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Most perceptual decisions rely on the active acquisition of evidence from the environment involving stimulation from multiple senses.
However, our understanding of the neural mechanisms underlying this process is limited. Crucially, it remains elusive how different
sensory representations interact in the formation of perceptual decisions. To answer these questions, we used an active sensing para-
digm coupled with neuroimaging, multivariate analysis, and computational modeling to probe how the human brain processes multi-
sensory information to make perceptual judgments. Participants of both sexes actively sensed to discriminate two texture stimuli
using visual (V) or haptic (H) information or the two sensory cues together (VH). Crucially, information acquisition was under the
participants’ control, who could choose where to sample information from and for how long on each trial. To understand the neural
underpinnings of this process, we first characterized where and when active sensory experience (movement patterns) is encoded in
human brain activity (EEG) in the three sensory conditions. Then, to offer a neurocomputational account of active multisensory deci-
sion formation, we used these neural representations of active sensing to inform a drift diffusion model of decision-making behavior.
This revealed a multisensory enhancement of the neural representation of active sensing, which led to faster and more accurate multi-
sensory decisions. We then dissected the interactions between the V, H, and VH representations using a novel information-theoretic
methodology. Ultimately, we identified a synergistic neural interaction between the two unisensory (V, H) representations over contra-
lateral somatosensory and motor locations that predicted multisensory (VH) decision-making performance.

Key words: active sensing; drift diffusion model; EEG; multisensory processing; partial information decomposition; per-
ceptual decision-making

Significance Statement

In real-world settings, perceptual decisions are made during active behaviors, such as crossing the road on a rainy night, and
include information from different senses (e.g., car lights, slippery ground). Critically, it remains largely unknown how sensory
evidence is combined and translated into perceptual decisions in such active scenarios. Here we address this knowledge gap. First,
we show that the simultaneous exploration of information across senses (multi-sensing) enhances the neural encoding of active
sensing movements. Second, the neural representation of active sensing modulates the evidence available for decision; and impor-
tantly, multi-sensing yields faster evidence accumulation. Finally, we identify a cross-modal interaction in the human brain that
correlates with multisensory performance, constituting a putative neural mechanism for forging active multisensory perception.

Introduction
In our daily lives, we make judgments based on noisy or incomplete
information that we gather from our environment (Heekeren et al.,
2004; Juavinett et al., 2018; Najafi and Churchland, 2018), usually
including stimuli from multiple senses (Angelaki et al., 2009;
Chandrasekaran, 2017). The acquired sensory information crucially
depends on our actions — what we see, hear, and touch is influ-
enced by our movements — a process known as active sensing
(Schroeder et al., 2010; Yang et al., 2016b). For example, imagine
attempting to cross the road on a rainy night. You need to interact
with the environment, that is, turn your head and move your eyes,
and process the incoming stimuli (e.g., car lights, slippery ground)
to decide whether and when it is safe to do so. If you feel the road is
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slippery, you may need to monitor your steps and at the same time
you may have to walk faster or step back if a car is approaching.

This example indicates that in real-world settings most per-
ceptual decisions are made during active behaviors (Musall et al.,
2019). The quality of the acquired evidence is driven by such
active behaviors, which, in turn, affect the efficiency of the per-
ceptual decisions that we make as a result of this active sensing
process (Yang et al., 2016a; Gottlieb and Oudeyer, 2018). A first
crucial element of fast and accurate perceptual decisions is the
combination of evidence from different sensory streams (e.g.,
sight and touch) to form a unified percept and reduce uncer-
tainty about the stimulus (Ernst and Banks, 2002). However,
while there is extensive evidence that the integration of informa-
tion from different sensory modalities improves perceptual
choice accuracy (Lewis and Noppeney, 2010; Raposo et al., 2012)
and response time (RT) (Drugowitsch et al., 2014), multisensory
information processing has not been studied in an active sce-
nario, where human participants are allowed to implement their
own strategy for gathering evidence, as is the case in real-life
settings.

Here we addressed this gap in the literature aiming to
uncover the neural mechanisms underlying the formation of per-
ceptual decisions via the active acquisition and processing of
multisensory information. To achieve this, we capitalized on our
previous work probing the neural correlates of active tactile deci-
sions (Delis et al., 2018) and extended it to a multisensory setting
that includes visual and haptic information presented simultane-
ously or separately. We hypothesized that the neural encoding of
active sensory experience would be enhanced when multisensory
information was available and that this neural multisensory gain
would lead to improvements in decision-making performance.

An important aspect of our study is that the participants had
full control of the evolution and duration of each trial. In other
words, they could choose how much information to sample,
where to sample this information from and for how long. Thus,
we first aimed to characterize cortical coupling to continuous
active sensing and then combined this with a popular sequential-
sampling model of decision-making, the drift diffusion model
(DDM) (Ratcliff and McKoon, 2008), to understand how the
identified representations of active sensing behaviors influence
decisions in the human brain. Here, to bridge the gap between
active evidence acquisition and decision formation, we used the
neural correlates of active (multi-)sensing to constrain the DDM.

Finally, to quantify cross-modal interactions in the brain, we
applied a novel information-theoretic framework named partial
information decomposition (PID) (Williams and Beer, 2010;
Timme et al., 2014; Ince, 2017). PID quantifies the contribution
of (1) each sensory modality and (2) cross-modal representa-
tional interactions (“redundant” or “synergistic”) to the multi-
sensory neural representation (Park et al., 2018). Redundancy
measures the similarity of the neural representation of the two
modalities, while synergy indicates a better prediction of the neu-
ral response from both modalities simultaneously. Ultimately,
this approach revealed the interactions between representations
of different sensing modalities in the brain and shed light onto
their role in decision-making behavior.

Materials and Methods
Experimental design and paradigm. Fourteen healthy right-handed

participants (8 female, aged 246 2 years) performed a two-alternative
forced choice discrimination task during which they had to compare the
amplitudes of two sinusoidal stimuli of the same frequency. All

experimental procedures have been reviewed and approved by the
Institutional Review Board at Columbia University.

To generate visual and tactile stimuli that can be actively sensed, we
used a haptic device called a Pantograph (Campion et al., 2005), which
can be controlled to generate the sensation of exploring real surfaces
(Fig. 1A). The Pantograph is a two-dimensional force-feedback device,
that is, (1) it produces a 2D tactile output and (2) it simultaneously
measures 2D information about the finger position and applied force.
Here we used its first property to generate stimulation and the second
property to record the kinematics of the movements performed by the
participants while they actively explored the presented stimuli. In partic-
ular, we split the workspace of the Pantograph (of dimensions 110 mm
� 60 mm) into two subspaces (left [L] and right [R], 55 mm � 60 mm
each) and generated continuous sinusoidal stimuli of different ampli-
tudes (but same wavelength of 10 mm) in the two subspaces (Fig. 1B).
Then, we instructed the participants to discriminate the amplitude of the
two subspaces as quickly and as accurately as possible (1) using only vis-
ual (V) information, (2) using only haptic (H) information, and (3) com-
bining the two sensory cues (VH). Crucially for our investigation here,
participants were free to choose how to explore this virtual texture, that
is, where and how fast to move their fingers and how long to explore
each one of the two sides for before making their perceptual choice.
Participants placed their right index finger on the interface plate of the
Pantograph (Fig. 1A) and moved it freely to explore the textures of both
subspaces (Fig. 1C) before reporting their choice (i.e., which amplitude
is higher) by pressing one of two buttons on a keyboard (left or right
arrow) using their left hand.

Specifically, in the H condition, the Pantograph produced sinusoidal
forces of different intensity between L and R. When the participants
placed their index fingers on the plate (interface) of the Pantograph,
these forces at the interface had the effect of causing fingertip deforma-
tions and thus tactile sensations that resembled exploring real surfaces.
Thus, when moving their finger on the Pantograph, participants had the
sensation of touching a rough surface (with different amplitudes
between L and R; see Fig. 1B, middle). In the V condition, stimuli match-
ing the tactile stimuli were presented on a screen of the same dimen-
sions. More precisely, amplitudes of the sinusoidal virtual texture in H
were translated into contrast levels of sinusoidal gratings in V; that is,
the participants were seeing black and white stripes of different inten-
sity/contrast between L and R. Presentation of visual stimuli was gener-
ated using Psychtoolbox, and visual contrast varied between 0.5 and 1.5
around the default contrast value. The visual angle was 12 6 6°.
Stimulus presentation was controlled by a real-time hardware system
(MATLAB XPCTarget) to minimize asynchrony, which was ,1 ms.
Importantly, to match the sense of touch, only the part of the workspace
corresponding to the participant’s finger location was revealed on the
screen (i.e., a moving dot following the participant’s finger; see Fig. 1B,
left). Thus, in the V condition, grayscale visual textures (of different con-
trast between L and R) were shown wherever the participants moved
their fingers while no forces were applied to the participants’ fingers (i.e.,
no H stimulation). Hence, in both sensory domains, participants could
only sense the presented stimulus via active exploration (i.e., finger
movements on the x axis). Accordingly, in the VH condition, both the
visual and haptic textures were congruently presented and sensed by the
participants using finger movements (Fig. 1B, right). Overall, partici-
pants had to decide whether L or R had higher amplitude based on their
haptic (in H trials), visual (in V trials), or visuo-haptic (in VH trials) per-
ception of this virtual surface. Participants reported that they perceived
the V and H signals as one stimulus in the VH condition.

The amplitude difference between L and R (representing the diffi-
culty of the task) varied from trial to trial. On each trial, participants
compared between the reference amplitude 1 (presented either on the
left or right subspace) and 1 of 6 other amplitude levels (0.5, 0.75, 0.9,
1.1, 1.25, 1.5). Each trial was initiated by the participant. Trial onset was
considered the time point at which horizontal finger velocity exceeded 0.
Trial duration was determined by the participant and lasted for the
whole period during which the participant made exploratory movements
to sense the surface. The trial ended when the participant pressed the ,
or . key on the keyboard with their left hand to indicate their L or R
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choice. Each participant performed 20 trials for each amplitude level and
for each sensory condition (V, H, VH), resulting in K=20 trials � 6
amplitudes � 3 conditions = 360 trials in total. One participant showed
poor behavioral performance (accuracy was not significantly different
from chance level), and another participant’s EEG recordings were sig-
nificantly contaminated with eye movement artifacts; thus, data from
these 2 participants were removed from any subsequent analyses. We
report results from the remaining N= 12 participants. We also discarded
trials in which participants did not respond within 10 s from trial onset
or their RTs were shorter than 0.3 s. This resulted in the rejection of
4.9% of the trials.

Data recording and preprocessing. During performance of the task,
we measured (1) the choice accuracy and RT of participants’ responses,
(2) movement kinematics (x, y coordinates of finger position recorded
by the Pantograph) at a sampling frequency of 1000Hz, and (3) EEG sig-
nals at 2048 sampling frequency using a Biosemi EEG system
(ActiveTwo AD-box, 64 Ag-AgCl active electrodes, 10-10 montage).

To compare accuracies and RTs across sensory conditions, we used
two-way ANOVAs with factors condition and stimulus difference fol-
lowed by Bonferroni-corrected post hoc t tests. We also fit psychometric
curves to the accuracy data of each participant using a cumulative
Gaussian distribution and computed the point of subjective equality
(PSE) and slope of the curve at the PSE.

Single-trial movement velocity waveforms were computed using the
derivatives of the recorded position. EEG recordings were preprocessed
using EEGLab (Delorme and Makeig, 2004) as follows. EEG signals were
first downsampled to 1000Hz to match movement kinematics and dy-
namics. Then, they were bandpass filtered to 1-50 Hz using a Hamming
windowed FIR filter. To isolate the purely neural component of the EEG
data, we used the following procedure: we first reduced the dimensional-
ity of the EEG data by reconstituting the data using only the top 32 prin-
cipal components derived from principal component analysis. Although
we record from 64 channels, we expect our recordings to span a

considerably lower-dimensional space (as a result of correlations, cross-
talk, and common sources); thus, to enhance the ability of independent
component analysis to identify truly independent components, we
reduce the data dimensions to half using principal component analysis.
Thereafter, an independent component analysis decomposition of the
data was performed using the Infomax algorithm (Bell and Sejnowski,
1995). We then used an independent component analysis-based artifact
removal algorithm called MARA (Winkler et al., 2011) to remove inde-
pendent components attributed to blinks, horizontal eye movements,
muscular activity (EMG), and any loose or highly noisy electrodes.
MARA assigned each independent component a probability of being an
artifact; we removed components with probabilities.0.5.

Decoding finger kinematics from EEG signals. To assess the neural
encoding of the participants’ active sensory experience in the three sen-
sory conditions, we used a multivariate linear regression analysis intro-
duced by Di Liberto et al. (2015) and shown in Equation 1 below. As in
our previous work (Delis et al., 2018), we hypothesized that the sensori-
motor strategy used by the participant can be represented by the velocity
profiles of the participant’s exploratory movements, which capture
changes of movement direction as well as speed changes. Thus, as kinematic
feature representing the active sensing behavior, we used 1 d finger velocity
on the x axis (capturing L-R finger movements), but also finger position (on
the x axis) yielded qualitatively very similar results. Finger movement in the
y axis (which did not provide any sensory information) did not show any
significant correlation with the EEG signals and was not considered further.
We thus performed a multivariate ridge regression (Crosse et al., 2016) pre-
dicting the 1 d finger velocity (on the x axis) from the EEG data.
Specifically, our decoding analysis aimed to reconstruct the movement ve-
locity from a linear combination of the EEG recordings with time lags rang-
ing between –200 and 400ms with respect to the instantaneous velocity
values. Specifically, we aimed to decode the velocity profile s(t) of the partic-
ipants’ scanning movements from the simultaneously recorded EEG signals
m(i,t), as follows:

Figure 1. Experimental design and behavioral results. A, The Pantograph is a haptic device used to render virtual surfaces that can be actively sensed. Top, The parts of the Pantograph
shown from a lateral view. Participants placed their index finger on the interface plate. Bottom, The Pantograph device used in this experiment. B, The stimulus in the three sensory conditions.
We programmed the Pantograph to generate a virtual grating texture. The workspace was split into two subspaces (L and R) that differed in the amplitude of the virtual surface that the partic-
ipants actively sensed. One of the two sides (randomly assigned) had the reference amplitude (equal to 1), and the other had the comparison amplitude that varied on each trial taking one of
the values: 0.5, 0.75, 0.9, 1.1, 1.25, and 1.5. Participants performed the task using V, H, or VH. Amplitude of the stimulus in the haptic domain (H) was translated as contrast in the visual do-
main (V). Crucially, to match the H condition, only a moving dot following the participant’s finger was revealed on the screen in V. C, Index finger trajectory indicating the scanning pattern of
the virtual texture in one trial. On this trial, the participant actively sensed the left subspace first, then moved to the right subspace and explored it before coming back to the left subspace
again and reporting their choice. D, Psychometric curves indicating the percentage of nonreference choices for all three sensory conditions (blue represents V; green represents H; red represents
VH) and for all stimulus differences. Large dots represent average percentage of choices across participants. Smaller dots represent individual participant means. Data are fit using cumulative
Gaussian functions. E, Cumulative distributions (CDF) of RTs for all three sensory conditions (blue represents V; green represents H; red represents VH) across all trials of all participants. Thick
lines indicate CDFs across all participant data. Thin lines indicate individual participant CDFs for each sensory condition.
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ŝðtÞ ffi
X

t

X

i

gðt ; iÞmðt1 t ; iÞ (1)

where ŝðtÞ is the reconstructed finger velocity and, g(i, t ) is a filter that
integrates information spatially across EEG channels i and temporally
across time lags t to decode the velocity profile from the EEG record-
ings. Here we used t [ [–200ms, 400ms]; that is, we examined the EEG
information about the finger velocity at time t from t –200ms (200ms
earlier) up to t 400 ms (400ms later). Varying these lags did not improve
reconstruction performance and yielded qualitatively similar results with
the main effects always in the [–200 ms, 400 ms] temporal window, so
we used this window for all our further analyses. To learn the decoding
filters and compute the velocity approximation accuracy (r2) between
the original and the reconstructed velocity profiles, we used the multi-
variate temporal response function MATLAB Toolbox implementing
regularized linear (ridge) regression (Crosse et al., 2016). In all our filter
estimations, we used a cross-validation procedure. We first randomly
split our data into two sets: a training set (80% of the trials) to learn the
filters and a test set (the remaining 20% of the trials) to apply the filters
to and compute the reported r2 values. In the training set, we performed
fivefold cross-validation to identify the optimal value of the ridge param-
eter l (varying l = 2°, ..., 220) that maximizes r2 between the estimated
and the measured velocity. These investigations revealed that values of l
between 2° and 24 yielded almost identical r2 across all models; thus, we
used l = 22 for all models for consistency.

Since the weights of the decoding filters are not interpretable in
terms of the neural origins of the underlying processes (Haufe et al.,
2014), we transformed them into encoding filters f(t ,i) using the “for-
ward model” formalism (Parra et al., 2002; Haufe et al., 2014), as follows:

f ðt ; iÞ ¼ mðt; iÞTmðt; iÞgði; tÞ
ŝðtÞTŝðtÞ (2)

We then plotted the weights of the forward models f(t ,i) at specific
time lags t as scalp maps to visualize the relationship between sensori-
motor behavior and neural activity in each one of the three sensory con-
ditions (V, H, VH).

Statistical analysis of EEG-behavior couplings. To determine statisti-
cal significance of the learned EEG-velocity mappings, we randomized
the phase spectrum of the EEG signals, which disrupted the temporal
relationship between the EEG activity and the kinematics while preserv-
ing the autocorrelation structure of the signals (Theiler et al., 1992). We
generated 1000 phase-randomized surrogates of the EEG data and com-
puted correlations with the kinematics to define the null distribution
from which we estimated p values. This phase-randomization procedure
maintains the magnitude spectrum of the EEG signals, thus conserving
their autocorrelation structure, which is a fundamental feature of the
original signals when the significance of cross-correlation is assessed.
Hence, using this procedure, the obtained surrogates that define the null
distribution are a more plausible comparison (resulting in a stricter sta-
tistical test) than randomly shuffled surrogates.

Informed modeling of decision-making performance. Having charac-
terized the cortical coupling to the sensorimotor strategies in the three
sensory conditions, we then probed the relationship between the identi-
fied EEG-velocity couplings and decision-making performance. To pro-
vide this missing link between active sensing and decision formation, we
implemented a hierarchical DDM (HDDM), a well-known cognitive
model of decision-making behavior, and informed it with the results of
our previous decoding analysis.

We fit the participants’ decision-making performance (i.e., accuracy
and RT) with an HDDM (Wabersich and Vandekerckhove, 2014), which
assumes a stochastic accumulation of sensory evidence over time, toward
one of two decision boundaries corresponding to correct and incorrect
choices (Ratcliff and McKoon, 2008). The model returns estimates of in-
ternal components of processing, such as the rate of evidence accumula-
tion (drift rate), the distance between decision boundaries controlling
the amount of evidence required for a decision (decision boundary), a
possible bias toward one of the two choices (starting point), and the

duration of nondecision processes (nondecision time), which include
stimulus encoding and response production. As per common practice,
we assumed that stimulus differences affected the drift rate (Palmer et
al., 2005).

In short, the model iteratively adjusts the above parameters to maxi-
mize the summed log likelihood of the predicted mean RT and accuracy.
The DDM parameters were estimated in a hierarchical Bayesian frame-
work, in which prior distributions of the model parameters were
updated on the basis of the likelihood of the data given the model, to
yield posterior distributions (Wiecki et al., 2013; Wabersich and
Vandekerckhove, 2014). The use of Bayesian analysis, and specifically
the HDDM, has several benefits relative to traditional DDM analysis.
First, this framework supports the use of other variables as regressors of
the model parameters to assess relations of the model parameters with
other physiological or behavioral data (Frank et al., 2015; Turner et al.,
2015; Nunez et al., 2017). This regression model, which is included in
HDDM, allows estimation of trial-by-trial influences of a covariate (e.g.,
a brain measure) onto DDM parameters. In other words, trial-by-trial
fluctuations of the estimated HDDM parameters can be approximated
as a linear combination of other trial-by-trial measures of cognitive func-
tion (Wiecki et al., 2013; Forstmann et al., 2016). This property of the
HDDM enabled us to establish the link between the results of the EEG-
velocity coupling analysis and the decision parameters of the model, by
using the EEG-velocity couplings as predictors of the HDDM parame-
ters, as explained below (for an example of such a linear regression of
the drift rate parameter, also see Eq. 3). Second, the model estimates pos-
terior distributions of the main parameters (instead of deterministic val-
ues), which directly convey the uncertainty associated with parameter
estimates (Kruschke, 2010). Third, as a result of the above, the hierarchi-
cal structure of the model allows estimation of the HDDM parameters
across participants and conditions, thus yielding distributions at differ-
ent levels of the model hierarchy (e.g., the population level and the par-
ticipant level, respectively). In this way, the HDDM capitalizes on the
statistical power offered by pooling data across participants (population-
level parameters) but at the same time accounts for differences across
participants (represented by the variance of the population-level distri-
bution and the individual participant-level estimates). Fourth, the
Bayesian hierarchical framework has been shown to be especially effec-
tive when the number of observations is low (Ratcliff and Childers,
2015).

To implement the hierarchical DDM, we used the JAGS Wiener
module (Wabersich and Vandekerckhove, 2014) in JAGS (Plummer,
2003), via the Matjags interface in MATLAB to estimate posterior distri-
butions. For each trial, the likelihood of accuracy and RT was assessed
by providing the Wiener first-passage time distribution with the four
model parameters (boundary separation, starting point, nondecision
time, and drift rate). Capitalizing on the advantages of HDDM, we ran
the model pooling data across all participants and conditions and esti-
mated both population-level and participant-level distributions.
Parameters were drawn from uniformly distributed priors and were esti-
mated with noninformative mean and SD group priors. As per standard
practice for accuracy-coded data, the starting point was set as the mid-
point between the two decision boundaries as participants could not de-
velop a bias toward correct or incorrect choices. For each model, we ran
three separate Markov chains with 5500 samples of the posterior param-
eters each; the first 500 were discarded (as “burn-in”) and the rest were
subsampled (“thinned”) by a factor of 50 following the conventional
approach to MCMC sampling whereby initial samples are likely to be
unreliable because of the selection of a random starting point and neigh-
boring samples are likely to be highly correlated (Wabersich and
Vandekerckhove, 2014). The remaining samples constituted the proba-
bility distributions of each estimated parameter. To ensure convergence
of the chains, we computed the Gelman-Rubin R2 statistic (which com-
pares within-chain and between-chain variance) and verified that all
group-level parameters had an R2 close to 1 and always,1.01.

Here, to obtain a mechanistic account of the effect of EEG-velocity
coupling on decision-making behavior, we incorporated the single-trial
measures of these couplings (r2 values defined above) into the HDDM
parameter estimation (see Fig. 3B). Specifically, as part of the model
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fitting within the HDDM framework, we used the single-trial velocity
reconstruction accuracies r2 as regressors of the decision parameters to
assess the relationship between trial-to-trial variations in EEG-velocity
couplings and each model parameter. Furthermore, to characterize the
effect of active sensing movements on decision formation, we also incor-
porated movement parameters in the HDDM framework. Specifically,
we computed the following movement parameters: (1) the average finger
velocity (vm) on each trial; (2) the number of crossings (ncr) between L
and R, which is an indicator of the time it took participants to switch
between the two stimuli; and (3) the time participants spent exploring
one of the two stimuli (here we arbitrarily selected the low-amplitude
stimulus on each trial, tlow) as an indicator of exploration time. To
understand how these movement parameters affect the decision-making
process and specifically whether they relate to (1) sensory processing
and movement planning/execution (i.e., nondecision processes) and/or
(2) evidence accumulation (i.e., decision processes) and/or (3) the speed-
accuracy trade-off adopted by the participants, we used these parameters
as regressors for nondecision time, drift rate, and decision boundary, as
follows:

t ¼ b 0 1 b 1 � r21b v � vm 1 b sw � ncr 1 b exp � tlow (3)

d ¼ g 0 1 g 1 � r2 � s1 g sw � ncr 1 g exp � tlow (4)

a ¼ u 0 1#1 � r2 1#v � vm 1#sw � ncr 1#exp � tlow (5)

where t , d , and a represent the single-trial nondecision time, drift rate,
and decision boundary, respectively. Velocity reconstruction accuracy r2,
mean finger velocity vm, number of crossings ncr, and time spent explor-
ing the lower-amplitude stimulus tlow are the single-trial predictor varia-
bles with regression coefficients b i, g i, and d i, respectively, and s=0.1,
0.25, 0.5 is the stimulus difference on each trial k=1,...,K of each partici-
pant n=1,..., N. As per common practice, we modeled a linear relation-
ship between drift rates and stimulus differences reflecting the
dependence of the speed of information integration on the amount of
evidence available (Palmer et al., 2005; Ratcliff and McKoon, 2008).

By using the above regression approach, we were able to test the
influence of the above EEG and movement parameters on each of the
HDDM parameters. Thus, we tested different models in which the sin-
gle-trial values of the above parameters were used as predictors for all
combinations of the HDDM parameters (drift rate, nondecision time,
and decision boundary). To select the best-fitting model, we used the
deviance information criterion (DIC), a measure widely used for fit
assessment and comparison of hierarchical models (Spiegelhalter et al.,
2002). DIC selects the model that achieves the best trade-off between
goodness-of-fit and model complexity. Lower DIC values favor models
with the highest likelihood and least degrees of freedom.

Statistical analysis of modeling results. Posterior probability densities
of each regression coefficient were estimated using the sampling proce-
dure described above. Significantly positive (negative) effects were deter-
mined when .95% of the posterior density was higher (lower) than 0.
To take into account the hierarchical structure of the model which esti-
mated both population-level distributions and participant-level distribu-
tions of the parameters, all statistical tests at the population level were
performed by contrasting the group-level distributions (not the individ-
ual participant means) across sensory conditions. This hierarchical sta-
tistical testing has been shown to reduce biases and actually yield
conservative effect sizes (Boehm et al., 2018).

PID. We then aimed to uncover whether the visual (V) and haptic
(H) neural representations of active sensing contained the same infor-
mation (redundancy) that is present in the multisensory (VH) represen-
tation or to what extent their contributions are distinct (unique
information) or complementary (synergy). To achieve this, we used the
PID (Williams and Beer, 2010; Timme et al., 2014) applied to the predic-
tions of the finger velocity encoding models learned in the different ex-
perimental conditions. PID provides an information theoretic approach

to compare the outputs of different predictive models that goes beyond
simply comparing accuracy to determine whether the different models
share or convey unique predictive information content (Daube et al.,
2019b). PID extends the concept of co-information (McGill, 1954),
which is defined as follows:

IðVH;V;HÞ ¼ IðVH;VÞ1 IðVH;HÞ � IðVH; ½V;H�Þ (6)

where I(X;Y) denotes the mutual information (MI) between variables X
and Y. MI is a nonparametric measure of dependence between two vari-
ables which has the unique property that its effect size is additive
(Shannon, 1948). Hence, co-information (also called interaction infor-
mation when defined with opposite sign) quantifies the difference
between the sum of the MI when each modality is considered alone and
the MI when the two modalities are observed together (Park et al., 2018).

Positive values of this difference indicate that some information about
the predictions of the multisensory VHmodel is shared between the predic-
tions obtained from the models trained in the unisensory V and H condi-
tions (i.e., there are common or redundant representations of finger velocity
in both V and H conditions). Negative values of the interaction information
indicate a super-additive or synergistic interaction between the predictions
of the V and H models; that is, the two models provide more information
about the multisensory (VH) prediction when observed together than
would be expected from observing each individually. However, interaction
information measures the net difference between synergy and redundancy
in the system; thus, it is possible to have zero interaction information, even
in the presence of redundant and synergistic interactions that cancel out in
the net value (Williams and Beer, 2010; Ince, 2017). This occurs because
classic Shannon quantities cannot separate redundant and synergistic con-
tributions, which has led to a growing field developing PID measures to
address this shortcoming.

To give a simple example of such a case, let us consider three varia-
bles, each consisting of two bits (i.e., binary (0/1) variables with p(0) = p
(1) = 0.5). Let us also assume that the first bit is shared between all three
variables and the second bit follows the XOR distribution across the
three variables. In this case, there is clear redundancy and synergistic
structure, but co-information/interaction information is zero (Griffith
and Koch, 2014).

More precisely, PID addresses this methodological problem by
decomposing MI into unique redundant and synergistic components, as
follows:

IðVH;V;HÞ ¼ IuniðVH;VÞ1 IuniðVH;HÞ1 IredðVH;V;HÞ1
IsynðVH;V;HÞ (7)

where Iuni(VH;V) is the part of the VH model predictions that can be
explained only from the V model predictions, Iuni(VH;H) is the part of
the VH model predictions that can be explained only from the H model
predictions, Ired(VH;V,H) is the part of the VH model predictions that is
common (redundant) to both the V and H model predictions, and
Isyn(VH;V,H) is the extra (synergistic) information about the VH model
predictions that arises when both V and H predictions are considered to-
gether. PID decomposes the joint MI between two predictor signals
(here the EEG activity predicted from an encoding model trained in the
unisensory V, H conditions) and a target signal (here the EEG activity
predicted from an encoding model trained in the multisensory VH con-
dition) into four terms: redundancy, the unique information in each pre-
dictor, and synergy. Redundancy quantifies the information in the target
signal that is shared between the two predictor signals. Synergy quanti-
fies improvement in prediction of the target when both predictors are
observed together and represents information about the target signal
which cannot be obtained from the individual predictors separately.

To perform PID here, we used a recent implementation based on
common change in surprisal for Gaussian variables (Ince, 2017), which
has been shown to be effective when applied to neuroimaging data (Park
et al., 2018; Daube et al., 2019a).

To implement the above approach on our data, we used the record-
ings of the VH condition where the two unisensory representations of
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active sensory experience could be directly compared with the multisen-
sory representation. We took the velocity-encoding models obtained in
each condition (V, H, VH) and applied them to the VH data (see Eq. 3)
to obtain the V, H, and VH predictions of each EEG sensor activity for
all VH trials. Since the unisensory models (V, H) were fit in the corre-
sponding unisensory condition, they could only have learned a unisen-
sory representation, whereas the VH model learned a multisensory
representation of active sensing velocity. Thus, we applied PID for each
participant separately to predict the VH model predictions from the two
unisensory V and H model predictions, which enabled us to quantify the
cross-modal interactions between the two unisensory representations
across all EEG sensors.

Statistical analysis of PID results. We performed this decomposition
independently for each EEG channel and obtained scalp maps for the
four PID terms (redundant information, unique information of A,
unique information of V, synergistic information) for each participant.
To avoid overfitting, we implemented a fivefold cross-validation proce-
dure. We randomly split the VH data into five subsets used four of them
to learn the VH, V, and H models and the held-out set to perform the
PID on. We repeated this process 5 times to obtain PID values for all the
VH data. To assess statistical significance of the obtained values, we per-
formed a permutation test. Specifically, we shuffled the target signal (i.e.,
the VH model of active sensing) 1000 times while keeping the two pre-
dictor signals (V and H models, respectively) unchanged and applied
PID to predict the VH model surrogate data. Output values of the origi-
nal PID decomposition were considered significant if they exceeded the
99th percentile of the distribution of the surrogate data. Multiple com-
parisons were corrected for using FDR (Genovese et al., 2002).

Results
We collected behavioral and EEG data while 14 participants
actively interrogated a two-dimensional texture stimulus that dif-
fered in its amplitude in one dimension (L vs R). Participants
used V, H, or VH to make a 2-alternative forced perceptual
choice, that is, report (via a key press) as quickly and as accu-
rately as possible on which side (L or R) the texture stimulus had
higher amplitude (Fig. 1B). To sample information from both
sides, participants performed finger movements scanning the
workspace of the Pantograph before reaching a decision (Fig.
1C).

In the H condition, the Pantograph (for more details on the
device used to generate the stimuli, see Materials and Methods)
was programmed to produce sinusoidal forces, which yielded the
sensation of exploring a rough texture surface (with different
amplitudes between L and R, when participants moved their
index finger on the workspace of the Pantograph; see Fig. 1B,
middle). In the visual domain, participants were moving their
fingers to reveal grayscale stripes of different intensity/contrast
between L and R (Fig. 1B, left). In the VH condition, both the
visual and haptic textures were congruently presented wherever
the participants moved their fingers (Fig. 1B, right). Overall, par-
ticipants had to decide whether L or R had higher amplitude
based on their haptic (in H trials), visual (in V trials), or visuo-
haptic (in VH trials) perception of this virtual surface.

Multisensory gain in behavioral performance
Multisensory stimulation resulted in significantly higher discrim-
ination accuracy (91.5 6 2.1% in VH vs 85.8 6 2.2% in V and
86.3 6 2.2% in H, two-way ANOVA with factors condition and
stimulus difference, F(2,99) = 5.64, p, 0.005, see also slopes in
the corresponding psychometric curves in Fig. 1D, PSEv =
0.0346 0.013, PSEh = �0.0016 0.009 PSEvh = �0.0196 0.007,
slopev = 2.3976 0.2964, slopeh = 1.8266 0.147, slopevh =
3.0016 0.2514) compared with the unisensory conditions (post
hoc t tests, Bonferroni-corrected, p=0.009 for V-VH and

p= 0.019 for H-VH). RTs also reduced in VH (4.116 0.30 s vs
4.416 0.31 s in V and 4.256 0.29 s in H, two-way ANOVA with
factors condition and stimulus difference, F(2,99) = 3.19,
p= 0.045, see also corresponding cumulative distribution func-
tions in the three conditions, Fig. 1E). This result was significant
at the population level for VH versus V differences (post hoc t
test, p=0.021, Bonferroni-corrected) but not VH versus H differ-
ences (post hoc t test, p=0.066, Bonferroni-corrected) in RTs. As
expected, we also found a main effect of stimulus differences,
with accuracy increasing (F(2) = 91.82, p, 0.0001) and reaction
times decreasing (F(2) = 4.56, p, 0.02) with larger stimulus dif-
ferences, respectively. There was no interaction between the sen-
sory condition and stimulus difference on either measure
(accuracy: F(4) = 0.66, p=0.62; reaction times: F(4) = 0.05,
p= 0.99). Together, these results indicate that multisensory infor-
mation increased decision-making performance.

Reconstruction of active sensing velocity from EEG
recordings
We then aimed to establish a relationship between brain activity
and the active sensory experience of the participants in each one
of the three sensory conditions. To this end, we performed a
multivariate ridge regression (Crosse et al., 2016) between the
EEG data and the 1 d finger velocity data (on the x axis) to quan-
tify neural encoding of sensorimotor behavior.

This analysis yielded the optimal linear combination of EEG
channel activations with time lags ranging between –200 and
400ms that approximated the measured movement velocities.
We found that reconstruction accuracy r2 was above chance level
in all sensory conditions (all p values, 0.01; Fig. 2B). To obtain
interpretable topographies of the neural activity underlying these
EEG-velocity couplings, we inverted the obtained velocity-
decoding (backward) models into velocity-encoding (forward)
models (Parra et al., 2005; Haufe et al., 2014). This revealed that
centro-frontal locations (with positive weights) and occipital
locations (with negative weights) contributed most to velocity
reconstruction in the three sensory conditions with time lags
ranging from 20 to 160ms; Figure 2A shows the scalp topogra-
phies of the forward models, and Figure 2C, D shows the corre-
sponding temporal response functions (averaged across frontal
and occipital channels, respectively) in the three sensory
conditions.

Impact of active multi-sensing on the quality of perceptual
evidence
To characterize the relationship between the identified EEG-ve-
locity couplings and decision-making performance, we used an
HDDM. In brief, the HDDM decomposes task performance (i.e.,
accuracy and RT), into internal components of processing repre-
senting the rate of evidence integration (drift rate, d ), the
amount of evidence required to make a choice (decision bound-
ary separation, a), and the duration of other processes, such as
stimulus encoding and response production (nondecision time,
t ). Ultimately, by comparing the obtained values of all three core
HDDM parameters across the V, H, and VH trials, we could as-
sociate any behavioral differences resulting from the deployment
of multisensory information (more accurate and faster percep-
tual choices as in Fig. 1) to the constituent internal process
reflected by each model parameter.

Here, to obtain a mechanistic account of the formation of
perceptual decisions via the active sampling of (multi-)sensory
information, we incorporated the single-trial measures of brain-
sensing couplings (r2 values) into the HDDM parameter
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estimation (Fig. 3B). Specifically, we applied the obtained decod-
ing filters to the single-trial EEG data and computed velocity
reconstruction accuracies for each trial of each sensory condition
(using a nested cross-validation process; for more details, see
Materials and Methods). Then, as part of the HDDM fitting pro-
cess, we integrated these single-trial r2 values in the HDDM
framework by using them as regressors of the three core HDDM
parameters (drift rate, nondecision time, and decision boundary;
see Materials and Methods). The corresponding regression coef-
ficients were estimated together with the HDDM parameters,
thus enabling the assessment of the relationship between trial-to-
trial variations in EEG-velocity couplings and each model pa-
rameter. We also used as regressors three movement parameters
(average velocity vm, number of crossings between L and R ncr,
and time spent on the lower amplitude stimulus tlow), which
served to dissociate the effect of the exploratory movements
(captured by these parameters) on decision formation from the
effect of the neural encoding of these active sensing movements
(captured by r2).

We found that the best-fitting model (achieving the best com-
plexity-approximation trade-off as evaluated by the DIC; Fig.
3A) was the one using r2 as regressor of the drift rate only and
ncr, tlow as regressors of nondecision time only (Fig. 3B shows a
graphical illustration of the best-fitting model, and Fig. 3C shows
the model fitting of the accuracy and RT data where bars represent
actual data and lines represent model fits). The means and CIs of
the estimated values of the three core HDDM parameters are
reported in Table 1. Crucially for our investigation here, the EEG-
velocity couplings r2 were predictive of drift rates in single trials
(regression coefficients b 1 were larger than zero for all three sen-
sory conditions, Prob(g 1 (V). 0). 0.97, Prob(g 1 (H). 0). 0.99,

Prob(g 1 (VH). 0). 0.999; Fig. 3D). Furthermore, the contribu-
tion of r2 to drift rate was higher in VH trials compared with V and
H trials (Prob(g 1 (VH). g 1 (V)). 0.95 and Prob(g 1 (VH). g 1

(H)). 0.99; Fig. 3D), indicating a multisensory enhancement of
evidence accumulation rates via an increased weighting of the EEG-
velocity couplings in the VH condition.

We then examined whether this multisensory gain could
explain the observed improvements in behavioral performance
when multisensory information is available. Indeed, this
enhanced contribution of r2 to drift rate was predictive of multi-
sensory improvements in behavioral performance. Specifically,
cross-participant differences in g 1’s across conditions correlated
with the reported increases in accuracy (r= 0.58, p= 0.049 for
VH vs V and r=0.75, p=0.005 for VH vs H; Fig. 3F), suggesting
that differences in accuracies across participants were accounted
for by the contributions of EEG-velocity couplings to evidence
accumulation. Thus, participants with greater drift rate amplifi-
cation achieved stronger enhancements in their behavioral per-
formance as a result of multisensory information available.

We also found that both switching time between the two
stimuli as captured by ncr and exploration time spent on one of
the two stimuli as captured by tlow were predictive of nondecision
time (Prob(b sw . 0). 0.999, Prob(b exp . 0). 0.999 for all V,
H, VH; Fig. 3G,H) in single trials, indicating that nondecision
processes (i.e., related to sensory processing and movement
planning/execution) are dependent on switching and exploration
times. There was a positive cross-participant correlation (r=
0.695, p=0.0121) between b exp and RT (averaged across trials
and sensory conditions), suggesting that participants with larger
contributions of exploration time to their nondecision times
took longer to respond (Fig. 3I). However, we found no reliable

Figure 2. Results of velocity reconstruction analysis using EEG signals. A, Scalp topographies of the forward models representing neural encoding of instantaneous finger velocity for the
three sensory conditions. The presented scalp maps show velocity-encoding EEG signals averaged over the following time windows: 20 and 120 ms lags between velocity and EEG for V and VH,
and 60 and 160 ms lags for H. B, Accuracy of the velocity reconstruction from the EEG signals measured using the squared correlation coefficient (r2) between the original and the approximated
velocity profile in the three sensory conditions (blue represents V; green represents H; red represents VH). Bars represent means across participants. Error bars indicate SEM. Dots represent indi-
vidual participant data. C, D, Temporal response functions (TRFs) of the velocity-encoding EEG activity in the three sensory conditions (blue represents V; green represents H; red represents VH)
averaged over frontal electrodes (in C) and over occipital electrodes (in D).
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difference in the corresponding regression coefficients (b sw,
b exp) between the three sensory conditions (Prob(b sw (VH) .
b sw (V)) = 0.632, Prob(b sw (VH) . b sw (H)) = 0.843, Prob(b exp

(VH) . b exp (V)) = 0.107, Prob(b exp (VH) . b exp (H)) = 0.210;
Fig. 3G,H). There was also no difference in the decision bounda-
ries in the three sensory conditions (Prob(a(VH) . a(V)) =
0.731, Prob(a(VH) . a(H)). 0.804; Fig. 3E). These results

Table 1. Estimated values of the three core HDDM parameters for the best-fit-
ting model

Parameter Mean CI (5%) CI (95%)

Drift rate (d ) 0.897 0.628 1.162
Nondecision time (t ) 2.897 2.710 3.045
Decision boundary (a) 2.853 2.501 3.256

Figure 3. Informed modeling of decision-making behavior. A, Comparison of the best-fitting model (with r2 as a regressor of drift rate d only and ncr, tlow as regressors of nondecision time
t only) with alternate models using the DIC. Positive DDIC (DICmodel – DICoptimal) values for all six models indicate that the model of choice achieved a better trade-off between goodness of fit
and number of free parameters. B, Graphical representation showing hierarchical estimation of HDDM parameters. Round nodes represent continuous random variables. Double-bordered nodes
represent variables defined in terms of other variables. Shaded nodes represent recorded or computed signals, that is, single-trial behavioral data (accuracy, RT, and stimulus differences, s),
EEG-velocity couplings (r2), and kinematic parameters (ncr, tlow). Parameters are modeled as Gaussian random variables with inferred means m and variances s 2. Plates denote that multiple
random variables share the same parents and children. The outer plate is over sensory conditions (V, H, VH), and the inner plate is over all trials (K) and participants (N). C, Behavioral RT distri-
butions are shown as histograms for each sensory condition (blue represents V; green represents H; red represents VH) for correct (right) and incorrect (left) trials together with the HDDM fits
(black lines). Higher histogram values on the right indicate higher proportion of correct choices. D, Posterior distributions of regression coefficients (g 1) of the EEG-velocity couplings (r

2), as pre-
dictors of the drift rate (d ) of the HDDM shown in A. The three colored curves indicate posterior distributions for the three sensory conditions (blue represents V; green represents H; red repre-
sents VH). E, Posterior distributions of decision boundaries for the three sensory conditions (blue represents V; green represents H; red represents VH). F, Cross-participant correlation of
differences in choice accuracy (DAcc, x axis) and differences in b 1 (Db 1, y axis) between the multisensory (VH) and the two unisensory (V, H) conditions (yellow represents VH-V; purple rep-
resents VH-H). G, Posterior distributions of regression coefficients (b sw) of the number of crossings between L and R (ncr), as predictor of nondecision time (t ) of the HDDM shown in A. H,
Posterior distributions of regression coefficients (b exp) of the time spent on the low-amplitude stimulus (tlow), as predictor of nondecision time (t ) of the HDDM shown in A. I, Cross-participant
correlation of average RTs across trials and sensory conditions (x axis) and b exp (y axis).
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indicate that neither the switching and exploration times nor the
amount of evidence required to make a decision was dependent
on the sensory condition.

Quantifying multisensory interactions
Having established that the neural encoding of the behavioral ki-
nematics is related to the multisensory gain in decision evidence,
we then aimed to assess how the neural representations of the
two unisensory stimuli (V, H) interact to form a multisensory
representation. To this end, we used PID, which enables the
quantification of cross-modal representational interactions in
the human brain (for details, see Materials and Methods).
Specifically, the PID information theoretic framework quantifies
the degree to which (1) each unisensory (V,H) representation
contributes uniquely to the encoding of active sensing behavior
(unique V or H information), (2) the two unisensory (V,H) rep-
resentations share information about active sensing (redun-
dancy), and (3) the two unisensory (V,H) representations convey
more information when observed simultaneously (synergy).
Here, we used PID to predict the forward (velocity-encoding)
VHmodel (target signal) from the two unisensory forward mod-
els V and H (predictor signals). The decomposition revealed that
the V model provided unique information in right parieto-tem-
poral locations, whereas the H model contributed uniquely in
left prefrontal and parieto-occipital locations (Fig. 4A; all p
values, 0.01, FDR-corrected). Crucially, we also found
multisensory interactions in the form of (1) redundant
effects in left prefrontal and parieto-occipital electrodes
and (2) synergistic effects over left centroparietal scalp (Fig.
4A; all p values, 0.01, FDR-corrected). Here, a redundant
interaction means that the representation of velocity is
common to both the V and H modalities (Ince et al., 2017;
Park et al., 2018). A synergistic interaction means a better

prediction of the modeled multisensory response can be
made when considering both the V and the H representa-
tions together (rather than independently). That is, knowl-
edge of the simultaneous combination of the EEG signal
predicted by V and H models gives more information about
the VH EEG signal.

Multisensory accuracy scales with synergistic interactions
Next, we investigated the behavioral relevance of the identified
cross-modal interactions. In particular, we asked whether the
identified synergistic representation of the two modalities was
predictive of behavioral performance across participants. Indeed,
we found a significant positive correlation (Pearson’s R=0.75
and 0.72, all p, 0.01) between synergy in both significant chan-
nels (CP3 and C5) and accuracy in VH, suggesting that partici-
pants with more synergistic representations at left centroparietal
electrodes achieved better multisensory performance (Fig. 4B).
This result suggests that synergy in contralateral centroparietal
EEG signals modulates multisensory decision-making behavior.
Because of small sample size, we cannot be sure this finding will
generalize, but nonetheless report it as an interesting exploratory
finding.

Discussion
In this work, we coupled neural decoding of continuous sensori-
motor behavior with modeling of decision-making performance
and a quantitative assessment of cross-modal neural interactions
to understand how the human brain forms perceptual decisions
via the active acquisition of multisensory evidence. We showed
that the neural encoding of active sensing modulates the decision
evidence regardless of the sensing modality. We further demon-
strated that the simultaneous sensing of different modalities
enhances this neural coupling and this enhancement drives the

Figure 4. Neural representations and cross-modal interactions. A, Results of PID applied to predict the multisensory (VH) model of active sensing from the two unisensory (V and H) models.
Dots on the scalp topographies indicate the EEG channels that provide significant (p, 0.01, FDR-corrected) visual unique (top left), haptic unique (top right), redundant (bottom left), and syn-
ergistic (bottom right) neural information, respectively. B, Across-subject correlation between synergy in the two significant EEG channels (red represents CP3; blue represents C5) and choice ac-
curacy in the VH condition.
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dynamics of active multisensory decisions. We finally dissected
the neural information conveyed by cross-modal interactions
and identified a potential neural mechanism supporting multi-
sensory decisions.

Recent research on active sensing uncovered the strategies
implemented by humans to sample sensory information (Yang
et al., 2016b). Here we investigated this active sensing approach
in a decision-making task using a computational approach that
decodes the neural activity that encodes movement kinematics.
Crucially, we made a first step in broadening this line of research
to (1) include sensory information from multiple modalities and
(2) reveal its neural underpinnings. These two developments
enabled us to uncover the different sensory representations of
active sampling behavior in the human brain.

To achieve this, we implemented an informed cognitive mod-
eling approach that linked the neural correlates and the move-
ment characteristics of active sensing behavior with the cognitive
processes involved in decision-making. Specifically, we asked
whether decision-making depends on the neural representations
of active (multi-)sensing. To answer this question, we used a sin-
gle-trial measure of the neural encoding of active sensing behav-
ior as predictor of decision-making performance and found that,
indeed, trial-to-trial fluctuations of the neural representations of
active sensing are predictive of the rate of evidence accumulation
for all three sensory conditions (V, H, VH). Crucially, we showed
that the multisensory (VH) representation of active sensing was
a stronger predictor of drift rate (Fig. 3D), thus offering a neural
link between active multi-sensing and perceptual decision-mak-
ing. We also split the motion profile into its two main compo-
nents: (1) switching between the two alternative stimuli and (2)
exploration within one particular stimulus and demonstrated
that both components were predictive of the duration of nonde-
cision processes (Fig. 3G,H), thus simply reflecting the time spent
for movement planning and execution and the consequent acquisi-
tion and encoding of sensory information. These novel findings
were only made possible by the use of an active multi-sensing para-
digm in a decision-making task and the joint cognitive modeling of
behavioral, neural, and sensorimotor signals.

We then capitalized on the identified neural representations
of active (multi-sensing), to dissect cross-modal interactions in
the human brain. To this end, we used PID, a recently developed
rigorous methodology for the quantification of information con-
veyed uniquely or jointly by different neural representations
(Williams and Beer, 2010; Timme et al., 2014; Ince, 2017). PID
further distinguishes between two types of interactions between
the neural representations of the two sensory modalities (V, H).
A synergistic interaction indicates that a better prediction of the
multisensory neural response can be made when the predicted
values of the unimodal forward models for V and H are consid-
ered jointly rather than independently. Our results suggest that
this synergistic interaction of the two neural representations cor-
relates with multisensory behavioral performance (Fig. 4B).
Instead, a redundant interaction indicates that the two unimodal
models provide the same information about the multisensory
condition; thus, the multisensory response there is common to
both modalities (Park et al., 2018; Daube et al., 2019a). This sug-
gests that the underlying neural signals reflect a modality-invari-
ant representation.

As a result of this analysis, we were able to identify neural sig-
nals representing these two types of interactions. Specifically, we
found that EEG channels in (parieto-)occipital and prefrontal
areas carried redundant representations of the two sensory
streams, perhaps reflecting supramodal coding mechanisms of

active sensing (Fig. 4A, redundancy). This finding is in line with
previous research assigning a multimodal role to occipital
cortex (Lacey et al., 2007; Murray et al., 2016) and suggest-
ing that multisensory enhancements originate from the sen-
sory cortices (Kayser and Logothetis, 2007; Lakatos et al.,
2007; Lewis and Noppeney, 2010). Specifically, recent
research involved the visual cortex in audiovisual interac-
tions (Mishra et al., 2007; Cao et al., 2019; Rohe et al., 2019)
as well as tactile perception and visuo-haptic interactions
(Lucan et al., 2010; Sathian, 2016; Gaglianese et al., 2020).
In agreement with the above, here we also found unique H
information in parieto-occipital electrodes. Concerning the
PFC, recent evidence assigned to it a modality-general role
in arbitrating between segregation or fusion of sensory evi-
dence from different modalities (Cao et al., 2019). Thus, the
involvement of the PFC in the regulation of adaptive multi-
sensory behaviors in general (Koechlin and Summerfield,
2007; Donoso et al., 2014; Tomov et al., 2018) and percep-
tual decisions in particular (Heekeren et al., 2006;
Philiastides et al., 2011; Rahnev et al., 2016; Sterzer, 2016)
makes it a likely contributor to the formation of the most
appropriate sensory representation that drives decision-
making behavior. In other words, the PFC may support a
mechanism gauging candidate (multisensory or unisensory)
representations for selecting among multiple strategies to
solve the task at hand (Calvert, 2001; Hein et al., 2007;
Noppeney et al., 2010; Cao et al., 2019). Our active multi-
sensing task requires participants to continuously weigh
different sensing strategies and refine their scanning pat-
terns to maximize information gain. Hence, the PFC may
capitalize on multisensory information (when of benefit) to
support such flexible behavior striking a balance between
sampling more evidence and committing to a choice.

The above findings are consistent with our previous study fo-
cusing on the tactile modality, which attributed a sensory proc-
essing function to occipital cortex (specifically localized to the
lateral occipital complex) and a decision formation function to
right PFC (middle frontal gyrus) (Delis et al., 2018). Together
with the current results, our findings suggest these two brain
areas may play a cross-modal role in supporting active percep-
tion and decision-making. Overall, our work adds to the existing
literature on multisensory interactions by quantifying how sen-
sory representations interact to encode active sensing behaviors.

More importantly, here we revealed a novel functional role
for contralateral centroparietal signals in active visuo-haptic
decisions. We found that brain signals over left centroparietal
scalp locations showed stronger encoding of active sensing when
the two sensory streams were available (Fig. 4A, synergy), thus
possibly representing a neural mechanism of multisensory inte-
gration. In line with the ongoing debate on the multisensory na-
ture of primary sensory cortices (Ghazanfar and Schroeder,
2006; Liang et al., 2013), cross-modal visuo-haptic interactions
leading to enhanced neural representations have been found in
the primary somatosensory cortex (S1) (Zhou and Fuster, 2000;
Dionne et al., 2010). Here we further characterized these interac-
tions as carrying super-additive/synergistic representations of
the active multisensory experience and demonstrated that they
are related to the accuracy of active multisensory judgments.

It is also worth noting that our results do not rule out the pos-
sibility that other brain areas, not directly related to active sens-
ing, may contribute to regulating the speed and accuracy of
active multisensory decisions. Indeed, recent research break-
throughs have explained the development of multisensory

Delis et al. · Neural Mechanisms of Active Multisensory Decisions J. Neurosci., March 16, 2022 • 42(11):2344–2355 • 2353



representations from different sensory streams in the human
brain (Aller and Noppeney, 2019; Cao et al., 2019; Rohe et al.,
2019). Furthermore, recent studies have started to investigate
how the interactions between sensory representations shape de-
cision formation (Bizley et al., 2016; Franzen et al., 2020; Mercier
and Cappe, 2020).

Our primary aim here was to provide the missing link
between the active acquisition of multisensory evidence and its
transformation to choice. Overall, our findings validated the
hypotheses that (1) active sensing guides decision formation via
evidence sampling and accumulation and (2) multisensory infor-
mation spurs perceptual decisions by enhancing the neural
encoding of active behaviors. Our information-theoretic analysis
also revealed the neural substrates of multisensory interactions
in the human brain that support active multisensory perception.
Ultimately, we identified and characterized a set of human brain
signals that underpin multisensory judgements by subserving an
enhancement of the neural encoding of active perception when
multisensory information is available.
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