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Simple Summary: The tumor microenvironment is a dynamic area, with continuous interaction
between tumor cells and their surrounding environment. We aimed to investigate the relationship
between tumor radiomic margin characteristics and prognosis in patients with lung cancer. When
compared to the model with clinical variables only (C-index = 0.738), the model incorporating clinical
variables and radiomic margin characteristics (C-index = 0.753) demonstrated a higher C-index for
predicting overall survival. In the model integrating both clinical variables and radiomic margin
characteristics, convexity, Laplace of Gaussian (LoG) kurtosis 3, and roundness factor were indepen-
dent predictive factors of overall survival. Our study showed that radiomic margin characteristics
helped predict overall survival in patients with lung adenocarcinomas, thus implying that the tumor
margin contains prognostic information.

Abstract: We aimed to investigate the relationship between tumor radiomic margin characteristics
and prognosis in patients with lung cancer. We enrolled 334 patients who underwent complete
resection for lung adenocarcinoma. A quantitative computed tomography analysis was performed,
and 76 radiomic margin characteristics were extracted. The radiomic margin characteristics were
correlated with overall survival. The selected clinical variables and radiomic margin characteristics
were used to calculate a prognostic model with subsequent internal and external validation. Nearly all
of the radiomic margin characteristics showed excellent reproducibility. The least absolute shrinkage
and selection operator (LASSO) method was used to select eight radiomic margin characteristics.
When compared to the model with clinical variables only (C-index = 0.738), the model incorporating
clinical variables and radiomic margin characteristics (C-index = 0.753) demonstrated a higher C-
index for predicting overall survival. In the model integrating both clinical variables and radiomic
margin characteristics, convexity, a Laplace of Gaussian (LoG) kurtosis of 3, and the roundness factor
were each independently predictive of overall survival. In addition, radiomic margin characteristics
were also correlated with the micropapillary subtype, and the sphericity value was able to predict
the presence of the micropapillary subtype. In conclusion, our study showed that radiomic margin
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characteristics helped predict overall survival in patients with lung adenocarcinomas, thus implying
that the tumor margin contains prognostic information.

Keywords: lung neoplasms; adenocarcinoma of lung; prognosis; multi-detector computed tomogra-
phy; tumor microenvironment

1. Introduction

In contrast to a distinct barrier between tumor cells and the surrounding parenchyma,
the tumor margin is an extremely dynamic area composed of immune cells, rich vas-
culature, lymphatics, fibroblasts, pericytes, and adipocytes [1–4]. In other words, the
continuous interaction between tumor cells and these non-tumorous cells creates the tumor
microenvironment (TME) [1,3–5]. Therefore, it has become increasingly clear that the TME
plays a critical role in tumor metastasis and prognosis [1,4,6]. In fact, the past decade
has demonstrated a paradigm shift in cancer treatment from conventional chemotherapy
and radiation therapy to the latest options of angiogenesis-inhibitors and immunotherapy,
which focus on controlling the TME instead of directly targeting the tumor cells [7].

Radiomics is a rapidly emerging field that refers to the analysis of large amounts of
advanced quantitative features extracted from medical images, and has shown potential
in oncology [8–10]. In detail, previous studies exploring the radiomics of lung cancer
have shown associations with prognosis and treatment response [11–13]. However, to our
knowledge, few investigators have pursued radiomics features focusing on the TME [14,15].
In this immune-oncology era of lung cancer, the importance of the TME is now greater than
ever, and conventional radiomics features using the whole tumor may be missing relevant
information located in the environment immediately surrounding the tumor. Therefore,
we developed a number of radiomic features that characterized the tumor margin—in
other words, radiomic margin characteristics. We anticipated that our developed radiomic
margin characteristics would reflect the overall biological process of the TME.

In terms of pathology, many investigators have recognized the importance of the
micropapillary (MP) pattern in lung adenocarcinomas. Regardless of the predominant
subtype, the presence of the MP subtype is known to be a distinct marker for poor survival
in lung adenocarcinomas [16–18]. Nitadori et al. reported a higher risk of recurrence
in patients with early-stage lung cancers with an MP component of 5% or greater, and
suggested that limited resection may be inappropriate for these patients [19]. Furthermore,
some researchers have suggested that patients with tumors of the MP pattern may benefit
from adjuvant chemotherapy after surgical resection [20,21]. Therefore, pre-operative
recognition of the presence of the MP pattern within lung adenocarcinoma may be impor-
tant for optimal surgical planning, and may advance candidate selection for aggressive
post-operative adjuvant therapy.

Therefore, the purpose of this study was two-fold. First, we tested the stability of
our radiomic margin characteristics. Next, we investigated whether our radiomic margin
characteristics had an association with overall survival and the pathologic MP subtype.

2. Materials and Methods
2.1. Patients

Data from July 2003 to August 2011 in the thoracic surgical database were retrospec-
tively reviewed, and we identified all patients that satisfied the following inclusion criteria:
(1) complete surgical resection without neoadjuvant treatment; (2) pre-operative chest
computed tomography (CT) scans within 2 weeks before surgery, and with an axial re-
construction interval ≤2.5 mm; (3) comprehensive histologic subtyping, according to the
International Association for the Study of Lung Cancer (IASLC)/the American Thoracic
Society (ATS)/the European Respiratory Society (ERS) lung adenocarcinoma classification
system; and (4) clinical information that could be obtained from the electronic medical
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records. Among the 339 patients identified, 5 patients were excluded due to indistinct
tumor margins with the surrounding parenchyma, due to combined atelectasis or pneu-
monia. Our final study group included 334 patients (184 men, 150 women; mean age,
60.9 ± 9.96 years; range, 32–86 years) (Figure 1). These patients were part of the cohort
from a previous large radiomics study [22].
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Figure 1. Flow chart of patients, including external validation.

External validation for survival was performed using an independent dataset of 47 pa-
tients with completely resected lung adenocarcinomas. The imaging parameters of the valida-
tion set were comparable to the training set. The CT images of these 47 patients were down-
loaded from the Cancer Genome Atlas database (https://portal.gdc.cancer.gov/) accessed on
10 August 2017 and the Cancer Imaging Archive database (www.cancerimagingarchive.net/)
accessed on 11 August 2017. The radiomic margin characteristics were extracted in the same
way as in the original study group for all patients in the external validation group (Figure 2).
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Figure 2. Comparison of lung adenocarcinoma with well-defined smooth margin (left) and ill-defined
irregular margin (right).

2.2. Pathology Review

For all patients, the entire tumor specimen was placed on a slide at intervals of 10 mm;
thus, a minimum of 3 hematoxylin- and eosin-stained slides were reviewed per patient
(range = 3 to 10 slides/patient) by an experienced lung pathologist. According to the 2011

https://portal.gdc.cancer.gov/
www.cancerimagingarchive.net/
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IASLC/ATS/ERS lung adenocarcinoma classification, histologic subtyping was performed
semi-quantitatively in 5% increments, and the most predominant pattern was identified. In
addition, specifically for the MP pattern, when the MP component constituted ≥1% of the
entire tumor, the tumor was subclassified as being positive for the MP subtype [9,16].

2.3. Features of Radiomic Margin Characteristics

The CT images were obtained with the following parameters: detector collimation,
1.25 or 0.625 mm; 120 kVp; 150–200 mA; and a reconstruction interval of 1–2.5 mm. For
tumor segmentation, using a semi-automated process, two radiologists independently
defined the region of interest (ROI) for the whole tumor on the serial axial conventional CT
images displayed at a lung window setting [22]. From the ROI, 76 quantitative CT radiomics
features characterizing the tumor margin—namely the radiomic margin characteristics—
were extracted. Briefly, the features were classified into four categories: (1) shape features;
(2) histogram features, after applying Laplace of Gaussian (LoG) filters; (3) 2D shape
features; and (4) fractal-based features (fractal dimension, fractal signature dissimilarity
(FSD), and lacunarity). The shape features are the most basic, and define the morphology
of a tumor. The histogram features represent the range and frequency of the tumor pixel
values within the defined lesion ROI. The LoG requires the combination of using a Gaussian
smoothing filter to reduce noise in the CT, and then applying a Laplacian filter to highlight
regions of rapid intensity change; it is therefore often used for edge detection. In this study,
we used multiple scales of 1, 1.5, 2.0, 2.5, 3.0, and 3.5 voxels for the LoG. The 2D shape
features are the roundness factor, eccentricity, and solidity. The fractal-based (box-counting)
features are based on mathematical measurements that reflect the intrinsic shape of a tumor.
The FSD has previously been suggested as a novel image texture analysis technique that
uses the blanket method [23]. Detailed mathematical definitions regarding the adopted
features are given in Table S1 [8,23–25].

2.4. Statistical Analysis

The extracted radiomic margin characteristic values were normalized to be between
0 and 1. To test the reliability of extracted radiomic margin characteristics, the intraclass
correlation coefficient (ICC) values were calculated by two radiologists.

For the prediction of survival, overall survival (OS) was defined as the time interval
between the date of surgical resection and the date of death or last follow-up. The large
number of radiomic margin characteristics was reduced using the least absolute shrinkage
and selection operator (LASSO) method. A comparison between a stepwise multivariate
logistic regression model with clinical features only, and a model integrating both clinical
features and selected radiomic margin characteristics, was performed, with the calculation
of C-indices included. Next, the internal validation of our prediction model was performed
using 10-fold cross-validation. Finally, external validation of our prediction model was
performed in a different study group by using the Cox regression, and time-dependent area
under the curve (AUC) was calculated. Due to the absence of several clinical variables in
the external validation group, which was downloaded from an open data source, external
validation was performed with commonly existing clinical variables and all radiomic
margin characteristics.

For the prediction of the MP subtype, the large number of radiomic margin charac-
teristics was reduced using the LASSO method. Using radiomics features only, a model
predicting the MP pattern was generated using logistic regression and split data validation.

All statistical analyses were performed with Statistical Analysis System (SAS ver-
sion 9.4; SAS Institute, Cary, NC, USA) and R (version 3.3.1; Vienna, Austria; http:
//www.R-project.org/) software (accessed on 23 March 2020). p < 0.05 indicated sta-
tistical significance.

http://www.R-project.org/
http://www.R-project.org/
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3. Results
3.1. Stability of Radiomic Margin Characteristics

As shown in Table 1, the ICC values ranged from 0.607 to 1.000. Nearly all radiomic
margin characteristics demonstrated excellent reproducibility (ICC values 0.8–1.0), and
only two LoG-filtering features demonstrated good reproducibility (ICC values 0.6–0.799).
The median 1 and median 1.5 showed ICC values of 0.607 and 0.792, respectively.

Table 1. Distribution of intraclass correlation coefficient (ICC) values according to the 4 categories. Nearly all radiomic
margin characteristics showed excellent reproducibility.

Category Shape LoG Filtering 2D Shape Fractal-Based

Total number of features in each category 7 63 3 3
Range of ICC 0.904–0.994 0.607–1.000 0.868–0.958 0.935–0.955

Number of features with ICC ≥0.8 7 (100%) 61 (96.8%) 3 (100%) 3 (100%)
Number of features with ICC 0.6–0.799 0 (0%) 2 (3.2%) 0 (0%) 0 (0%)

3.2. Association with Survival

Figure S1 shows the results of the selection of radiomic margin characteristics for the
prediction of OS, using the LASSO method. Among 76 radiomic margin characteristics, the
eight radiomic margin characteristics of convexity, surface to volume ratio, LoG maximum
3, LoG median 3, LoG minimum 3, LoG kurtosis 3, roundness factor, and FSD blanket
were selected. Using these selected radiomic margin characteristics and clinical features, a
model predicting survival was generated, with a C-index value of 0.753 (Table 2). For the
purpose of comparison, another model using only clinical features to predict survival was
generated, with a C-index value of 0.738 (Table 3). The model incorporating both radiomic
margin characteristics and clinical features demonstrated better results.

Table 2. Model integrating clinical features and radiomic margin characteristics for the prediction of
overall survival (C-index: 0.753).

Selected Variables Reference p-Value OR 95% CI

MP (Predominant cell non-solid) 0.022 1.959 1.100–3.490
MP (Predominant cell is solid) 0.010 2.539 1.253–5.148

Moderately differentiated Well-differentiated 0.023 3.946 1.208–12.890
Poorly differentiated Well-differentiated 0.036 4.110 1.098–15.389

Sex Male 0.035 1.669 1.036–2.688
Age <0.001 1.047 1.021–1.073
Size 0.019 1.219 1.034–1.438

Convexity 0.004 0.078 0.013–0.447
LoG Kurtosis 3 0.034 1.085 1.006–1.170

Roundness factor 0.009 2.384 1.246–4.561
Note—OR, odds ratio; CI, confidence interval; MP, micropapillary pattern.

Table 3. Model with clinical variables only for the prediction of overall survival (C-index: 0.738).

Selected Variables Reference p-Value OR 95% CI

MP (Predominant cell non-solid) 0.018 1.985 1.122–3.512
MP (Predominant cell is solid) 0.006 2.730 1.335–5.583

Moderately differentiated Well-differentiated 0.045 3.317 1.026–10.731
Poorly differentiated Well-differentiated 0.074 3.299 0.891–12.214

Sex Male 0.033 1.677 1.043–2.698
Age <0.001 1.048 1.023–1.073
Size 0.004 1.228 1.066–1.414

Note—OR, odds ratio; CI, confidence interval; MP, micropapillary pattern.
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For the internal validation of our survival prediction model using both clinical and
radiomic margin characteristics, a ten-fold cross-validation test was performed and good
results were obtained for predicting OS (p < 0.001).

Figure 3 depicts Kaplan–Meier survival curves stratified by TNM stage, using radiomic
margin characteristics. Only 1 patient had TNM stage 4, and there were 213, 65, and
55 patients at TNM stages 1, 2, and 3, respectively. p-values were 0.01, 0.1, and 0.3 for TNM
stages 1, 2, and 3, respectively.
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Figure 4 displays Kaplan–Meier survival curves stratified by post-operative lymph
node status, using radiomic margin characteristics. p-values were 0.0006, 0.2, and 0.6 for
N0, N1, and N2, respectively.
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3.3. External Validation of Survival

The external validation study group included 47 patients (28 men and 19 women;
the mean age was 68.1 ± 10 years). The mean OS of the external validation group was
10.6 months. Among the 47 patients, 24 (51.1%) patients died (Table S2).

When commonly existing clinical variables in both the training group and the validation
group were used, the survival prediction model demonstrated a C-index of 0.747 (p = 0.025)
(Table S3). Using commonly existing clinical variables and all radiomic margin characteris-
tics, the survival prediction model showed a higher C-index of 0.778 (p = 0.024) (Table S4).
External validation was performed using these two models. The time-dependent AUC
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indicated that the model incorporating clinical variables and radiomic margin characteristics
performed better at predicting an early survival of less than 20 months (Figure S2).

3.4. Association with the MP Pattern

Among our study group of 334 patients, 188 patients (56.3%) did not have the MP
pattern, and 146 patients (43.7%) had the MP pattern present. Thirteen patients had the
MP-predominant subtype. Figure S3 demonstrates the results of the selection of radiomic
margin characteristics for the prediction of the MP pattern using the LASSO method.
Among the radiomic margin characteristics, only sphericity value was selected. Using
logistic regression and split data validation, only the sphericity value was included in the
model for the prediction of the MP pattern, with an AUC of 0.603 (Table 4).

Table 4. The result of logistic regression and split data validation for predicting the micropapillary
subtype (area under the curve (AUC): 0.603, 97% CI: 0.489–0.716).

Variable p-Value OR 95% CI

(Intercept) 0.059
Sphericity value 0.033 0.071 0.006–0.813

Note—OR, odds ratio; CI, confidence interval.

Table S5 shows the percentages of the MP subtype according to the predominant
subtype of lung adenocarcinoma. The solid-predominant subtype demonstrated the low-
est percentage (6.9%) of the coexisting MP subtype. The acinar- (51.7%) and papillary-
predominant (66.7%) subtypes had a higher proportion of the coexisting MP subtype.

4. Discussion

The TME is a natural extension of the tumor peripheral area, and includes a variety of
tumor-reprogrammed stromal cells [26]. Many investigations have explored the TME to
reveal the secrets of tumor progression and discover advanced biomarkers for therapeutic
modulation. However, despite the abundant radiomics literature in the field of lung cancer,
radiomics investigations of the TME area are relatively scarce [14,15]. We believe that the
present study is unique because our radiomic margin characteristics were able to portray
the complex TME and reflect the pathologic spatial distribution of the MP subtype in
lung adenocarcinomas.

In terms of survival, the C-index values were higher for a model integrating both
clinical features and radiomic margin characteristics, compared to those of a model with
clinical features only, suggesting that combining clinical and imaging parameters may
enhance our knowledge of lung adenocarcinomas. Although the difference may seem
small, we acknowledge this as an important small step indicating that radiomics indeed
improves our knowledge in the field of lung cancer.

In the model integrating both clinical features and radiomic margin characteristics, the
three marginal radiomics features, convexity, roundness factor, and LoG kurtosis 3, were
independent predictive factors of OS (Figure 5). Convexity quantifies the shape variation in
the tumor border; thus, a lower value of convexity represents a more irregular tumor. The
roundness factor determines the circularity of a 2D tumor based on its area and perimeter.
In the present study, a lower convexity value and a lower roundness factor were associated
with worse survival. When compared to a smooth peripheral margin on the CT scan, the
spiculated and lobulated margins generally reflect the extension and infiltration of tumor
tissues into adjacent lung parenchyma—implying the uneven growth rate in a tumor—and
are known to be negative predictors of patient survival [27–29]. In current clinical practice,
these traditional qualitative (semantic) features of lobulation and spiculation have shown
significant associations with clinical endpoints, including OS; yet, intra-observer and inter-
observer variability remains a major problem of semantic features [27,30,31]. According
to Yip et al., the binary or categorical scales employed to rate sematic features may be
insufficient to describe subtle tumor characteristics. In contrast, radiomics features have
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values that are on a continuous scale, which can provide greater detail for changes in tumor
characteristics [15]. Therefore, the novelty of our study is that we succeeded in the objective
quantification of the tumor margin characteristics through our developed radiomic margin
characteristics, and we correlated them with OS.
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Figure 5. Representative radiomic margin characteristics were extracted from the tumor region of
interest and compared between two patients with lung adenocarcinoma. Compared to patient #1, pa-
tient #2 demonstrates lower convexity, higher kurtosis, and lower roundness factor values, suggesting
worse survival.

In addition, higher kurtosis after applying the LoG spatial filter with coarse texture
(scale of 3.0) was associated with worse survival in the present study. Kurtosis, the
peakedness of the distribution of pixel values, is increased by intensity variations in the
highlighted objects [32]. Many factors in the TME may lead to increased kurtosis, including
our speculation of increased micro-vessels and a large amount of immune cells in the TME.
It is well-known that angiogenesis is fundamental to tumor growth, and increases the
opportunity for cancer cells to enter the bloodstream, along with increasing the chance of
metastasis [33]. Meert et al. conducted a meta-analysis, and reported that pathologic micro-
vessel count reflected angiogenesis, and was a poor prognostic factor for survival in patients
with lung cancer [34]. Similarly, Parra et al. reported that tumor-associated inflammatory
cells were more prominent in the peritumoral region compared to the intratumoral area,
and were associated with prognosis [35].

Interestingly, when stratified according to the TNM stages, a trend of better survival
discrimination was observed in early-stage patients, and radiomic margin characteristics
showed the best clinical utility in TNM stage 1 patients. Furthermore, when stratified
by post-operative lymph node status, radiomic margin characteristics showed the best
performance in N0 patients. These results suggest that radiomics may help in determining
patients with higher risks—even in early-stage lung adenocarcinomas.
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Histologically, the MP pattern is defined as tumor cells growing in papillary struc-
tures, with tufts lacking a central fibrovascular core and floating in alveolar spaces, thus
attributing to a more invasive and metastatic behavior [36]. Miyoshi et al. reported that the
MP pattern demonstrates disruption of the cell-to-cell adhesion complex, which can act as
a basis for its invasive spread [37]. In addition, the spread through air spaces, which refers
to the MP cells spreading within air spaces beyond the edge of the main tumor, has also
been recognized as a pattern of invasion in lung cancer [38–40]. Thus, we correlated our
radiomic margin characteristics with the MP subtype, and by using the LASSO method,
the only radiomic margin characteristic selected was sphericity. Using logistic regression
and split data validation, only the sphericity value remained in the model. The sphericity
value represents the overall spherical shape of a tumor, and a less spherical shape was
associated with the presence of the MP subtype in the present study. Although there are
few studies, the MP subtype has been reported to be more commonly seen scattered at the
periphery, rather than at the center of the tumor [6,41]. Our radiomic margin characteristic
of sphericity may reflect this spatial distribution of the MP subtype.

Last, an important hurdle in developing the clinical application of radiomics features
is reproducibility. In our study, with regard to ICC values, we found that our developed
radiomic margin characteristics demonstrated excellent reproducibility. The description
of radiomics analysis differs substantially among published studies, and any identifica-
tion of reliable or relevant quantitative information for tumor characterization must be
reproducible.

Our study had several limitations. First, the external validation group was rather small,
and was downloaded from open-access databases, including medical images collected from
all over the world. Thus, the CT image datasets are extremely heterogeneous, and these
variabilities may have weakened the statistical power of our external validation group.
In addition, some clinical variables and whole-tumor histologic subtyping data were not
available from the open-access database; thus, we could not perform external validation for
the prediction of the MP subtype, and only performed external validation using commonly
existing clinical variables for OS. Furthermore, there was a considerable survival difference
between the training group and the validation set. To be specific, among the 334 patients of
the training group, there were only 10 deaths during the first year. In contrast, during the
same period of one year, there were 17 deaths among the 47 patients in the validation set.
Second, five patients were excluded, as the tumor margins were obscured due to combined
atelectasis and obstructing pneumonia surrounding the tumor. Accurate tumor margin
delineation is mandatory for the extraction of radiomic margin characteristics reflecting the
TME. Therefore, future investigations regarding tumor boundary segmentation methods
may enhance the accuracy and quality of the extracted radiomic margin characteristics.
Third, variations in CT slice reconstruction in the training set may have affected radiomic
analysis. We tried to minimize this by excluding patients with CT images reconstructed
at larger than 2.5 mm slice thickness. Fourth, although we provided speculations about
the significant radiomics features, the exact biological, pathological interpretation is rather
limited and beyond the scope of this study. Fifth, we did not compare our radiomics
features with subjective scores rated by radiologists. Lastly, deep learning methods can
extract relevant imaging features aside from the current approach of radiomics. Due to the
limited samples in the medical imaging field, we could fine-tune pre-trained convolutional
neural network models derived from natural or medical images, and use the flattened
intermediate feature maps as the imaging features. We plan to adopt such approaches in
the future.

5. Conclusions

In conclusion, our developed radiomic margin characteristics showed good repro-
ducibility, and were correlated with OS and the MP subtype. We suggest that this study
provides a radiomics basis for understanding the TME, and that it could potentially be
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used as an imaging-based prognostic biomarker in lung adenocarcinomas to promote
related research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13071676/s1, Figure S1: Selection of radiomics features for the prediction of overall
survival using the LASSO logistic regression model, Figure S2: (A) Survival curves of the validation
group stratified by the median of predicted survival according to the model incorporating both
clinical variables and radiomics features; (B) Time-dependent AUC demonstrates that the model
incorporating clinical variables and radiomics features showed better performance for predicting
early survival of less than 20 months, Figure S3: Selection of radiomics features for the prediction
of the MP subtype using the LASSO logistic regression model, Table S1: Definition of extracted
radiomic features, Table S2: Patient characteristics of the thoracic surgical database and external
validation group, Table S3: Model only using commonly existing clinical variables for the prediction
of overall survival (C-index: 0.747) for external validation, Table S4: Model using commonly existing
clinical variables and all radiomics features for the prediction of overall survival (C-index: 0.778) for
external validation, Table S5: Percentages of MP subtype according to the predominant subtype of
lung adenocarcinoma.
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