, which is 
the time between the exposure time of two adjacent frames, induces false bright vertical streaking line on the 
detected image. Two polarization beam splitters (PBS) were used to filter the Raman scattered light from the 
pump. Additional filtering was achieved by Glan-Thompson polarizers and dark-spot spatial filters.

The ring-shaped counter-propagating scattered light was collected from the two ends of the atomic vapor 
cell and then detected using two areas of one EMCCD camera. To have the detection area independent of the 
propagation length, an image of the scattered light was created in the Fourier plane. The EMCCD camera had 
single-photon sensitivity with an active area of 128 × 128 pixels, dark noise 0.02 e/s and exposure time as low as 
10 µ s. Typically in our experiment, about 1000 images of the scattered modes were recorded under the exposure 
time of 10 µ s and an average frame rate of 4 ms.

For long camera exposure times, the scattered ring intensity appeared continuous in space, but for short 
exposure times a periodic pattern in the scattered intensity was observed. We associated the fringes in the scat-
tered intensity captured at low exposure times to the spatial instability of AMWM9,10,20.

We observed that the ring-shaped scattering appeared around three regions of pump detunings divided by the 
two optical transitions of Rb. The scattering signal could not be observed outside these regions. At certain pump 
detunings, the two Raman transitions (between pump and Stokes photons and pump and anti-Stokes photons) 
interfere and the amplification of the anti-Stokes photons occurs. We observed that as the pump frequency was 
tuned away from these resonances, the scattering intensity decreased until the signal was no longer visible. In 
what follows, we set the pump frequency to be red-detuned ( � ≃ 2π × 1 GHz) from F = 2 → F ′ = 2 transition. 
The scattering was observed for a range of ±0.5 GHz around this detuning.

The coherent Raman scattering takes place when the energy and phase matching conditions are satisfied 
for the pump, Stokes and anti-Stokes photons. The energy conservation indicates that the frequency difference 

Figure 1.   (a) Schematic of the experimental setup and images of correlated modes. A retro-reflected pump 
creates a standing wave and thus a Bragg grating inside a 85 Rb vapor cell. Rb atoms interact with counter-
propagating pumps and generate forward- and backward-propagating Stokes and anti-Stokes light, as shown 
by the energy-level structure of 85Rb. Polarization beam splitters (PBS) are used to separate linearly polarized 
pump from the ring-shaped scattered light. The coherently scattered light is imaged in the Fourier plane on an 
EMCCD camera. The images of the forward- and backward-propagating scattered modes are shown as recorded 
with exposure times of 10 µ s and 30 µ s. The bright spots in the middle of the images are due to the pump 
leakage. (b) A χ(3) medium with a single feedback mirror can support amplified four-wave mixing for both 
forward and backward-propagating Stokes and anti-Stokes modes, for which phase matching diagram is shown 
using subscripts (F, S), (B, S), (F, aS), and (B, aS) respectively.
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between the pump light and the scattered light for zero-velocity-class atoms should be equal to the hyperfine 
splitting of the Rb ground-state energy levels, i.e. �hf ∼ ±2π × 3 GHz. This is confirmed by measuring the 
relative frequencies between the pump and different regions of the rings using an etalon filter (see Fig. 2a). It can 
be seen that the relative frequency of the pump and the scattered light is fixed regardless of the pump detuning.

In our case, the amplified scattering gives rise to the emergence of bright ring-shaped images of counter-
propagating light. We experimentally observed that the intensity of the scattering ring changes quadratically with 
the pump power (Fig. 2b). We also note, that no ring-shaped scattering was observed with a single propagating-
wave pump. To satisfy the phase matching condition, the angle of the scattered light in each direction relative 
to the pump’s propagation direction is determined as φ2 ≈ A+ Bδt + Cδt2 , where A,  B,  C are constants and 
δt is the relative delay between the Stokes and anti-Stokes photons caused by the different refractive indices 
experienced by the two photons. The radius of the ring shows the transverse component of the scattered light’s 
momentum, which is directly related to the propagation angle of the scattered signal, φ . The phase matching 
condition can be satisfied for a pair of co-propagating or counter-propagating photons and for a range of modes 
with circular symmetry (different angles, θ , in the transverse plane). As δt varies with the optical density and 
detuning, one can model the ring radius in terms of these experimental parameters. The model agrees well with 
the experimental data shown in Fig. 2b. Different pump frequencies lead to different detunings of Stokes and 
anti-Stokes signals from the corresponding atomic transitions. As the result, the Stokes and anti-Stokes photons 
experience different refractive indices. Decreasing the pump detuning and increasing the temperature leads to 
higher effective optical density and also larger delay, δt.

We also observed that replacing the 10 cm atomic vapor cell with a 1.2 cm cell causes the ring radius to 
increase by a factor of two. This can be explained from the relationship between the ring radius and distance, d, 
between the cell and the feedback mirror16,20. The interference between the counter-propagating beams deter-
mines the size and shape of the scattered light. At the phase matching condition, the transverse wave vector of 
the scattered light is inversely proportional to the square root of the distance d. Using a longer cell increases 
the optical path length and thus the effective distance between the cell and the feedback mirror. Taking the ring 
radius to be approximately inversely proportional to 

√
d + (n− 1)L , where d is around 20 cm, n is the refractive 

index of the cell, and L is the length of the cell, we expect the radius to reduce by a factor of less than 3 when L 
changes from 1.2 to 10 cm. This is in agreement with the observed radius change of factor 2.

The ring-shaped scattering signal, created above the threshold excitation power, exhibits instabilities in space 
and time. The spatial instability is seen as bright and dark fringes around the ring and temporal instability is seen 
as oscillation between the dark and bright points in time. Figure 3a shows the raw data for the ring intensity on 
three pixels of the camera. Points A and B are opposite pixels on forward- and backward-propagating rings that 
shows intensity correlation. Point C on the backward-propagating signal shows intensity anti-correlation with 
the other two pixels. We note that the quantum theory of such bi-stability was previously derived for the case of 
a coherently driven dispersive cavity22. Figure 3b shows the temporal instability where the frequency spectrum of 
the measured AMWM signal is plotted for different pump detunings. The scattered signal with intensity instabil-
ity showing broad continuous power distribution and multiple oscillation frequencies suggests a quasi-periodic 
transition mechanism to instability10.

The spatial instability is seen as non-zero spatial frequency (or number of bright blobs) around the ring. The 
spatial instability can be modeled, to the first order, using Gaussian beam propagation and interference consid-
ering a phase conjugate mirror20. This simple model predicts that the spatial frequency is πkw2/4d , where d is 
the distance between the χ(3) medium and the mirror, w is the beam waist and k is the wavenumber. In addi-
tion, we also observed that the spatial frequency depends on the pump power that we associate to an effective 
angular momentum on the light induced by the polarization rotation inside the cell. The polarization mismatch 

Figure 2.   (a) Frequency spectrum of detected scattering signal for different pump detunings. The frequency 
is measured relative to the pump frequency. Red dashed lines indicate center frequencies of Stokes, pump, and 
anti-Stokes signals. (b) Scattering intensity within the ring region shows quadratic dependency with the pump 
power. Insets show the radius of the ring as a function of the pump detuning and the atomic cell temperature. 
The solid lines in the insets are theoretical fits using R2 ≈ A+ Bδt + Cδt2 . The models used for detuning- and 
temperature-dependency of delay are δt = �/(�2 + b) and δt = 10−T0/T , respectively, where T0 = 4040 K for 
85 Rb atoms21. A,  B,  C,  and b are fitting parameters.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14784  | https://doi.org/10.1038/s41598-022-19051-5

www.nature.com/scientificreports/

of the counter-propagating pump fields (due to polarization self-rotation) induces an angular momentum on 
the standing wave23,24. This angular momentum is transferred to the scattered light resulting in an interference 
pattern along the ring. We observe a linear dependency of the spatial frequency on the pump power (see Fig. 3c), 
which is in agreement with the theory of polarization rotation where the ac-Stark shift changes linearly with 
the optical power.

The refractive index modulation, due to the standing-wave pump, coherently splits the scattering light propa-
gating in opposite directions (i.e. the Bragg effect). Along with co- and counter-propagating four-wave mixing 
directions, this gives rise to the observation of two-mode and four-mode correlations in our system. Below, we 
first calculate the normalized intensity-difference noise of the AMWM signal for multiple spatial modes and 
compare it with the intensity-sum noise of the same two modes.

We evaluated the noise in the intensity difference between different regions of the counter-propagating rings. 
We calculated the intensity-difference noise (or variance) normalized by intensity-sum noise, as a function of the 
relative angles between the rings. Figure 4 summarizes the results of the relative noise measurements between the 
AMWM signal, as a function of relative orientations. We defined the reference angles for each ring, θ1 and θ2 , and 
digitally rotated one ring before subtracting the normalized intensities, to obtain the intensity-difference noise 
between the angular segments of the counter-propagating rings. This is achieved by first centering the two rings, 
and flipping one ring around its symmetry axis to align the correlated pixels of the two rings. By taking variance 
of the subtracted normalized intensity over time-sequenced images, we calculate the noise and normalize it to 
the variance of the intensity sum. To avoid influence of uneven intensity distribution over the rings, intensity of 
each pixel is normalized to temporal mean of that pixel. We can calculate the noise due to the total ring intensity, 
a segment of the ring, or a single pixel. We note that in this process we discard the saturated pixels.

The angular intensity correlation between counter-propagating rings is plotted in Fig. 4a for the relative noise 
in segments (or the entire area) of the rings. Each segment of the forward-propagating ring at an angle θ1 shows 
correlations with multiple segments of the counter-propagating rings centered at the θ2 angle. These correlated 
multiple segments match the periodic patterns of the rings.

Figure 4b shows the relative intensity noise as a function of the analyzed angular segment size. As also shown 
in Fig. 4a, smaller segments have more noise reduction than larger segments in both detunings. A noise reduction 
close to 20 dB is observed at the pump detuning of 1.5 GHz and using a small analyzing segment size.

Figure 4c,d show again the relative intensity noise for all segments (with different angular positions) of the 
forward- and backward-propagating rings at pump detunings of 0.9 GHz and 1.5 GHz, respectively. The seg-
ment size is chosen to be as small as a single pixel size. δθ1,2 is the angular displacement from the segment with 
the highest correlation. In Fig. 4d, the periodic pattern in the relative noise is not observed but there is high 
correlation between two symmetric modes.

To estimate the number of distinct spatial modes that show relative noise reduction with the counter-prop-
agating modes, we calculate the intensity noise for a segment as small as a camera pixel. As shown in the inset 
of Fig. 4d, the intensity noise shows noise reduction over a small range of angles. We take the width of such 
intensity noise curve as the minimum angular width within which a single spatial mode can be defined. The total 
number of modes can then be derived by dividing the circumference of forward and backward rings ( 2× 2π ) 
by the full-width half-maximum of the intensity noise dip ( δθ12 ). In this way, we find the mode capacity of the 
source to be more than 420.

The correlation between two co-propagating or counter-propagating AMWM signals can be calculated using 
covariance normalized to variance values, ρ = Cov(I1, I2)/

√
Var(I1)Var(I2) . To evaluate the spatial correlations 

between different modes, the intensity of each pixel is normalized to the mean intensity of the frame. Figure 5a 
shows the correlation for two sets of co-propagating and counter-propagating modes. Highest correlation is 
observed at zero time (or frame) delay, because the long exposure time and slow frame rate of the EMCCD 
camera can not distinguish the short time delays between Stokes and anti-Stokes photons. The counter-propa-
gating modes show high correlations, while co-propagating modes have small but positive correlations. Different 

Figure 3.   (a) Raw frame-by-frame intensity fluctuation of three camera pixels (A, B, and C pixels) in forward 
and backward directions. Pixels A and B show intensity correlation while pixel C shows anti-correlation. 
(b) Frequency spectrum of a single camera pixel for different pump detuning shows dynamic instability of 
scattering intensity. (c) Spatial frequency of the scattering ring obtained by counting the number of bright spots 
around the ring plotted as a function of pump power that shows linear dependency, in agreement with the 
theory (see text).
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Figure 4.   (a) Relative intensity noise, i.e. variance of the intensity difference relative to the variance of the 
intensity sum, as a function of the angular distance of θ2 − θ1 for 0.9 GHz pump detunings. As shown in the 
inset on the right, angles θ1 and θ2 are angular centers of the analyzed segments for forward- and backward-
propagating scattered light. δθs is the width of the analyzed segment as shown in the right inset in (a). The 
blue (red) data shows relative noise for δθs = 35 ( δθs = 360 ) degrees. Data is fitted with a modulated Gaussian 
function. The inset on the left side shows images of the normalized counter-propagating ring signals. (b) 
Relative intensity noise as a function of analyzing angular segment width, δθs . The blue (red) line shows the 
relative noise when the pump is 0.9 GHz (1.5 GHz) detuned from the lower excited state. (c) and (d) Two-
dimensional plot of relative noise corresponding to detunings of 0.9 GHz and 1.5 GHz pump detunings, 
respectively. δθs in these plots are chosen to be as small as a single camera pixel. Inset on the right side of (d) is a 
diagonal cross-section of correlations fitted with a Gaussian profile.

Figure 5.   (a) Two-point intensity correlation is plotted for two sets of pixels as a function of delay in terms of 
the camera’s frame number. Inset shows EMCCD camera images for forward and backward AMWM signals. 
The bright center region is due to the pump leakage. The pixels indicated as f1, f2 and b1, b2 are two pixels of 
the forward- and backward-propagating AMWM signals and θf /b is the angular positions of these pixels from 
a fixed reference point. (b) Two-point correlations for zero time-delay (same frame) are shown for different 
combinations of four pixels shown in the inset of (a). (c) Four-point intensity correlation function at zero time 
delay, g (4)(0) , is plotted as a function of angle θf  as shown in the inset of (a). Consistent g (4)(0) > 1 is seen for 
many sets of four-pixel sets around the ring.
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absorption rates of Stokes and anti-Stokes photons can explain stronger correlation between counter-propagating 
modes11. When Stokes (anti-Stokes) photons are highly absorbed, only anti-Stokes (Stokes) photons will survive. 
This will lead to loss of correlation for photons propagating in the same direction while counter-propagating 
anti-Stokes (Stokes) photons maintain their correlations. Figure 5b shows the peak correlation value at zero delay 
(same frame) for different sets of forward and backward pixels (at fixed θb/f  ) as shown in the inset of Fig. 5a. All 
pairs show larger-than-zero correlations, and counter-propagating modes show significantly higher correlations. 
We note that the backward image is flipped with respect to the vertical axis due to the geometry of the imaging 
setup. Also the intensity around the ring is asymmetric due to the asymmetric absorption of the Stokes and anti-
Stokes signals11 and the alignment mismatch of the counter-propagating pump beams.

We also evaluate four-point correlations by calculating the 4th-order correlation function, g (4) , for intensities 
of the segments at various angular positions (modes) around the ring. Figure 5c shows the result of g (4)(τ = 0) 
calculation for different angles. A consistent g (4)(τ = 0) > 1 can be seen for all angles when f 1&f 2 and b1&b2 
pixel pairs are uniformly translated around the ring. The correlation drops when the relative angles f 1&f 2 and 
b1&b2 pixel pairs deviates from 0 or π . The fluctuation of g (4)(τ = 0) correlation corresponds to fluctuation 
of relative noise on Fig. 4. Considering the number of modes in the rings, 105 correlated quadruple modes are 
generated from the AMWM process. Classical correlation exists between all the bright spots in a same frame, 
but these quadruple modes show higher correlation. We expect phase matching condition of wave mixing pro-
cess should allow quantum level correlation in these symmetric four mode. There is possibility that quantum 
correlation can exist between more than four modes by having another pair of counter-propagating pumps in 
different angle5.

The noise reduction reported above is relative to the intensity noise of the Stokes and anti-Stokes light. To 
compare the intensity-difference noise with the standard quantum limit (SQL), we split the laser before the cell 
and measure the intensity-difference noise of the coherent laser light for varying power. We also measured the 
intensity-difference noise for the AMWM signal after the cell. The results are shown in Fig. 6a. AMWM noise 
was fitted with a quadratic model and the SQL was fitted with a linear model. We note that the intensity-sum 
noise also shows quadratic dependency with the pump power. This suggests that the intensity-difference noise 
is limited by the integration time of the camera that is much larger than the inverse scattering rate. The AMWM 
signal is relatively bright and each camera frame contains thousands of photons whose noise is averaged before 
subtraction from the corresponding frame of the correlated pixel. At low powers the AMWM noise approaches 
the SQL. A faster camera should enable clear observation of intensity squeezing between multiple modes. We 
note that such intensity squeezing is different from the seeded four-wave mixing25–28 where an incident probe is 
amplified and a correlated conjugate is created. Also, the amplified nature of the multi-wave mixing process ena-
bles observation of bright Stokes and anti-Stokes signals with lower pump powers compared to the spontaneous 
four-wave mixing process29,30. We also observed that the relative noise exponentially decreases with the pump 
frequency within a range of pump detunings (see Fig. 6b). At larger detunings, incoherent Raman scattering and 
re-absorption is reduced leading to less noise. We note that just outside the frequency range plotted in Fig. 6b, 
the scattering ring could not be observed but it reappeared again when the pump frequency reached the next 
detuning window supporting AMWM.

Another factor limiting the degree of correlation is single-photon or two-photon re-absorption of Stokes or 
anti-Stokes photons. This effect can be reduced applying an atomic frequency gradient31. To model the effect of 
the external broadening on re-absorption, we write Maxwell-Bloch equations and solve for Stokes and anti-Stokes 
field in presence of a two-photon detuning gradient31, δ(z) = ηz , along the propagation direction, z. Considering 
a pump light detuning much larger than the excited state linewidth, i.e. � ≫ γ , we can model Stokes ( ES ) and 
anti-Stokes ( EaS ) fields propagation using the following Maxwell equation:
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Figure 6.   (a) Intensity-difference noise fitted with a quadratic model is shown as a function of the optical 
power for two modes of the four-wave mixing signal. The standard quantum limit (SQL) is measured using 
coherent laser beam pairs before the cell, and it is fitted with a linear line. (b) Relative noise as a function of 
pump detuning for δθs = 35 degrees with linear fitting. (c) Normalized intensity and relative noise (inset) of the 
scattered ring signal as a function of the magnetic field gradient. The solid line in the main plot is the theory (see 
the main text) using typical experimental values (e.g. � = 200γ , � = 4γ , γ0 = 0.04γ ), and the solid line in the 
inset is a Lorentzian curve as a guide to the eye.
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where a0 is proportional to the optical density and a11 , a12 , a21 and a22 are effective coupling strengths written in 
terms of pump Rabi frequency, � , detuning � , excited-state decay rate, γ , and decoherence rate, γ031.

To introduce the atomic frequency gradient, we apply a linearly varying Zeeman broadening using a solenoid. 
Figure 6c shows the measured intensity and intensity noise of two modes of the AMWM signal as a function of 
the magnetic field gradient. The intensity drops as the induced field gradient reduces the effective optical density. 
On the other hand, the corresponding reduction in the re-absorption due to the B-field gradient causes enhanced 
scattering and reduced intensity noise at a gradient of about 0.6 MHz/cm, which corresponds to about one γ of 
induced broadening. This agrees with the model for the anti-Stokes intensity, |E∗

aS|2 , plotted using the equation 
above. We also coupled two counter-propagating correlated modes to two single-mode fibers and used single-
photon detectors (SPD) to measure g (2) function. However, we observed that the strong AMWM signal and the 
background pump scattering saturates the SPD, even at the lowest power point in Fig. 6a. At lower powers, the 
amplification and instability could not be observed.

To extract the maximum correlations between different spatial modes, the exposure time of the camera should 
be shorter than the coherence time or the inverse of the Raman scattering bandwidth, whichever is smaller. The 
photons arriving at different times within a single integration time (a single camera frame) are not expected 
to have correlations and they reduce the strength of noise reduction in the measurement. The lack of effective 
noise subtraction is evidenced by quadratic dependency of both intensity-sum and intensity-difference noise as 
a function of mean intensity. Therefore, the correlation measurement described above is an underestimation of 
the maximum correlations that exists in the system. The relatively large exposure time of the camera cannot be 
compensated for by using lower pump powers to reduce the scattering rate. Below the threshold pump power, the 
amplification could not be observed, and also at low scattering rates, the electronic noise of the camera overcomes 
the shot noise. Also, a camera with higher spatial resolution images will allow us to more accurately determine 
the maximum correlation and mode capacity of the source. By using two similar cameras (one for each ring) or 
one camera with higher temporal and spatial resolutions, larger correlations can be extracted from the images.

The study reported here sheds light on some complex mode dynamics, transition to instability, and correla-
tions in driven dispersive nonlinear resonators. The multimode and spatially-distinct nature of the correla-
tions in the AMWM studied here can also find applications in study of phase transition17, multimode optical 
switching18, quantum imaging32,33, and quantum communications7,34 using room-temperature sources. For exam-
ple, by reflecting one beam from an object and detecting both correlated beams on a CCD camera, the intensity 
correlations can be used to measure change in the reflectivity beyond the state-of-the-art classical devices35.

Data availibility
The data used and presented in this study are available upon reasonable request, by the corresponding author.
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