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Abstract: The flow–sediment relationship is important to understand soil erosion and sediment
transport in severely eroded areas, such as Loess Plateau. Previous research focused on the variation
and driving forces of runoff and sediment at the different scales in a watershed. However, the
variations of the flow–sediment relationship on multispatial scales (slope, subgully, gully, and
watershed scales) and multitemporal scales (annual, flood events, and flood process) were less
focused. Taking the Peijiamao watershed, which includes whole slope runoff plot (0.25 ha, slope
scale), branch gully (6.9 ha, subgully scale), gully (45 ha, gully scale), and watershed (3930 ha,
watershed scale), four different geomorphic units located at the Chinese Loess Plateau, as the research
site, a total of 31 flood events from 1986 to 2008 were investigated, and two flood process data were
recorded across all the four geomorphic units. The results showed that on the annual timescale, the
average sediment transport modulus and runoff depth at four scales exhibited a linear relationship,
with determination coefficients of 0.81, 0.72, 0.74, and 0.77, respectively. At the flood event timescale,
the relationships between sediment transport modulus and runoff depth at the gully and watershed
scales could also be fitted with a linear relationship with high determination coefficients (from 0.77 to
0.99), but the determination coefficient at the slope scale was only 0.37 at the event scale. On the
single rainfall event timescale, the flow–sediment relationship at the slope scale showed a figure-eight
hysteretic pattern while those relationships at larger scales showed an anticlockwise loop hysteretic
pattern. Under the same flow condition, the suspended sediment concentrations during the falling
stage were significantly higher than those during the rising stage. Moreover, the difference was
bigger as the spatial scale increased due to the wash loads in the downstream gullies, which favored
the occurrence of hyper-concentration flow. The results of the study could provide useful insights
into the temporal–spatial scale effects of sediment transport and their internal driving mechanisms at
the watershed scale.

Keywords: flow–sediment relationship; sediment transportation capacity; topographic unit; different
spatial scale; hilly–gully region

1. Introduction

Runoff and sediment variation and influence factors are one of the hot spots in hy-
drological science; the flow–sediment relationship is considered as a fundamental element
to determine sediment dynamics and there have been numerous studies concerning this
topic [1]. Based on the relationship between discharge and suspended sediment con-
centration, the sediment rating curve could be proposed to determine suspended sedi-
ment load [2]. However, the investigation of complicated flow–sediment relationships at
multitemporal–multispatial scales could set a robust base for the prediction of sediment
yield in ungauged basins.
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The frequent soil erosion in the Loess Plateau, which is the most severely eroded area
in China and even in the world, presents quite complicated flow–sediment relationships
which should be urgently quantified [3]. The Loess Plateau covers over 300,000 km2 with
diversified landforms. The hilly–gully region covers more than one third of the whole
Loess Plateau [4]. Catchments in the hilly–gully region of the Loess Plateau display clear
vertical zoning from the top of the slope to the bottom of the valley. The whole slope
profile is divided into the hilly slope, gully slope, and the channel [5] (Figure 1c). The area
connecting the hilly slope, gully, and valley slope is called the hilly–gully system (also
called the whole slope). This symmetric hilly–gully system constitutes the special landform
of the Loess Plateau [5–7]. Previous research revealed that runoff and sediment yield were
highly spatially scale-dependent due to the spatial heterogeneity and non-uniformity [8,9].
Therefore, the flow–sediment relationship may also be spatially scale-dependent and has
been rarely studied [3].
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Separately, on the slope scale, research has revealed the relationship between runoff
and sediment yield in slope gullies of the Loess Plateau. The net erosion of gully slope
exhibits a power function relationship with the inflow from the upper hilly slope [10,11].
When the slope runoff increases, there is greater erosion and sediment yield in the gully
slope system. The net erosion of the gully slope portion exhibits a negative linear correlation
with the sediment concentration; namely, the sediment yield in the gully slope decreases
as the suspended sediment concentration in the slope runoff increases. Furthermore, the
gravity erosion occurring in the gully slope is the main factor causing the violent change of
flow–sediment relationship at the slope scale [12–14].

On the watershed scale, previous studies have focused mainly on the small stream and
tributary scale and have investigated the spatiotemporal changes of runoff and sediment
load and potential flow–sediment relationships [15–19]. Meanwhile, there have been
numerous studies concerning the driving forces and their contributions to the variation of
flow–sediment relationships [20–25]. Different regression models have been developed to
quantify the relationship between suspended sediment concentration and runoff. These
studies presented valuable insights into the changes in sediment regimes induced by
climate change, land use/cover change, and other interventions, such as wildfires and
reservoirs [1]. However, few studies have been carried out regarding the spatiotemporal-
scale changes of the flow–sediment relationship across different geographic units from
slope to watershed in highly eroded regions such as the Loess Plateau.

Thus, in this study, Peijiamao watershed, located in the typical loess hilly and gully
region, was selected as the research area, and the long-term (from 1986 to 2008) observation
data in representative embedded slope–catchment–gully–watershed prototype observation
facilities in the watershed were collected. Based on the hydrometeorological data of
each prototype observation facilities, the flow–sediment relationships at four spatial scales
(whole slope, subgully, gully, and watershed) and three timescales (annual, flood event, and
flood process) for hilly loess areas were examined to better understand the characteristics
of runoff and sediment transportation processes from the slope to gully.

2. Materials and Methods
2.1. Study Area

The study area is located in the first sub-region of the hilly–gully area of the Loess
Plateau (Figure 1). The selected watershed (Peijiamao watershed) is an incised watershed,
embedded with the subwatershed of Qiaogou gully (gully scale), the first branch of Qiaogou
gully (subgully scale), and the entire slope runoff plot of Qiaogou gully (slope scale).
The study region is a natural restoration watershed, and there is essentially no human
disturbance.

Peijiamao watershed is a primary tributary of the Wuding River and a secondary
tributary of the Yellow River. It is located on the left bank of the lower reach of the
Wuding River, and the catchment area measures 39.3 km2. The elevation difference in
the watershed spans 250 m, and the length of the main gully is 11 km. The gully bed
slope gradient is 1.51%, the asymmetry coefficient of the watershed is 0.58, and the gully
density is 2.69 km/km2. Seven rainfall stations and one hydrological station are deployed
in the watershed (watershed scale). Qiaogou catchment is the first-order branch of the
Peijiamao watershed (gully scale), and the watershed measures 0.45 km2. The annual
average precipitation in the catchment is approximately 350 mm. The main gully of the
watershed is 1.4 km long, and the gully channel slope gradient is 2.11%. The gully density
is 5.4 km/km2, and the asymmetry coefficient of the watershed is 0.23. The first branch
of Qiaogou gully catchment (subgully scale) spans 0.069 km2, the gully length is 870 m,
and the gully channel gradient is 4.97%. In the catchment of Qiaogou gully, four rainfall
stations and three hydrological stations are deployed (Figure 1d). The entire-slope runoff
field (slope scale) is located on the left bank slope of the Qiaogou gully catchment, where
the average slope gradient is 32◦18′, the inclined slope length is 117 m, the horizontal slope
length is 98.9 m, and the average width is 25.2 m. The horizontal area of the runoff field
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measures 2492 m2, and the inclined area measures 2948 m2. The terrain characteristics of
the geomorphic units of different spatial scales are shown in Table 1.

Table 1. Description of field runoff plot and gauging watershed.

No. Geomorphic Unit (Scale) Area, km2 Length, km Slope, ◦ Gully
Gradient, % Basin Axis Direction

1 Whole slope (slope) 0.0025 0.177 32.3 - West
2 First branch (subgully) 0.069 0.870 - 4.97% Northwest–southeast
3 Qiaogou gully (gully) 0.45 1.400 - 2.11% North

4 Peijiamao watershed
(watershed) 39.3 11.00 - 1.51% Northeast–southwest

2.2. Prototype Observation Facility

The rainfall stations in the research area were all equipped with automatic rainfall
gauge (DSJ2-type hydro-cone) for recording rainfall dynamic and amounts. Peijiamao
watershed (representing watershed scale), Qiaogou gully (representing gully scale), and
the first branch of Qiaogou gully (representing subgully scale) were instrumented with
triangular weirs for recording runoff and collecting sediment samples. At the outlet of
the entire-slope runoff field (representing slope scale), the triangular measuring tank was
installed. The recorded data included the flow rate and sediment concentration for each
rainfall event, and soil water contents before and after rainfall event were also measured.

2.3. Data Collection and Processing

The data of rainfall, flow rate, and sediment concentration in the whole slope runoff
field, the first branch of Qiaogou gully, Qiaogou gully, and Peijiamao watershed were all
collected from the Suide Soil and Water Conservation Experimental Station of the Yellow
River Conservancy Commission during the period of 1986–2008. For 31 flood events, flow
rate and sediment yield were compared. For two other flood events (Table 2), the detailed
hydrological processes were simultaneously monitored across different spatial scales (all
the four geomorphic units).

Table 2. Rainfall conditions of two flood events.

Floods
Start Time of Rainfall End Time

of Rainfall Rainfall at Each Station Average
Rainfall

Month Day Hour Day Hour Q1 Q2 Q3 Q5

20080918 9 18 16:05 18 18:10 35.9 28.5 30.5 21.6 27.3

20090719 7 19 17:20 20 1:35 49.3 47.8 49.9 49.9 49.2

The major equations used in this study are given as follows:

Wa = ∑365
i=1 Qi × 24× 60 (1)

ha =
Wa

1000× A× 106 (2)

where Wa is annual discharge (m3 a−1); Qi is discharge (m3 s−1) at ith spatial scale dur-
ing measuring time t (second); ha is annual average runoff depth (mm); A is watershed
area (km2).

Sedi = ∑T
0 Qi × SSCi (3)

Seda = ∑365
i=1 SSCi × 24× 60 (4)

SDMa =
Seda

1000× A
(5)
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where Sedi is total sediment yield (kg T−1) at ith spatial scale during the certain timescale
(annual or event); SSCi is sediment concentration (kg m−3) at ith spatial scale at sampling
time; Sedi is the annual sediment yield (kg a−1); SDMa is annual sediment transport
modulus, t km−2.

Furthermore, ArcGIS 9.2 software (Beijing ESRI company, Beijing, China) was used to
interpolate the rainfall map in the Qiaogou catchment. Office 2013 professional (Henan
huichuangjiahe science and Trade Co., Ltd., Zhengzhou, China) was used to process and
analyze the data.

3. Results and Analysis
3.1. Flow–Sediment Relationship at the Annual Timescale

The annual average runoff depth and sediment transport modulus of the different
geomorphic units reflected the total annual runoff and sediment yield at different scales. A
scatter plot of the relationships between the annual runoff depth and sediment transport
modulus of different geomorphic units is illustrated in Figure 2. The correlation analysis
shows that these annual runoff depths and sediment transport moduli were significantly
correlated at the p < 0.01 level. Figure 2 shows that the relationships between the total
amounts of runoff and sediment concentration of the geomorphic units at different spatial
scales could be fairly well fitted with a linear function (p < 0.01). The determination
coefficient (R2) of the functions at the whole slope, Qiaogou subgully, Qiaogou gully, and
Peijiamao watershed were 0.81, 0.72, 0.74, and 0.81, respectively. Moreover, the linear slope
of the flow–sediment relationships of the different geomorphic units ranged from 169–321.
Therefore, the flow–sediment relationship for the slope and watershed scale was generally
similar on the annul timescale, with the slopes higher at small scales than at larger scales.

3.2. Flow–Sediment Relationships at Flood Events Timescale

The linear relationships between runoff depth and sediment transport modulus for
the different geomorphic units across four spatial scales during 31 flood events are plotted
in Figure 3. The difference between the flow–sediment relationship on the slope scale and
watershed scale is relatively large. As the spatial scale increases, the distribution of runoff
depth and sediment transport modulus is more concentrated to the fitted curve, showing
more heterogeneity of sediment transport at small scales. The determination coefficient
increased from 0.37 to 0.99, indicating that as the spatial scale increased, the relationship
between the runoff depth and sediment transport modulus was more robust. It meant that
the larger the basin scale was, the more stable the flow–sediment relationship appeared.
Therefore, on the basin scale, the amount of sediment could be predicted based on the stable
relationships during flood events. Zheng et al. established a linear regression function
between the sediment transport modules and runoff depth in different geomorphic units
based on different periods of historical dataset, and the slopes of the linear regression
between the sediment transport modulus and runoff depth at different scales ranged
between 475 and 803, which indicated that the flow–sediment relationship had similarity at
different scales on flood event scale, with the lowest slope at watershed scale, indicating
stable spatially-averaged low sediment yields at larger scale [26].

Further, the lower determination coefficient was only 0.37 for the runoff plot of the
whole slope, which indicated that on the timescale of flood event, the variation of the
flow–sediment relationship at slope scale was larger than other three scales. Due to the
randomness and uncertainty of the occurrence of gravity erosion at this scale, sediment
yield varied significantly with a given amount of precipitation runoff, which resulted in a
relatively large variation in the flow–sediment relationship.

In order to compare with other studies which focused on the flow–sediment relation-
ship at flood event [27], the discharge–sediment concentration relationship at different
scales (Figure 4) was also illustrated based on a total of 31 flood events during the 23 years.
It is noted that the average discharge and suspended sediment concentration at slope scale
(whole slope plot) was fitted (p < 0.05) by a power function (Figure 4d), while they were
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also significantly fitted (p < 0.01) at larger spatial scales (subgully, gully, and Peijiamao
watershed (Figure 4a–c). Furthermore, as the scale increased, the determination coefficient
of the power function increased. However, when the discharge was greater than a certain
value, the suspended sediment concentration approached a certain constant value. This
pattern was likely related to the fact that hyper-concentrated flows were common in the
loess hilly region [3,5,28,29].
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Figure 2. Relationships between runoff depth and sediment transport modulus of the different
geomorphic units on annual scale. (a) Peijiamao watershed; (b) Qiaogou gully; (c) first branch of
Qiaogou gully (subgully); (d) whole slope. Note: ** significance at the 0.01 level; n = 18.

3.3. Flow–Sediment Relationships’ Evolution at the Single Rainfall Event Timescale

As is illustrated in Figure 4, the relationship of discharge and suspended sediment
concentration varies significantly with spatial scale increasing, which is a prominent feature
of runoff and sediment yield process in loess hilly and gully region [30]. The two floods, on
18 September 2008 and 19 July 2009 (referred to as floods 080918 and 090719), were selected
in this study to show flow–sediment evolution processes during floods and their scale
effects. The event on 18 September 2008 was generated by a rainfall of 27.3 mm with a mean
rainfall intensity of 13.65 mm/h. The rainfall duration is short and the rainfall intensity is
high (Table 2), and the rainfall center occurs in the lower reaches of Qiaogou gully (Figure 5).
The event on 19 July 2009 was generated by a rainfall of 49.2 mm with a mean rainfall
intensity of 7.02 mm/h. The total amount of rainfall is large, but the intensity is lower, and
the rainfall center occurs in the upper reaches of the Qiaogou gully (Figure 5). As there was
no flooding at the Peijiamao outlet station during the two events, only the flow–sediment
relationships in Qiaogou gully were analyzed. Figure 6a,b show the complex hysteresis at
the different spatial scales in Qiaogou gully.
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Figure 3. Relationships between runoff depth and sediment transport modulus on flood event scale.
(a) Peijiamao watershed; (b) Qiaogou gully; (c) first branch of Qiaogou gully (subgully); (d) whole
slope. Note: ** significance at the 0.01 level; * significance at the 0.05 level; n = 31.

The flow–sediment relationship at different spatial scales showed the different hys-
teretic pattern during two events. At slope scale, the flow–sediment relationship exhibits a
figure-eight hysteretic pattern which has two or more loops (Figure 6a). Otherwise, at larger
scales, the flow–sediment relationship showed the anticlockwise hysteretic pattern, which
was characterized by a delayed increase in suspended sediment concentration (Figure 7).
It can be inferred that sediment transported from remote areas entered the outlet stations
when flood peaks elapsed. Furthermore, there is no significant difference in suspended
sediment concentration at the same discharge level in the rising and falling stage of a flood
event for the slope scale. However, for the larger scales, with the increasing of spatial scale,
the lower half of the anticlockwise loop corresponded to the rising stages till discharge
reached peaks and sediment concentration reached peaks, and the upper half corresponded
to the falling stages following the discharge peaks and sediment concentration peaks. Given
a constant discharge, the sediment concentration during the falling stage was significantly
higher than that during the rising stage. The difference between the sediment concentra-
tions during the two stages was greater at larger scales. The second flushes during the two
rainfall events might trigger higher SSC values. The hyper-concentration flow triggered
by gully erosion might contribute to this hysteresis phenomenon. These flow–sediment
relationships confirmed that runoff and sediment production in the loess hilly and gully
region were unique both in temporal and spatial scales [30].
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4. Discussion

In this study, we compared the relationships of SDM–h and SSC–Q on the annual
timescale, multiple events timescale, and the single rainfall event at different spatial scales
across the Peijiamao watershed, which is located in the Loess Plateau. The results show that
the flow–sediment relationships presented distinct scale effects, with more frequent hyper-
concentration flow occurring at larger scales. It is suggested that the local concentration
limit or the maximum transport capacity approached due to the gully erosion which
triggered soil detachment in gullies and can provide sufficient sediment in the Loess
Plateau [31]. When the runoff reached a state with high sediment concentration, its high
sediment-carrying capability could be maintained even by a relatively small flow rate.
Therefore, when the spatial scale was up to the watershed, the flow–sediment relationship
showed spatial invariance both on the annual timescale and the flood event timescale.
These conclusions are consistent with the results of Zheng et al [3]. The results support the
hypothesis of Asselman that flat rating curves should be characteristic for river sections
where easily erodible materials [15], such as weathered materials or loose sedimentary
deposits, are sufficiently available at almost all discharges. However, at the slope scale, it is
difficult to fit the flow–sediment relationship with linear function on multiple flood event
timescales. These phenomena support the hypothesis of Asselman that the watershed
characteristics shaped the sediment rating curves [15]. However, during the single rainfall
event, the different relationships of SSC–Q between slope scale and watershed scale,
along with different hysteretic patterns, further explained that the sediment peak was
induced by hyper-concentration flow mechanism in downstream gullies. The second
flushes during the two rainfall events strengthened the washing load process, which caused
higher SSC concentrations.

For the flow–sediment relationship on the single rainfall event, the spatial and tem-
poral variations can result in changes in the sediment sources and are responsible for
different hysteretic loop patterns [32]. At the slope scale, due to the steep slope, the runoff
generation time and concentration time are very short, and the flood regulation ability is
poor. Furthermore, the upper runoff and sediment from the hilly slope have a great impact
on the soil erosion of the lower gully slope [3]. The scale effect on soil erosion at slope scale
is variable and dynamic [12,33,34]; however, at larger scales, the presence of base flow was
assumed to be responsible for the change of the flow–sediment relationship, which favored
the occurrence of hyper-concentration flow. The influence of upstream sediment-laden
flow on downstream output was limited, and spatial scale effects on sediment-laden flow
decreased with the increasing drainage area, especially for major sediment-producing
events with area-specific sediment yield larger than 300 t/km2 [31,35].

5. Conclusions

Based on the long-term runoff and sediment data during the years of 1986–2008 across
scales from a whole slope runoff plot, for the first branch of Qiaogou (subgully), Qiaogou
gully to Peijiamao watershed, a total of 31 flood events and 2 single rainfall events with
detailed synchronous monitoring of runoff and sediment were selected to analyze the
flow–sediment relationships at the timescales of annual timescale, multiple flood events
timescale, and single rainfall event. The conclusions are as follows:

(1) On the annual timescale, the flow–sediment relationship was stable. The annual
runoff depths and annual sediment transport modulus exhibited linear relationships,
and the determination coefficients ranged from 0.72 to 0.81 (p < 0.01). The differences
between the flow–sediment relationships of different geomorphic units across scales
were not significant (p > 0.05).

(2) On the multiple flood events timescale, the sediment transport modulus and runoff
depth in watershed spatial scale could also be fitted with linear relationships, with
the high determination coefficients from 0.37 to 0.99 (p < 0.05), and the suspended sed-
iment concentration and discharge was fitted by power functions with determination
coefficients greater than 0.22 (p < 0.05), and especially higher (R2 > 0.52, p < 0.01) at
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larger scales. The flow–sediment relationship at the slope scale changed violently due
to the random gravity erosion that happened.

(3) On the single rainfall event timescale, the flow–sediment relationships showed dif-
ferent hysteretic patterns across different spatial scales. The figure-eight hysteretic
pattern was present at the slope scale while the anticlockwise hysteretic pattern was
present at the subgully and gully scales. Furthermore, at a given discharge, the
suspended sediment concentration during the falling stage was higher than that
during the rising stage. Moreover, the difference was bigger as the spatial scale
increased due to the wash load in the gullies, which favored the occurrence of hyper-
concentration flow.

The results of this study could provide useful insight for understanding the flow–
sediment relationship, which can serve as a reference for soil conservation planning in
other similar regions.
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