
Frontiers in Immunology | www.frontiersin.

Edited by:
Danielle Ahn,

Columbia University Irving Medical
Center, United States

Reviewed by:
Murugesan Rajaram,

The Ohio State University,
United States

*Correspondence:
Eun-Kyeong Jo

hayoungj@cnu.ac.kr

Specialty section:
This article was submitted to

Microbial Immunology,
a section of the journal

Frontiers in Immunology

Received: 09 December 2021
Accepted: 13 January 2022

Published: 04 February 2022

Citation:
Kim JK, Park E-J and Jo E-K

(2022) Itaconate, Arginine, and
Gamma-Aminobutyric Acid: A

Host Metabolite Triad Protective
Against Mycobacterial Infection.

Front. Immunol. 13:832015.
doi: 10.3389/fimmu.2022.832015

MINI REVIEW
published: 04 February 2022

doi: 10.3389/fimmu.2022.832015
Itaconate, Arginine, and Gamma-
Aminobutyric Acid: A Host Metabolite
Triad Protective Against
Mycobacterial Infection
Jin Kyung Kim1,2, Eun-Jin Park1,2 and Eun-Kyeong Jo1,2*

1 Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea, 2 Infection Control
Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea

Immune metabolic regulation shapes the host-pathogen interaction during infection with
Mycobacterium tuberculosis (Mtb), the pathogen of human tuberculosis (TB). Several
immunometabolites generated by metabolic remodeling in macrophages are implicated in
innate immune protection against Mtb infection by fine-tuning defensive pathways.
Itaconate, produced by the mitochondrial enzyme immunoresponsive gene 1 (IRG1),
has antimicrobial and anti-inflammatory effects, restricting intracellular mycobacterial
growth. L-arginine, a component of the urea cycle, is critical for the synthesis of nitric
oxide (NO) and is implicated in M1-mediated antimycobacterial responses in myeloid cells.
L-citrulline, a by-product of NO production, contributes to host defense and generates L-
arginine in myeloid cells. In arginase 1-expressing cells, L-arginine can be converted into
ornithine, a polyamine precursor that enhances autophagy and antimicrobial protection
against Mtb in Kupffer cells. Gamma-aminobutyric acid (GABA), a metabolite and
neurotransmitter, activate autophagy to induce antimycobacterial host defenses. This
review discusses the recent updates of the functions of the three metabolites in host
protection against mycobacterial infection. Understanding the mechanisms by which
these metabolites promote host defense will facilitate the development of novel host-
directed therapeutics against Mtb and drug-resistant bacteria.
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INTRODUCTION

Metabolites function as innate immune effectors against intracellular bacterial infections, including
Mycobacterium tuberculosis (Mtb), the primary pathogen of human tuberculosis (TB). The roles of
several metabolites have been determined in host defense against Mtb infection. A significant
advance occurred with identifying itaconate, produced by immunoresponsive gene 1 (Irg1)
enzymatic activity, in the growth inhibition of mycobacteria possessing isocitrate lyase (1, 2). A
recent discovery (3, 4) regarding the anti-inflammatory function of itaconate points to a role in
regulating pathological inflammation during Mtb infection. In addition, an earlier study showed
that L-arginine (Arg) metabolism is closely related to bacteriostatic activity in macrophages (5).
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L-Arg consumption, which is accompanied by nitrite/nitrate
production, and L-citrulline exert a fungistatic effect in murine
macrophages (5). When produced by arginase-expressing
macrophages, L-citrulline activates antimycobacterial responses
(6). Ornithine, another metabolite of the L-Arg metabolic
pathway, is mainly produced by Kupffer cells in the liver and
participates in host defense by activating autophagy (7).
Furthermore, g-aminobutyric acid (GABA), a metabolite and
neurotransmitter, activates autophagy to induce innate host
defenses against intracellular bacteria, including mycobacteria
and salmonella (8).

In recent years, several comprehensive studies have indicated
the immunoregulatory functions of these metabolites during
host-pathogen interactions in Mtb infection. Here, we focus on
the roles and mechanisms by which three metabolites—
itaconate, Arg, and GABA—enhance host defenses in
macrophages during Mtb infection. Understanding the
molecular mechanisms by which metabolites modulate host
innate immune pathways will provide therapeutic insight into
emerging diseases and human TB.
OVERVIEW OF IMMUNOMETABOLISM IN
HOST-MTB INFECTIONS

Macrophages are the principal host phagocytes for Mtb at sites of
infection. After phagocytosis by macrophages, Mtb can reside in
the phagosomes and circumvent host immune protection by
resisting phagolysosomal acidification (9–12). Several
macrophage populations are implicated in innate immune
defense and infectious pathogenesis, depending on the context
(4, 11, 13). Macrophages initiate intracellular innate immune
signaling to activate early inflammatory responses following
recognition of Mtb and/or its components via specific pattern-
recognition receptors (10, 12, 14). Macrophages can be
categorized into two major types, i.e., classically activated (M1)
and alternatively activated (M2). M1 macrophages exhibit high
microbicidal activity and produce proinflammatory cytokines
such as tumor necrosis factor (TNF)-a and interleukin (IL)-1b,
and inducible nitric oxide synthase (iNOS). By contrast, M2
macrophages participate in tissue repair and produce IL-10,
tumor growth factor (TGF)-b, and anti-inflammatory
cytokines (15, 16). In addition, macrophages have multiple
antimicrobial pathways linking innate immune signaling to
various effector mechanisms, including cell-autonomous
autophagy pathways. Autophagy activation enhances
phagosomal maturation to promote host defense against
intracellular mycobacterial infection (10, 12, 17–20). Mtb has
multiple strategies for manipulating host innate immune
responses and escaping from autophagy to survive inside
macrophages (10, 12). A deeper understanding of molecular
crosstalks between Mtb and host cells would facilitate the
development of new therapeutic strategies against human TB,
particularly drug-resistant TB.

Macrophages and other immune cells have distinct metabolic
and bioenergetics requirements at different stages of infection
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(21). Studies involving nonhuman primate TB granulomas
showed that M1 polarization is related to a favorable disease
outcome (22). During infection, TB granulomas are the active
sites of host-Mtb interactions, where Mtb develops mechanisms
to resist host protective immunity, and the host localizes the
condition (23–26). The alveolar macrophages representing
bacterial permissiveness are associated with fatty acid b-
oxidation, when compared with glycolytically active interstitial
macrophages (27). Metabolic rewiring and epigenetic
reprogramming are critical for M. bovis bacillus Calmette-
Guérin (BCG)-mediated trained immunity, i.e., long-term
immune response to infection or vaccination (28–30).
Therefore, the orchestrating immunologic and metabolic
responses may determine the outcome of Mtb infection. A
general overview of immune metabolic remodeling profiles and
the underlying mechanisms are reviewed elsewhere (21, 31, 32)
and not discussed here.
ROLE OF ITACONATE DURING
MYCOBACTERIAL INFECTION

Conversion of isocitrate to succinate and glyoxylate by isocitrate
lyase is the first step in the glyoxylate shunt in several bacteria,
including Mtb (33–35), and is involved in Mtb survival during
chronic infection (1, 36). Michelucci et al. showed that itaconic acid
(also known as methylenesuccinic acid), produced by Irg1, restricts
the growth of bacteria harboring isocitrate lyase, such as Mtb and
Salmonella enterica (1). In addition, itaconate and itaconyl-CoA
target methylcitrate lyase in the methylcitrate cycle and B12-
dependent methylmalonyl-CoA mutase, respectively, to restrict
bacterial growth (1, 37). However, a recent report demonstrates
that the Mtb effector Rv2498c, a bifunctional b-hydroxyacyl-CoA
lyase, participates in itaconate dissimilation to confer resistance to
itaconate (38). Notably, the MtbDrv2498c strain shows significantly
attenuated virulence in a mouse low-dose aerosol infection model
(38). Itaconate also has an immunomodulatory function during
infection. Irg1, a mitochondrial enzyme for itaconate synthesis,
promotes antimicrobial immune responses against Mtb infection by
regulating neutrophil-mediated pathological inflammation during
infection (39). Indeed, Irg1 suppresses the production of
proinflammatory cytokines and reactive oxygen species (ROS).
Significantly, treatment of Irg1-/- bone marrow-derived
macrophages with a physiologically relevant dose of itaconate
(0.25 mM) shifts the transcriptional patterns toward wild-type
macrophages (39). Although Irg1-mediated itaconate production
is essential for antimycobacterial responses by regulating excessive
pulmonary inflammation, it is unclear how Irg1 regulates
inflammatory responses in the context of Mtb infection.

Recently, several studies highlighted using the cell-
permeable itaconate derivatives to enhance intracellular delivery.
Lampropoulou et al. showed that exogenous dimethyl itaconate at
physiological doses markedly inhibits S. typhimurium-induced
IL-1b, nitric oxide (NO), but not TNF-a, in macrophages (40).
The underlying mechanisms are intriguing because both NO and
IL-1b are crucial components of antimycobacterial immune
February 2022 | Volume 13 | Article 832015
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responses in murine models (41–44). Itaconate treatment also
increases the extracellular acidification rate and inhibits succinate
dehydrogenase (Sdh), complex II of the mitochondrial electron
transport chain, decreasing mitochondrial respiration
(40). However, it is unclear whether itaconate-mediated
antimycobacterial responses are associated with increased aerobic
glycolysis. Moreover, treatment of human primary macrophages
with TNF-a and IL-6 suppresses the intracellular growth of M.
avium through by-stander effects via inducing expression of IRG1
(45). Although the endogenous itaconate level is low, direct delivery
of itaconate to M. avium phagosomes may contribute to
antimicrobial responses (45) (Figure 1).

To date, the function of itaconate in alveolar macrophages is
unclear, although these cells are the first cells that encounter Mtb
Frontiers in Immunology | www.frontiersin.org 3
in the initiation of infection. Future studies are warranted to
clarify the role of itaconate in alveolar macrophages during Mtb
infection. Recent studies showed that the Irg1 is critically
required to control Brucella infection and that dimethyl
itaconate has an inhibitory effect against Brucella growth (46).
Together, these studies reveal an antimicrobial role for itaconate
during bacterial infections, including mycobacteria. However,
more studies are warranted to clarify the underlying mechanisms
of the itaconate functions of various immune cells, including
alveolar macrophages, in mycobacterial diseases.

In an inflammation model, itaconate participates in metabolic
remodeling in macrophages toward an anti-inflammatory response
by activating nuclear factor erythroid 2–related factor 2 (Nrf2) and
inhibiting transcription factor Ikbx-activating transcription factor 3
FIGURE 1 | The role of itaconate during mycobacterial infection. Itaconate, produced by immunoresponsive gene 1 (IRG1) from cis-aconitate, modulates TCA cycle
by regulating succinate dehydrogenase (SDH, as complex II) activity. Dimethyl itaconate regulates the mRNA expression of inflammatory cytokines in response to
LPS. In addition, dimethyl itaconate inhibits SDH and decreases the production of mitochondrial ROS (mtROS) in LPS-treated macrophages. It suppresses the
expression of NLRP3 and ASC in NLRP3-activating conditions. During Mtb infection, IRG1 and itaconate downregulate inflammatory responses at the transcriptional
level and neutrophil recruitment through inhibiting the production of mtROS and inducible nitric oxide synthase (iNOS). In Mtb, itaconate has an antimicrobial activity
for methyl citrate lyase (MCL) in the methyl citrate cycle (MCC) and isocitrate lyase (ICL) in glyoxylate shunt, enzymes that are needed for Mtb survival. Moreover,
itaconyl-coenzyme A (CoA) targets B12-dependent methylmalonyl-CoA mutase (MCM-B12) to restrict bacterial growth. Mtb effector Rv2498c participates in itaconate
dissimilation to confer resistance to itaconate. During M.avium infection, tumor necrosis factor- a (TNF-a) and interleukin (IL)-6 activate interferon regulatory factor 1
(IRF1)/IRG1 through the autocrine/paracrine signaling pathway. AcCoA, acetyl-coenzyme A; ASC, apoptosis-associated speck-like protein containing a CARD; ATP,
adenosine triphosphate; LPS, lipopolysaccharide; M-CoA, methylmalonyl-coenzyme A; MSU, monosodium urate; NLRP3, NLR family pyrin domain containing 3; S-
CoA, succinyl-coenzyme A; TLR4, toll-like receptor 4.
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inflammatory signaling (47, 48). There are controversial findings
upon the function of Nrf2 in the context of mycobacterial infection.
Nrf2 is critical for host resistance to pulmonaryM. avium complex
infection (49, 50); however, it functions in the antioxidant
transcriptional responses that delay early Mtb clearance (51).
Future studies are needed to address how Nrf2 signaling is
associated with itaconate-mediated protection against
mycobacterial infection. Moreover, either 4-octyl itaconate or
dimethyl itaconate exerts anti-inflammatory effects and inhibits
aerobic glycolysis, thus controlling pathologies related to excessive
inflammation (4, 46, 52, 53). Therefore these itaconate derivatives
may enhance antimycobacterial responses by controlling pathologic
inflammation and immunometabolism during infection. More
work is needed to define the molecular mechanisms by which
endogenous/exogenous itaconate exerts innate host defenses against
mycobacterial diseases.
ROLE OF ARG METABOLISM DURING
MYCOBACTERIAL INFECTION

Arg metabolism promotes antimicrobial responses in myeloid cells
by inducing NO and regulating inflammatory responses (54, 55).
M1 and M2 macrophages catabolize Arg via iNOS and ARG1,
respectively. In M1 macrophages, NO synthesis promotes
proinflammatory and microbicidal activities against intracellular
bacteria (54, 56–58). Although NO plays a critical role in
antimycobacterial effect in murine macrophages, its role in
human macrophages is still debatable (59). In addition to NO,
macrophage anti-Mtb activities induced by L-Arg are dependent, in
part, on aerobic glycolysis (60). Moreover, L-Arg synthesis from L-
citrulline in myeloid cells contributes to host defense against M.
bovis BCG and Mtb H37Rv; deficiency of Ass1 or Asl (to eliminate
L-Arg synthesis from l-citrulline) increasedmycobacterial growth in
macrophages and in vivo (61). In M2 macrophages, ARG1
expression is critical for synthesizing ornithine, proline, and
polyamines, and contributes to wound healing, defense against
parasites, and humoral immunity (54, 57). ARG1 elimination in
macrophages reduces the bacterial load in the lung during Mtb
infection (62). Additionally, Mtb co-infection with helminths such
as Schistosomamansoni increases ARG1 expression inmacrophages
to aggravate lung inflammation and impair anti-Mtb T cell
responses (63). Overall, both iNOS- and ARG1-dependent
pathways in Arg metabolism have opposite roles in host defense
against Mtb infection. The Arg-citrulline metabolic axis may
enhance host control, whereas ARG1-mediated Arg metabolism
leads to inadequate antimicrobial responses during intracellular
bacterial infection.

A recent study has identified a novel antimicrobial function of
ornithine, an amino acid intermediate produced by ARG1 and
ARG2 from Arg metabolism and the urea cycle; and also
converts to synthesize proline, polyamines, and citrulline (64,
65). Thandi et al. showed that ornithine is involved in
antimycobacterial responses in liver macrophages (7). The
authors focused on the liver (7) because of its known role in
suppressing Mtb infection (66). Kupffer cells in the liver restrict
Frontiers in Immunology | www.frontiersin.org 4
the growth of Mtb more efficiently than other macrophages,
including alveolar macrophages, peritoneal macrophages, and
bone marrow-derived macrophages (7). Ornithine promotes
Kupffer cell-induced inhibition of intracellular Mtb replication
by enhancing autophagy and autolysosome accumulation during
Mtb infection (7). Mechanistically, AMP-activated protein
kinase (AMPK) is required for ornithine-induced antibacterial
autophagy in Kupffer cells during Mtb infection (7). In addition
to ornithine, Kupffer cells produce imidazole, which does not
induce autophagy but exerts an antimicrobial effect on Mtb by
inhibiting mycobacterial cytochrome P450 monooxygenases (7)
(Figure 2A). However, the mechanism of how ornithine
phosphorylates AMPK in Mtb-infected Kupffer cells is
unknown. Also, the roles of ornithine and its metabolism at
different stages of mycobacterial infection are unclear. Indeed,
several types of tumors exhibit increased polyamines, ornithine-
related metabolites, leading to transformation and progression
(67, 68). In addition, polyamines suppress the intracellular
uptake of fluoroquinolones in M. bovis BCG and Mtb, thus
causing phenotypic antibiotic resistance (69). A deeper
understanding of the comprehensive molecular mechanisms by
which ornithine, citrulline, and polyamines regulate host
antimicrobial responses against Mtb infection would facilitate
the development of novel strategies to boost host immune
defense against human TB. Targeting the L-Arg-related
metabolic network may enable the development of novel
vaccines and host-directed therapeutics against human TB.

In contrast to Kupffer cells, alveolar macrophages fail to clear
Mtb and facilitate the establishment of Mtb infection through the
upregulation of acetylcholine (7). In addition, alveolar macrophages
produce higher ammonia (NH+

4=NH3), promoting Mtb growth,
compared with Kupffer cells (7). Interestingly, supplementation of
ornithine, imidazole, and atropine (acetylcholine inhibitor)
promotes Mtb clearance in alveolar macrophages (7) (Figure 2B).
It is unclear how acetylcholine results in the suppression of Mtb
clearance. Given the recent findings that acetylcholine and
cholinergic system favor the progression of mycobacterial
infection (70), targeting the non-neuronal cholinergic system in
the lungs may contribute to the development of new therapeutics
against TB.
ROLE OF GABA DURING
MYCOBACTERIAL INFECTION

GABA is an inhibitory neurotransmitter in the central nervous
system and is a metabolite synthesized from glutamic acid by
glutamic acid decarboxylase (71–73). Also, GABA is produced in
peripheral tissues, including the pancreas, pituitary, testes,
gastrointestinal tract, ovaries, placenta, uterus, and adrenal
medulla (74, 75). Moreover, peripheral immune cells express
GABAergic components—such as type A GABA receptors
(GABAAR), G-protein-coupled type B receptors (GABABR),
and GABA transporters—which modulate GABA biological
functions in peripheral tissues and/or cells (76–79). The
peripheral GABAergic system plays an essential role in
February 2022 | Volume 13 | Article 832015

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kim et al. Immunometabolites in Antimycobacterial Defense
autoimmune and inflammatory diseases like type 1 diabetes,
experimental autoimmune encephalomyelitis, collagen-induced
arthritis, and dermatitis (77, 80, 81).

GABA signaling activates antimicrobial responses against
Mtb and M. bovis BCG (8). GABAergic activation via
GABAAR agonists—such as GABA, muscimol, and isoguvacine
hydrochloride— induces antibacterial autophagy and
phagosomal maturation during Mtb infection. However,
GABAergic inhibition suppresses antimicrobial responses
during mycobacterial infection. Mechanistically, GABA-
induced autophagy activation is mediated by intracellular
calcium influx via activation of the AMPK-mediated GABA
type A receptor-associated protein-like 1 (GABARAPL1)
pathway (8) (Figure 2C). Indeed, GABA treatment activates
AMPK-mediated autophagy and GABAAR signaling in intestinal
epithelial cells to inhibit enterotoxigenic Escherichia coli-induced
excessive apoptosis (82). Certainly, AMPK is a crucial metabolic
and autophagic regulator and promotes antimicrobial responses
against Mtb infection (83–86). However, it is unclear how GABA
triggers intracellular calcium influx in peripheral cells to activate
AMPK-autophagy pathways. A recent study suggested a
molecular framework for GABA-induced Ca2+ influx in the
context of parasitic infection and immune cell migration (87).
In myeloid mononuclear phagocytes such as dendritic cells,
glutamate-derived GABA is secreted to trigger GABAAR
signaling, implicated in Na-K-Cl cotransporters and
extracellular Ca2+ influx. The result is phagocyte hypermotility
and dissemination of the coccidian parasites Toxoplasma gondii
and Neospora caninum (87). Further research is required to
Frontiers in Immunology | www.frontiersin.org 5
identify the role of GABA signaling in different cell types in
response to infectious agents.

GABA treatment substantially reduces inflammatory cytokine
production in macrophages and lung tissues from infected mice (8).
The autocrine or paracrine function of GABA is associated with
inhibition of inflammation to ameliorate autoimmune pathologic
responses (88, 89). In addition, GABA administration attenuates
insulin resistance, obesity-induced adipose tissue macrophage
infiltration, and inflammatory responses in subcutaneous inguinal
adipose tissues, at least in part via GABABR signaling (90).
Therefore, GABA signaling pathways can be therapeutic targets
for pathologic inflammation during Mtb infection. By contrast,
GABA-mediated mammalian target of rapamycin (mTOR)
signaling is required for Th17 cell differentiation in the presence
of GABA transporter-2 (SLC6A13) deficiency (91). These data
suggest a pleiotropic function for GABA in regulating
inflammatory responses via downstream signaling molecules.

Mtb co-opts GABA as an immune-escape strategy to favor
intracellular infection. Mtb can adapt to acidic conditions and
oxidative stresses via the GABA shunt pathway to reduce NAD+

and proton levels (92). In addition, Mtb uses lactate and pyruvate
from host cells via multiple metabolic pathways, including the
GABA shunt (35). Given that GABA promotes host protection
against intracellular bacterial infection (8), further research should
investigate the molecular mechanisms underlying GABAergic
defense in host-pathogen interactions during infection. Pavić et
al. revealed thatMsGabP, a putative GABA transport protein from
M. smegmatis and an Mtb homolog, binds GABA and may
outcompete the host GABAergic protective system, providing a
A B C

FIGURE 2 | The role of ornithine and GABA during Mtb infection. (A) In Kupffer cells, ornithine and imidazole are top-scoring metabolites during Mtb infection.
Ornithine restricts Mtb growth by activating the AMPK-mediated autophagy pathway and inhibiting ammonia (NH3). On the other hand, imidazole kills Mtb directly by
inhibiting cytochrome P450 monooxygenases. (B) In alveolar macrophages, ornithine supplementation inhibits NH3 and activates autophagy to restrict Mtb growth.
In addition, acetylcholine is increased in Mtb-infected alveolar macrophages, and atropine, an acetylcholine antagonist, inhibits Mtb survival. (C) GABA induces
intracellular calcium (Ca2+) influx and activates the autophagy pathway through the AMPK-GABARAPL1 pathway. Autophagy can restrict the intracellular survival of
Mtb in bone marrow-derived macrophages (BMDMs). AMPK, AMP-activated protein kinase; FOXO3A, forkhead box O3A; GABAAR, GABA A receptor;
GABARAPL1, GABA type A receptor-associated protein-like 1; mTOR, mammalian target of rapamycin.
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new target for TB drug development (93). A challenging caveat in
developing the immunometabolite-targeted host defensive
strategies is the complicated host-mycobacterial relationship to
compete for the specific metabolites for their purposes during
infection. Further studies are needed to understand better how
metabolic communication between Mtb and host cells impact
disease outcomes during infection.
CONCLUSION

The metabolic interaction between host and mycobacteria is a
critical determinant of infection outcomes. However, it is unclear
how metabolites and their relationships with other metabolic
pathways promote the establishment of chronic infection or
control of mycobacteria. In addition, it remains unclear how
Mtb manipulates host metabolic fluxes and enzymes to escape
immune surveillance and survive intracellularly. The complex
interactions between host cells and pathogens via metabolic and
immune pathways during Mtb infection will be challenging
to unravel.

Itaconate and its derivatives exert bactericidal and immuno-
modulatory effects critical for antimicrobial defense. Citrulline
is a precursor of L-Arg and linked to iNOS-mediated
antimycobacterial responses in immune cells; ornithine induces
autophagy in Kupffer cells. GABA signaling activates autophagy
against intracellular bacteria. Future studies should investigate
how these and other immunometabolites influence antimicrobial
Frontiers in Immunology | www.frontiersin.org 6
host defense and pathological inflammation to facilitate a rational
design for host-directed therapeutics for mycobacterial infection.
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