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BACKGROUND: Prostate cancer (CaP) preferentially metastasises to the bone, and we have previously shown that the poly-unsaturated
fatty acid (PUFA) arachidonic acid (AA) is a potent stimulator of CaP invasion. Here we present that AA promotes CaP invasion by
inducing bone marrow adipocyte formation.
METHODS: Boyden invasion-chamber assays assessed the ability of dietary oils, their PUFA components, and specific PUFA-loaded
adipocytes to induce PC-3 invasion. Lipid transfer and metabolism was followed using deuterated AA and Fourier Transform Infrared
spectroscopy (FTIR).
RESULTS: Poly-unsaturated fatty acid constituents, but not their corresponding dietary oils, induced PC-3 invasion. PUFAs induce bone
marrow adipocyte (BM-Ad) differentiation with AA inducing higher levels of BM-Ad differentiation, as compared with other PUFAs
(3998±514.4 vs 932±265.8; P¼ 0.00002), which stimulated greater PC-3 invasion than free AA (22 408.5±607.4 vs
16 236±313.9; P¼ 0.01111) or adipocytes generated in the presence of other PUFAs. In bone marrow co-culture PC-3 and
BM-Ad interactions result in direct uptake and metabolism of AA by PC-3 cells, destruction of the adipocyte and subsequent
formation of a bone metastasis.
CONCLUSION: The data supports the hypothesis that AA not only promotes CaP invasion, it also prepares the ‘soil’, making it more
supportive for implantation and propagation of the migrating metastatic cell.
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A high proportion of young men have microscopic evidence of
prostate cancer (CaP) with prevalence increasing with age (Franks,
1954). Notwithstanding the global similarity in prevalence, the
incidence of clinical CaP/CaP death varies widely internationally.
In western societies, clinical CaP is common compared with
developed non-western countries, for example Japan (Ferlay et al,
2004). Migrational studies also show that movement from low- to
high-risk countries raises CaP risk in migrants to that in native
residents, (Crawford, 2003) suggesting that environmental factors
affect CaP’s clinical incidence and mortality.

Epidemiological studies highlight differences in the omega-6
(o-6) to omega-3 (o-3) polyunsaturated fatty acid (PUFA)
ratio between regions of high and low CaP risk. PUFA makes up
19–22% of fat energy intake in the United States of America, with
84–89% coming from the o-6 linoleic acid (LA). The o-3 a-
linolenic acid (ALA) only contributes 9 –11% of PUFA-related
energy (Kris-Etherton et al, 2000), giving an o-6 :o-3 ratio of
10.6 : 1. This compares with 4 : 1 in Japan and is well above the
perceived optimal ratio of 2.3 : 1 (Sugano and Hirahara, 2000). It is
interesting to note that the increases in incidence and mortality

from CaP in developing countries over the last 30 years has
coincidentally mirrored the increased dietary o-6 :o-3 PUFA ratio
brought about by greater vegetable oil consumption and the use of
cereal grain to feed livestock.

Diets enriched with high levels of o-6 PUFAs, particularly LA
and its metabolite arachidonic acid (AA), are associated with
poorer CaP prognosis (Wynder et al, 1994; Rose, 1997). The
precise mechanism of this is unclear. Arachidonic acid exerts
influence through its COX-2 and LOX metabolites, inducing
malignant CaP proliferation (Hughes-Fulford et al, 2006), inhibit-
ing apoptosis (Ghosh, 2004), inducing angiogenesis (Nie et al,
1998), and inducing disease progression (Honn et al, 1994;
Norrish et al, 1999). Studies of the 5-LOX product, 5-HETE, show
this is as a key regulator of tumour aggressiveness. 5-HETE
protects prostate cells from apoptosis (Ghosh, 2004) and is crucial
in EGF-related cellular proliferation (Hassan and Carraway, 2006).
Arachidonic acid itself is a potent stimulator of malignant prostate
epithelial cell (PEC) invasion, and is able to recover invasion
towards adipocyte-free human bone marrow stroma (BMS) by the
AA metabolite PGE2. This stimulatory effect is abrogated by the
addition of long chain marine o-3 PUFAs eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) (Brown et al, 2006). It has
also been hypothesised that AA acts as a secondary messenger
involving an autocrine loop-maintaining EGFR activation (Ange-
lucci et al, 2008).
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Prostate cancer metastasises preferentially to the BMS. The
reasons underlying this are uncertain but evidence suggests that
BM adipocytes (BM-Ad) are of importance. The precise role of
BM-Ad, present in abundance in BMS, is unknown. It is
hypothesised that they have a role in haematopoiesis (Gimble
et al, 1992) or act as energy stores supporting oxidative
metabolism of resorbing osteoclasts (Dodds et al, 1994) and are
fundamental to BMS formation and its long-term maintenance
(Gartner and Kaplan, 1980). In long-term human BMS/CaP models
malignant cells migrate towards BM-Ad and take up lipids from
adipocytes or the surrounding microenvironment (Brown et al,
2006). Separate studies by Tokuda et al (2003) and Gazi et al
(2007) found that PC-3 cells interacted directly with adipocytes
and using Fourier Transform Infrared spectroscopy (FTIR) to
follow deuterated palmitic acid, Gazi et al (2007) confirmed the
direct uptake of lipid by CaP cells from BM-Ad.

Polyunsaturated fatty acids acting in vitro are potent inducers of
adipocyte differentiation (Madsen et al, 2005), but the roles of
dietary PUFAs and their effect on BM adipogenesis and CaP
metastasis are unknown. Here we show that dietary PUFAs
themselves are not strong stimulators of CaP invasion but require
adipocyte processing. We also show that AA induces invasion itself
and induces differentiation of BM mesenchymal stem cells (MSC)
into adipocytes, which are themselves potent inducers of invasion.
Together the data suggests that a high level of AA derived from
dietary intake is a major risk factor for CaP progression.

MATERIALS AND METHODS

Materials

All general reagents were purchased from Sigma-Aldrich (Poole,
UK), including all the lipids except AA (MP Biomedicals, London,
UK). All lipids except D8-AA were either made up in ethanol or
methyl-b-cyclodextrin to produce a 10 mg ml�1 emulsion. D8-AA
was supplied in methyl acetate, which was removed by evaporation
under a nitrogen gas stream at room temperature before dissolving
in ethanol. All tissue culture reagents were from Invitrogen
(Paisley, UK) except Hygromycin B, which was obtained from PAA
Laboratories (Yeovil, UK). Foetal calf serum (FCS) was supplied by
Labtech International (Uckfield, East Sussex, UK). Matrigel
basement membrane matrix and 8 mm FluoroBlok cell culture
inserts were from BD Biosciences (Oxford, UK). RosetteSep MSC
enrichment cocktail and MesenCult basal media were supplied by
StemCell Technologies (London, UK).

Cell lines and primary BMS culture

PC-3 (ATCC, Manassas, VA, USA) and the PC3-GFP cell lines were
cultured in Ham’s F12, 7% FCS and 2 mM L-glutamine, with the
addition of Hygromycin B (0.15 mg ml�1) for the GFP variant, at 371C,
5% CO2 in air. BMS was cultured from human ribs removed for access
during routine renal surgery for non-malignant disease after informed
consent. BMS cultures were prepared according to the method of
Coutinho et al (1993) and cultured in long-term culture medium
(Iscove’s Modified Dulbecco’s Medium containing 10% FCS, 10%
horse serum and 50mM hydrocortisone) or used for MSC isolation.

Mesenchymal separation from normal rib

Mesenchymal stem cells were isolated from human donor red cell-
enriched rib bone marrow using the RosetteSep human MSC
enrichment cocktail and cultured as defined by Gazi et al (2007).
Briefly, human donor red cell-enriched rib bone marrow was
incubated with RosetteSep antibody cocktail (50mg ml�1) for
20 min at room temperature. Cells were diluted with two volumes
of PBSþ 2% FCS, 1 mM EDTA before centrifuging at 300 g for
25 min at room temperature over a Ficoll-Paque cushion. Enriched

cells were plated at 1� 107 cells 25 cm�2 flask in complete media
(90 ml MSC basal medium/10 ml MSC stimulatory supplement)
and incubated at 371C, 5% CO2 in air. After 24 h, non-adherent
cells were removed and fresh complete media added. Media was
refreshed every 3– 4 days until confluent. Adipogenesis was
induced by replacing the basal media with proprietary MSC
adipogenic media or with MSC basal medium containing 50mM

hydrocortisone and 50 mM lipid. Cultures were incubated at 371C,
5% C02 in air and media was refreshed every 14 days until
adipocytes were present.

Invasion assay

A variation of the invasion co-cultures described by Hart et al
(2005) was used. Briefly, FluoroBlok cell culture inserts
(8mm) coated with Matrigel diluted 1 : 25 with phenol red free
RPMI 1640 medium, were placed in a 24-well plate containing 1 ml
of RPMI 1640 (w/o phenol red)/0.1% fatty acid free (FAF) BSA/
10 mM HEPES with either tissue culture plastic (TCP), BMS, mBM-
Ad or lipids in the base. PC-3 GFP cells (2� 105 cells in 0.25 ml of
RPMI 1640 /0.1% FAF BSA) were seeded on top of the inserts.
Following incubation at 371C for 24 h invasion was assessed
on a BMG FLUOstar OPTIMA plate reader at 488/520 nm
(excitation/emission filter). The number of adipocytes in each
well was scored post fixation with 4% Formalin for 20 min at room
temperature.

Cell fixation

D8-arachidonic acid labelled adipocytes on MirrIR plates were
washed twice with PBS and seeded with 1� 105 24 h serum-starved
PC-3 cells. After 48 h of incubation in serum-free RPMI at 371C,
5% CO2 in air cultures were washed twice with PBS and fixed in 4%
paraformaldehyde for 25 min. Cells were washed thrice for 5 min
each in Sorensen’s buffer (0.15M, pH 7.4) and post-fixed in 1%
OsO4 for 1 h. Cells were washed thrice for 5 min each with
Sorensen’s buffer before dehydration using increasing concentra-
tions of ethanol : water. Cells were then dried using a critical point
drier. The ethanol was substituted for liquid CO2 following six
ethanol–CO2 exchanges and a 5 min immersion (repeated nine
times). Phase-transition was induced by heating the chamber to
B451C at 1200 psi. Preservation was assessed by microscopy. The
cells were stored in a desiccator until FTIR analysis.

FTIR micro-spectroscopy

High-definition FTIR micro-spectroscopic maps of paraformalde-
hyde– OsO4 – CPD fixed adipocyte –PC-3 cell co-cultures were
collected in rapid-scan reflectance mode at 6.25mm pixel resolu-
tion using a Perkin Elmer Spotlight spectrometer with a 16� 1
MCT linear-array detector. The background scan was recorded at 8
or 4 cm�1 spectral resolution with 75 scans, whereas the sample
scan was recorded at 8 or 4 cm�1 spectral resolution with 64 scans.

Time-lapse microspectroscopy

Confluent adipogenically active human BMS in T12.5 flasks were
seeded with serum starved PC-3 cells and observed using a
time-lapse video microscope capturing one frame every 20 s
(Allen, 1987).

Statistics

All values are presented as mean±s.e.m. All assays were compared
with use of the two-tailed Student’s t-test. A threshold of
significance was set at Po0.05.
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RESULTS

Dietary oils do not induce invasion, but their PUFA
components do

In order to determine the ability of common dietary oils used in
western diets, which contain different levels of o-3/6/9 lipids,
along with pure individual PUFAs to stimulate CaP migration we
encapsulated the lipids in methyl-b-cyclodextrin to create an
emulsion suitable for cell culture.

Bone marrow stroma control and AA, previously shown
to induce maximum PC-3 invasion (Brown et al, 2006), induced
significant invasion through Matrigel (Figure 1A). Common
dietary oils failed to induce significant invasion compared
with controls. Analysis of specific PUFAs in isolation showed
induction of PC-3 invasion. Figure 1B-D shows increased invasion
induced by increasing concentrations of LA, ALA and oleic acid.
The AA precursor LA at a maximum concentration of 30 mg ml�1

induced invasion to a level approaching 3 mg ml�1 (10 mM) AA
(9925.7±1253.1 vs 12 347.2±455; P¼ 0.09935). Both ALA (o-3)
and oleic acid (o-9) induced PC-3 invasion (8406±1202.9
vs 5054±334.7; P¼ 0.02291: LA and TCP control, respectively),
but at a significantly lower rate than that from 3 mg ml�1 AA
(P¼ 0.01195). The invasive stimulus closest to AA came from
30 mg ml�1 oleic acid, which induced equivalent levels to AA
(12 192.8±790.6 vs 12 347.2±455; P¼ 0.00001).

PUFAs stimulate adipocyte differentiation in BMS

Prostate cancer cells were not stimulated to invade by complex
lipid mixtures in common dietary oils (Figure 1), but were
stimulated when PUFAs were presented on their own. Lipids are
processed and stored within adipocytes and CaP preferentially
metastasise to the adipocyte-rich red BM. Therefore, we sought to
determine the effect of PUFAs on adipocyte formation in BM and
on the adipocytes ability to induce CaP invasion.

Bone marrow MSCs isolated from human ribs were differen-
tiated down the adipocyte lineage (mBM-Ad) by culture in
mesenchymal stem cell basal media containing hydrocortisone
and specific PUFAs. Control MSCs were cultured in proprietary
adipogenic media (StemCell Technologies), containing an undi-
sclosed lipid mixture and long-term BMS culture from the same
patient. All PUFAs, except AA, induced generation of similar
adipocyte numbers within each culture compared with commercial
adipogenic media and hydrocortisone ‘lipid free’ negative control.
Arachidonic acid however, induced markedly greater numbers of
adipocytes than adipogenic media (3998±514.4 vs 932.3±265.8,
respectively; P¼ 0.00002) (Figure 2).

PUFA-loaded adipocytes, especially AA, induce invasion

The ability of specific lipid pulsed mBM-Ad to stimulate CaP
invasion through Matrigel was compared with invasive stimulation
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Figure 1 Poly-unsaturated fatty acid (PUFA) components, but not heterogeneous dietary oils, are stimulators of prostate cancer (CaP) invasion. 2� 105
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(C) a-linolenic acid (ALA) (D) oleic acid encaged in methyl-b-cyclodextrin. Levels of invasion are proportional to fluorescence detected by a bottom reading
BMG FLUOstar OPTIMA plate reader at 488/520 nm (excitation/emission filter). In each assay (n¼ 3) a serum free RPMI 1640 (TCP) – ve control, human
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by BMS grown under standard conditions and mBM-Ad derived
using adipogenic media (Figure 2C). Adipocytes generated by adi-
pogenic media stimulated PC-3 invasion although this was signi-
ficantly less than that induced by 3mg ml�1 AA (11 469±1151.53 vs
16 236±313.9, respectively; P¼ 0.00409). It is interesting to note
that the level of invasion induced by the adipogenic media was
similar to that induced by mesenchymal cells differentiated by
hydrocortisone without exogenous lipids (11 165.8±871 vs
11 469±1151.53; P¼ 0.93959). This phenomenon was observed
with adipocytes differentiated in the presence of ALA, which stimu-
lated PC-3 invasion at similar levels to controls (12 429.25±
1002.847 vs 11 165.8±871 (P¼ 0.89279) and 1469±1151.53
(P¼ 0.65767) for adipogenic media and no lipid control, respec-
tively) and was significantly different to the free AA positive control
(P¼ 0.0241).

Adipocytes loaded with o-6 LA or with o-9 oleic acid both induced
invasion at similar levels to 3mg ml�1 free AA (16 459±1261.6 and
14 596±696.19 vs 16 236±313.9; P¼ 0.52990 and P¼ 0.16877).
Invasion was greater than that induced by adipogenic media and
the ‘no lipid’ controls, but the increase did not reach significance
(11469±1151.5 P¼ 0.13418 and 0.05861, 11165.8±871 P¼ 0.33484
and 0.14815 respectively). Surprisingly, EPA-dosed adipocytes
stimulated a significantly greater invasive stimulus than either
negative control (P¼ 0.00543 and 0.0023) achieving levels similar to
3mg ml�1 free AA (16 927.6±928.7 vs 16 236±313.86 P¼ 0.6887).

The most striking effect was seen in adipocytes formed in the
presence of AA, these generated the greatest invasive stimulus for
PC-3 cells compared with negative lipid free control (22 408.5±
607.4 vs 11 165.8±871 P¼ 0.00005). The stimulus was greater than
that induced by free AA within the media of the bottom chamber
(16 236±313.9 P¼ 0.01111 BM-Ad– AA vs free AA, respectively).

CaP cells within BMS migrate to and interact with
adipocytes

mBM-Ad derived from BM mesenchymal cells grown with AA are
potent stimulators of PC-3 invasion. Whether this is because of

leeching of PUFAs into the surrounding media from adipocytes,
producing higher local concentrations or to undetermined
adipocyte-related factors is unclear.

As migrating CaP cells within the BMS take up lipids
(Brown et al, 2006) we utilised mBM-Ad pulsed with D8-AA to
determine whether these cancer cells take up lipids released
from the mBM-Ad into the BMS environment or whether the
process is mediated through direct interaction with the adipo-
cytes themselves. A white light micrograph (Figure 3) shows
a mBM-Ad overlaid with the FTIR spectral maps correlating to
the vibrational spectral characteristics u(C–D) and u(¼C–D)
of D8-AA and demonstrates clearly that D8-AA lies within the
adipocyte.

Using time-lapse video-microscopy we followed the migration
of serum-starved PC-3 cells in co-culture with BMS containing
D8-AA-loaded adipocytes (Figure 4A and video, Supplementary
Figure 3). Binding of the rounded PC-3 cells to BMS was complete
within 120 min following addition of the cells. The PC-3 cells
migrated towards adipocytes with first contact observed after
approximately 2.5 h. Over the next 2 h the PC-3 cells appeared
to flatten, taking on a mesenchymal morphology. During this
period the size of the upper adipocyte in the viewing field
decreased in size as it was destroyed, and that the lipid vesicles
within adipocytes in the lower aspects of the field began to alter,
becoming smaller. The destruction of the upper adipocytes
continued over the next 46 h, with adipocytes being disrupted
after approximately 12.5 h and with almost complete loss of the
adipocyte/intra-adipocyte lipid vesicles at 48 h. The lower adipo-
cyte was still present at the end of the co-culture, but it had
undergone marked changes in its morphology, intra-cellular
lipid vesicles, which became smaller in size, along with a reduc-
tion in overall cell size. During this process there was a
synchronous and obvious visible increase in the number of CaP
cells recruited to adipocytes, with clear morphological change
to a mesenchymal phenotype and a marked increase in CaP
cellular motility.
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Figure 3 Localisation of D8-AA within bone marrow (BM) adipocytes. Deuterated signal overlaid onto phase contrast photomicrograph of a D8-AA
loaded BM adipocyte. BM mesenchymal stem cells (MSC) were differentiated into adipocytes with 50 mM D8-AA. Phase contrast image of an adipocyte
overlaid with (A) u(C–D) Fourier Transform Infrared spectroscopy (FTIR) spectral image and (B) u(¼C–D) spectral image to show localisation of D8-AA.

Figure 2 Arachidonic acid (AA) primes the ‘soil’ for prostate cancer (CaP) invasion. Mesenchymal cells isolated from primary human bone marrow (BM)
were grown in the presence of 50mM linoleic acid (LA), arachidonic acid (AA), a-linolenic acid (ALA), eicosapentaenoic acid (EPA) or oleic acid in basal media
supplemented with 5� 10�7

M hydrocortisone to induce adipocyte differentiation. Control cultures include differentiation in proprietary adipogenic media and
long-term bone marrow stroma (BMS) growth media. (A) Phase contrast photo-micrographic mosaics comprising 11� 8 overlapping fields of view merged
using the Mosaic J plug-in (ImageJ). Adipocytes are distinguished from dark stromal background as phase-bright cells. Scale bar¼ 1 mm. (B) Histogram showing
number of adipocytes formed in the presence of each lipid (n¼ 3). (C) Histogram showing the invasive stimulus of specific lipid-laden adipocytes derived from
human BM mesenchymal stem cells (MSC) with 5� 10�7

M hydrocortisone. 2� 105 PC-3-GFP cells were seeded in modified Boyden chambers and invasion
was measured after 18 h using a bottom reading BMG FLUOstar OPTIMA plate reader at 488/520 nm (excitation/emission filter).
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Figure 4 PC-3 cells target and take-up arachidonic acid (AA) from AA-loaded human bone marrow adipocyte (BM-Ad). (A) Interaction of PC-3 cells co-
cultured with AA-pulsed adipocytes from human BM mesenchymal cells followed by time-lapse video-microscopy. Adipocyte¼white arrow, PC-3
cells¼ green arrows. (B) Photomicrographs showing separate phase contrast, total lipid and D8-AA Fourier Transform Infrared spectroscopy (FTIR) spectral
image and a phase contrast D8-AA overlaid image of a PC-3 D8-AA loaded BM adipocyte (Adp) co-culture. (C) Fourier Transform Infrared Spectroscopy
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Uptake of D8-AA from BM-Ad

Time-lapse video-microscopy data shows CaP cells interact with
adipocytes resulting in loss of lipids from the adipocytes. However,
time-lapse does not provide information on mechanisms of AA
uptake within this environment. Lipid could be taken up by direct
interaction between adipocytes and CaP cells or by assimilation
from the surrounding media once AA is released by adipocytes
following cellular interaction or after the rupture of lipid micelles
during the destructive process. AA uptake can be followed by time-
lapse microscopy and FACS using Nile Red staining (Brown et al,
2006). However, this approach does not distinguish whether AA
comes directly from adipocytes, from free AA, or from AA derived
from other lipid sources. Utilising D8-AA and FTIR spectroscopy,
the transit of AA from adipocytes to the CaP cells can be traced
(Figure 4).

Figure 4B shows an optical photomicrograph of PC-3 cells below
and to the right of an adipocyte. FTIR molecular images obtained
from the boxed area and processed to display intensity distribution
of the total lipid hydrocarbon and u(C–D) signals, indicate the
location of D8-AA and/or its deuterated metabolites. The final panel
overlays the u(C–D) signal on the optical photomicrograph of the
region providing spatial localisation of the D8-AA. This enables
viewing of each cell within the imaging field and acquisition of
spectra from site-specific locations, CaP cells and the surrounding
stromal matrix to determine D8-AA uptake. The total lipid spectra
provide the molecular location of each cell within the field of
chemical analysis. Analysis of D8-AA, shown by the u(C–D) signal
around 2150 cm�1, shows that D8-AA is located at high levels within
the adipocyte and in CaP cells. Background spectra were obtained
from the location denoted ‘Bkg’, which show that the peak within the
u(C–D) spectral range is absent, showing that the D8–AA and/or its
metabolites are contained within the cellular fraction, specifically
within adipocytes and CaP cells, but not within stromal cells.

Intra-cellular localisation of D8-AA and/or its metabolites was
determined using greater magnification of the infrared spectral
image. Figure 5 shows an optical photomicrograph of a PC-3 cell
flanked by D8-AA loaded mBM-Ad. u(C–D) spectral maps show
that D8-AA localises around the PC-3 nucleus, unlike the total
lipid–hydrocarbon signal, which is more homogenous throughout
the PC-3 cell.

Temporal effects of D8-AA exposure to endogenous
biomolecules in PC-3 cells

The intra-cellular location of AA following uptake by CaP cells
(Brown et al, 2006; Gazi et al, 2009) suggests that AA is being used
for specific purposes within the cell. Utilising D8-AA and FTIR, it
is possible to follow spectral changes in the cell’s biochemical con-
stituents over time and relate this information to the D8-AA signal.

PC-3 cells in control and 100 mM D8-AA conditioned media
(Figure 6A) demonstrate an initial rise (0– 60 min; P¼ 40.05) in
endogenous lipid signal followed by a significant fall. This
coincides with an increase in phosphate signal within D8-AA
exposed CaP cells. A much smaller rise in endogenous lipid signal
was observed with 25 mM D8-AA at earlier time points. The
phosphate intensity for 25 mM D8-AA exposed cells did not show
significant differences between phosphate intensities at 0 and
90 min (P¼ 0.35), but thereafter a rise in mean u(¼C–D) signal
was seen, with a significant difference in phosphate signal between
90 and 180 mins (P¼ 0.05). This coincided with the decreased
mean u(¼C –D) signal observed in the time-course D8-AA uptake
(Supplementary Figure 2).

DISCUSSION

The role of lipids in the development and progression of CaP is
controversial. The microscopic prevalence of CaP is widespread

(Franks, 1954), but the incidence of clinically relevant disease
varies internationally, being highest in developed western coun-
tries (Ferlay et al, 2004). These populations have large numbers of
clinically obese men (WHO, 2006) and their general diet is
enriched with foods containing high levels of fat. However, the
relationship between obesity and incidence of CaP is uncertain
(Renehan et al, 2008).

Lanier et al, 1996 and Rose, 1997 followed changes in Inuit and
Japanese population diets, showing that both populations coin-
cidentally experienced increases in clinically significant CaP, as
their diet changed from a fish-based diet rich in long chain o-3
lipids (EPA/DHA) to an o-6 enriched westernised diet. It is
hypothesized that changes in o-6 :o-3 ratio has led to increased
incidence of clinically significant prostate, breast, pancreatic, and
colon cancers. This observation mirrors changes in o-6 :o-3 ratio
before and after the industrial revolution in ‘western’ countries.
Historically, ‘western’ diets had lower saturated and unsaturated
fat levels, with o-6 :o-3 ratios of about 1 : 1. The augmented use of
modern vegetable oils has increased western o-6 PUFA consump-
tion at the expense of o-3 PUFA (Kris-Etherton et al, 2000).
During this period the presentation of clinically significant CaP has
increased (Hsing et al, 2000). Although there are a number of
potential reasons for this, such as increased longevity and better
CaP detection/diagnosis, it is interesting to hypothesise that the
increase is directly related to dietary changes.

As epidemiological evidence suggests that the switch to modern
vegetable oils has upset the differential balance of o-6 :o-3 PUFAs
resulting in increased risk of developing clinically aggressive CaP,
we studied the role of PUFAs in CaP metastatic behaviour utilising
validated in vitro models (Hart et al, 2005), supplemented by time-
lapse video-microscopy and functional interrogation using FTIR-
based spectroscopy. Oils commonly featured in western diets were
made up at concentrations similar to the dose of AA previously
shown to induce maximal invasion (Brown et al, 2006) and within
the concentration range reported by Maurin et al 2002 as having
an effect on human osteoblasts. Using these oils we were unable to
induce CaP cellular invasion in our experiments. This is unlikely to
be due to the cyclodextrin used to encage lipid droplets, (required
for emulsification of the oil for in vitro experimentation) as AA
control was similarly prepared. This attracted CaP avidly as
reported herein and elsewhere (Brown et al, 2006). This finding
shows that dietary oils in unprocessed forms are not the factor
inducing the observed cellular changes presented herein.

Linoleic acid and ALA both promote proliferation and migration
of PC-3 cells, therefore we assessed each lipid component
separately as a cyclodextrin-induced emulsion to determine their
stimulatory effects. Both induced CaP invasion, with 30 mg ml�1 LA
inducing the greatest level. The reduced invasion towards LA
compared with AA may be because of the cells’ requirement to
convert LA into AA and to metabolize AA to induce invasion. It
has been postulated (Angelucci et al, 2008) that proliferation and
migration is controlled by an autocrine loop maintaining EGFR
signalling which, in turn, is controlled by AA-induced TGF-a. This
suggests for LA to stimulate invasion, it must be first metabolised
to AA, which is then metabolised by 5-LOX and COX-2 to induce
EGFR-mediated signalling of invasion. This may be less efficient at
stimulating invasion than supplying AA directly.
a-Linolenic acid, a short chain o-3 PUFA (C18) from plant oils,

induced high levels of invasion, this was not as pronounced with
LA but it occurred maximally at lower concentrations, unlike the
long chain o-3 PUFAs, EPA (C20), and DHA (C22), which reduce
CaP migration towards BMS (Brown et al, 2006). This supports
evidence showing that ALA increases the risk of CaP progression
(Leitzmann et al, 2004).

Invasion towards o-9 oleic acid, the main component of olive
oil, was also seen. This conflicts with perceived thinking about
olive oil, previously thought to be a major dietary component
responsible for reducing the risk of clinically significant CaP in
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Mediterranean men (Simopoulos, 2004; Stamatiou et al, 2007).
Oleic acid has been shown to activate EGFR signalling in both
endothelial (Vacaresse et al, 1999) and breast cancer cell lines
(Soto-Guzman et al, 2008). Angelucci et al (2008) has previously
reported that AA stimulates the EGFR pathway leading to
increased cellular invasion. This suggests that within our in vitro
model, where oleic acid is the predominant lipid within the system,
oleic acid may act in a similar way to AA and induces invasion via
the EGFR signalling pathway.

Differences between dietary oils and their individual constitu-
ents in inducing invasion may be because of lipid mixture they
contain. We have shown previously that 5 mM EPA or DHA inhibits
the invasive effects of 10 mM AA on CaP. It is possible that the ratio
of o-6 :o-3 PUFAs in oils tested was within the range which

nullified the stimulatory signal of o-6. Other lipids within the
mixture may have masked the effect of individual PUFAs. Another
possible factor is the form in which prostate cells encounter lipid.
Lipids are insoluble and are stored in adipocytes within target
tissues. It may be that CaP cells presented directly with neat dietary
oils are unable to utilise this substrate. Once the oil mixture has
been taken up and ‘processed’ by adipocytes, resulting in
production and storage of AA and its metabolites PGE2 and
5-HETE, CaP cells may utilise specific lipid or metabolites to
induce invasion. If this notion was true, the BM-Ad may be of
considerable importance in initiating metastatic implantation.
Adipocytes are present in all tissues, but CaP metastasis to
subcutaneous tissue is unusual, whereas spread to BM is very
common. This raises the question of whether adipocytes in all
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areas function similarly. Adipocytes in different areas may
process/store fat differently according to the role that they are
supporting and although few studies have been conducted in this
area, it has been reported that BM-Ad’s have distinct and critical
differences compared with extramedullary adipocytes (Bathija
et al, 1979; Tavassoli, 1984; Gimble et al, 1992).

Although the exact function of BM-Ads is unclear (Nuttall et al,
1998) they are numerous in this location, where they have a key
role in haematopoiesis (Gimble et al, 1992), with cobblestone areas
close to adipocytes representing active haematopoiesis. Further-
more, propagation of long term BM culture fails when adipocytes
are absent, following arrest of differentiation from adipocyte
precursors in steroid-free culture (Brown et al, 2006). Therefore, as
BM-Ads are integrally involved in haematopoietic cell prolifera-
tion/propagation, they may also be an important component in
CaP– BMS interaction. This may explain the co-localisation of CaP
cells with adipocytes and the consequent influence on CaP
migration and growth in vitro (Tokuda et al, 2003; Brown et al,
2006; Gazi et al, 2007).

Following these observations, we studied the metabolites and/or
AA stored within BM-Ad and their surrounding microenviron-
ment utilising an adipocyte differentiation culture system. This
protocol amplifies isolated primary human BM-MSC in culture
using basal stem cell media (BSCM) with adipogenic stimulatory
supplements to induce differentiation down the adipocyte path-
way. Although this method gave rise to BMS containing
adipocytes, their number was considerably lower than that
achieved with established methods using human BM aspirates in
long-term culture (Coutinho et al, 1993). This may be because of
human aspirates already containing greater numbers of adipocyte
precursors (unlike MSC systems, where adipocyte precursors must

undergo adipogenic differentiation) and/or to the long-term BM
culture media containing selected FCS and horse serum, which
support adipogenesis/haematopoiesis. To assess the effect of
specific PUFAs on BM-MSC adipogenesis, we utilised BSCM
supplemented with hydrocortisone (an essential factor for indu-
cing adipogenesis within BMS cultures), which we have shown
previously to be capable of deriving BM-Ad containing specific
fatty acids (Gazi et al, 2007). We now show for the first time that
specific lipids have differential effects on adipocyte differentiation
in human BMS. Linoleic acid, ALA, EPA, and oleic acid induced
differentiation of similar numbers of adipocytes as the proprietary
adipogenic supplements but at the same concentration, AA
induced four-fold greater adipogenesis than proprietary media.
This suggests that AA interacts with adipogenic differentiation
pathways, inducing a proportional increase in adipocyte numbers.
Thus, in the presence of specific lipids, the number of BM-Ad will
increase, potentially augmenting the chemoattractive stimulus of
migrating cancer cells known to be in circulation in escalating
numbers as cancer load increases (Danila et al, 2007) and
increasing the statistical chance of ‘proximity’ encounters between
migrating cancer cells and BM-Ad. Thus, in a ‘Darwinian’ sense,
the ‘fitness’ of the cancer cell to survive and propagate in red BM is
enhanced. Specific PUFAs also had differential effects on cancer
cell migration (Figure 2C). There was significant induction by all
PUFAs but the AA-loaded adipocytes were especially potent
stimulators, surpassing that induced by free AA control. Thus,
AA not only induces greater adipogenesis than other PUFAs, it’s
processing by the adipocyte also leads to super-added chemoat-
tractive stimulation. This may be because of the production of
metabolites and initiation of additional pathways that are
themselves potent stimulators of invasion (Hassan and Carraway,
2006; Angelucci et al, 2008).

The strong stimulation of invasion by EPA-loaded adipocytes is
paradoxical, running counter to previous data (Brown et al, 2006)
showing that marine o-3 PUFAs inhibit CaP invasion. The result
herein may be because of adipocytes being loaded with EPA in
relative isolation to other lipids. Bagga et al (2003) showed that the
COX-2 metabolite of EPA, PGE3, although not mitogenic itself,
could regulate COX-2 expression and induce IL-6 secretion from
macrophages. Although similar in action and signalling to PGE2,
PGE3 is not as efficient in inducing COX-2 gene expression. In our
system, where EPA is the main lipid within adipocytes, EPA may
be metabolized by the high expression of COX-2, generating PGE3

and stimulating IL-6 production. Increased serum IL-6 levels are
associated with poorer prognosis in CaP (Nakashima et al, 2000)
and are known to have proliferative properties which induce
cancer-like behaviour, including migration of gastric cancer cells
(Lin et al, 2007), trans-endothelial migration of melanoma
(Kitamura et al, 1997) and ovarian cell lines NOMI and SKOV
(Obata et al, 1997).

We showed previously that CaP cells frequently associate with
BM-Ads in co-culture, resulting in the appearance of cytoplasmic
lipid vesicles. This observation was supported by Tokuda et al
(2003), who showed direct interactions of CaP cells with
epididymal adipocytes, with concomitant uptake of lipid droplets
by CaP cells. Time-linked measurements of co-cultures provide a
unique insight to the interaction between CaP cells and BM-Ads.
Over 44 h, PC-3 cells migrated towards, made contact with, and
induced wholesale destruction of adipocytes (Figure 4A and
Supplementary video). When contact was established between
epithelial cell and adipocyte, there was a marked induction of
cellular activity with dramatic and visible prostate cellular
recruitment and proliferation, with concomitant changes in
morphology and motility. This suggests that BM-Ads are the focal
point for malignant epithelial-cell aggregation and proliferation
within BMS and that cellular behaviour can be altered dramatically
following lipid BM-Ad contact and lipid uptake. Circulating PECs
can be detected in BMS of CaP patients even in early stage disease
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Figure 6 Chemometric analysis of arachidonic acid (AA) metabolism in
PC-3 cells. Endogenous (A) lipid and (B) phosphorylation signals in PC-3
cells following exposure to 25mM and 100 mM D8-AA or no D8-AA
(control). Fourier Transform Infrared spectroscopy (FTIR) measurements
over 3 h.
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(Ross et al, 2005), but few cells survive to form a metastasis
(Melchior et al, 1997). Our data suggests that direct interactions of
such cells with BM-Ad will enhance their capacity to survive and
propagate.

Using FTIR to track deuterated AA in loaded adipocytes, the D8-
AA signal could only be detected in CaP cells associated with those
adipocytes and in remnants of the adipocytes themselves, thus
suggesting a specific mechanism of uptake and utilisation of AA by
CaP cells. This process was not apparent in stromal cells and is
clearly not a process of passive diffusion from the surrounding
microenvironment as that the deuterated signal, u(C– D), could
not be detected within the surrounding micro-environment.
Objective measurement of direct D8-AA uptake by CaP cells from
adipocytes supports observations using electron and confocal
microscopy (Tokuda et al, 2003; Brown et al, 2006; Gazi et al, 2007)
showing direct interaction of CaP cells with adipocytes with direct
acquisition of lipid droplets. High-resolution FTIR mapping of
lipid laden CaP cells (Figure 5) shows that u(C–D) localises around
the CaP nucleus. Apparent nuclear localisation may occur at the
thickest region of the cell, with greater amounts of D8-AA
(or metabolite) for detection. However, the intensity of lipid
hydrocarbon signal across each CaP cell is homogenous, indicating
a non-significant change in path-length across these cells. The
observed phenomenon is, therefore, likely because of translocation
of lipid from the cell membrane towards the nucleus, a process
previously observed using Nile Red (Brown et al, 2006). This
migration of captured lipids may be a conserved mechanism, as
measurements using synchroton radiation SR-FTIR of CaP cells
co-incubated with D31-PA loaded adipocytes also showed FA
location to the nuclear region (Gazi et al, 2009). The reason for this
localisation is unknown and future studies are required to
determine which organelles the lipids are localising to.

Fourier Transform Infrared spectroscopy analysis enables the
generation of chemical maps of cells, with spectral peaks indicating
the presence and relative quantities of specific chemical moieties.
Combining this with time-lapse microscopy allows temporal
analysis of defined chemical groups, providing the investigator
with dynamic metabolic data. These techniques used herein with
D8-AA showed an initial increase in endogenous lipid signal in CaP
cells followed by a drop after 60 min. This drop coincided with an
increase in the phosphate signal (Figure 6). Various factors may be
contributory, levels of unesterified cytosolic AA are tightly
controlled by two distinct, coordinated pathways, for exposure to
low or high AA concentrations (Monjazeb et al, 2006). The
predominant ‘high-affinity– low-capacity’ pathway, incorporates
low concentrations of intracellular AA into glycerolipids

responsible for phospholipid –arachidonate re-modelling. When
the intra-cytoplasmic concentrations of unesterified AA over-
whelm this pathway, a ‘low-affinity– high-capacity’ pathway
incorporates unesterified AA primarily into TAG and diarachido-
nyl phospholipids (Monjazeb et al, 2006). This may also explain
the absence of a similar rise in CaP cells incubated with 25 mM D8-
AA as the metabolic demand resulting from media exchange was
partially compensated by D8-AA, which does not contribute to the
measured endogenous lipid signal. The influx of D8-AA may also
have been at sufficiently low levels for the cell to sequester PUFAs
using only the high-affinity – low-capacity pathway.

Prostate cancer cells exposed to 100mM D8-AA exhibited signi-
ficant rises in endogenous lipid signal between 0 –60 min (Po0.05)
(Figure 6A). This may be because of phospholipid biosynthesis
and/or TAG synthesis to sequester a large D8-AA influx, as part of
its regulatory mechanism. The lipid signal for the 100mM D8-AA
exposed cells fell significantly after 60 mins, suggesting the
initiation of TAG breakdown and mobilisation of D8-AA. Between
90–120 mins, where lipid levels were low in 100 mM D8-AA exposed
cells, we found a reduction in u(¼C–D) signal (Supplementary
Figure 2). These data suggest that mobilized AA is subsequently
metabolised by the COX/LOX pathway to eicosanoids and
exported out of cells. The significant upregulation of phosphate
signal at time-points 60 min (compared with 40 mins), for the
100mM D8-AA exposed cells (Figure 6B), could result from effects
of eicosanoids binding to cell surface receptors and activating
kinase pathways for stimulating cell growth/proliferation.

In summary, we have shown that dietary oils in their native form
do not stimulate CaP progression/invasion unlike their pure
constituent PUFAs. This suggests that dietary oils must be pro-
cessed before they becoming stimulants for invasion. AA induces
proportionally higher levels of BM-Ad differentiation than other
PUFAs and these AA-loaded adipocytes are potent inducers of PEC
invasion. Direct monitoring of CaP cells in BMS co-culture shows
that they migrate towards and interact directly with AA-loaded
adipocytes. This interaction is followed by direct uptake and
metabolism of AA by CaP cells, resulting in the destruction of
adipocyte and transformation of the cancer cell into a more aggres-
sive and motile phenotype. Taken together, the data supports the
hypothesis that AA not only promotes CaP invasion, it also
prepares the BMS ‘soil’, making it more supportive for implanta-
tion and propagation of the migrating metastatic cell.

Supplementary Information accompanies the paper on British
Journal of Cancer website (http://www.nature.com/bjc)
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