
Submitted 30 October 2014
Accepted 16 February 2015
Published 5 March 2015

Corresponding author
Qing-Ping Zeng, qpzeng@163.com

Academic editor
Joao Rocha

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj.822

Copyright
2015 Wang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Artemisinin mimics calorie restriction to
trigger mitochondrial biogenesis and
compromise telomere shortening in mice
Da-Ting Wang1,4, Jiang He1,4, Ming Wu2, Si-Ming Li3, Qian Gao1 and
Qing-Ping Zeng1

1 Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
2 School of Life Science, Sun Yat-sen University, Guangzhou, China
3 The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
4 These authors contributed equally to this work.

ABSTRACT
Calorie restriction is known to extend lifespan among organisms by a debating mech-
anism underlying nitric oxide-driven mitochondrial biogenesis. We report here that
nitric oxide generators including artemisinin, sodium nitroprusside, and L-arginine
mimics calorie restriction and resembles hydrogen peroxide to initiate the nitric
oxide signaling cascades and elicit the global antioxidative responses in mice. The
large quantities of antioxidant enzymes are correlated with the low levels of reactive
oxygen species, which allow the down-regulation of tumor suppressors and accessory
DNA repair partners, eventually leading to the compromise of telomere shortening.
Accompanying with the up-regulation of signal transducers and respiratory chain
signatures, mitochondrial biogenesis occurs with the elevation of adenosine triphos-
phate levels upon exposure of mouse skeletal muscles to the mimetics of calorie
restriction. In conclusion, calorie restriction-triggered nitric oxide provides antiox-
idative protection and alleviates telomere attrition via mitochondrial biogenesis,
thereby maintaining chromosomal stability and integrity, which are the hallmarks of
longevity.
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INTRODUCTION
Calorie restriction (CR) is a robust and extensively reproducible intervention of lifespan

extension among organisms ranging from yeast to mammals (Koubova & Guarente, 2005;

Spindler, 2010). CR is supposed to exert a longevity-promoting effect through enhanced

mitochondrial biogenesis, which is initiated by nitric oxide (NO) derived from endothelial

nitric oxide synthase (eNOS) (Nisoli et al., 2003; Nisoli et al., 2005; López-Lluch et al.,

2006). It is also noted that the increment of respiratory activity increases cell and animal

longevity (Lanza & Nair, 2010). An ‘uncoupling to survival’ hypothesis suggests that CR

may increase respiratory activity and extend life expectancy by uncoupling oxidation

from phosphorylation (Brand, 2000). Indeed, several mitochondrial uncoupling strategies

allow lifespan extension in yeast (Barros et al., 2004), nematodes (Lemere et al., 2009),

and fruit flies (Humpherey et al., 2009). A low dose of the mitochondrial uncoupler

2,4-dinitrophenol (DNP) remarkably extends mouse lifespan (Cerqueira, Laurindo &

Kowaltowski, 2011).
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It is clear that DNP carries protons to leak across the inner mitochondrial membrane,

leading to the disconnection of both adenosine triphosphate (ATP) regeneration from

adenosine monophosphate (AMP) and oxidized nicotinamide adenine dinucleotide

(NAD+) conversion to reduced nicotinamide adenine dinucleotide (NADH + H+) (Korde

et al., 2005). The increases of AMP and NAD+ can separately activate AMP-activated

kinase (AMPK) and NAD+-dependent deacetylase Sirtuin 1 (SIRT1), which can coordi-

nately activate peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α)

essential for mitochondrial biogenesis (Rodgers et al., 2005; Lee et al., 2006). It has been

recently demonstrated that the AMPK activator metformin mimics CR to improve

healthspan and extend lifespan in mice (Martin-Montalvo et al., 2013). The SIRT1 activator

resveratrol has been also known to exert CR-like beneficial effects on obese humans’ life

quality (Blagosklonny, 2010).

Since metabolic suppression was suggested to mitigate DNA damage (Koubova & Guar-

ente, 2005), a novel model deciphering CR-conferred DNA protection has been established,

in which CR-mediated metabolic/hormonal adaptations result in cellular adaptations

including reduced cell proliferation, increased autophagy or apoptosis, up-regulated

DNA repair systems, and enhanced genomic stability (Longo & Fontana, 2010). Most

recently, CR has been shown to synergize with telomerase for promoting mouse longevity,

suggesting a role of shortened telomeres in aging (Vera et al., 2013). Nevertheless, it has not

yet been identified the mechanism by which CR protects DNA and telomeres.

According to the findings that CR induces NO (Nisoli et al., 2003; Nisoli et al., 2005) and

NO competitively binds to cytochrome c oxidase (COX) (Mason et al., 2006), we propose

here that CR-triggered NO might interact with COX to initiate mitochondrial uncoupling,

which would provoke oxidative burst, activate antioxidative responses, mitigate DNA

damage, and thereby compromise telomere shortening. To provide evidence supporting

our proposition, we choose three different types of in vivo NO generators to replicate the

effect of CR-triggered NO on the integrity of telomeres in mice. Artesunate (ART) is a

semi-synthetic soluble derivative of artemisinin, a sesquiterpene endoperoxide that has

been clinically used for antimalaria, and has been identified as an inhibitor of nitric oxide

synthase (NOS) and an inducer of NO (Zeng & Zhang, 2011; Zeng et al., 2011). Sodium

nitroprusside (SNP) as an NO donor and L-arginine (ARG) as an NO precursor have

been widely used in modern medicine. Additionally, hydrogen peroxide (H2O2) was also

included to simulate NO-posed oxidative stress that elicits antioxidative responses.

From the present study, we have disclosed the implication of NO signaling in telomere

maintenance, and replayed the molecular episode of NO-mediated telomere protection.

Also, we have rehearsed H2O2-compromised telomere shortening. In such context, we

can explain why CR extends lifespan by annotating that CR triggers NO burst, initiates

mitochondrial biogenesis, scavenges reactive oxygen species, attenuates DNA damage, and

alleviates telomere attrition, thereby eventually leading to lifespan extension. We expect

that the elucidation of de novo mechanisms underlying anti-aging/longevity in mammals

should beneficial to a better solution to more and more severe human health issues.

Wang et al. (2015), PeerJ, DOI 10.7717/peerj.822 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.822


MATERIALS AND METHODS
Animals and treatment procedures
Kunming (KM) mice, belonging to an outbred population originated from SWISS mice,

were used in the present study. All mice were housed on a 12-h light: 12-h dark cycle at

25 ◦C, and fed with either ad libitum (AL) or 60% AL (CR). For treatment, AL mice were

injected by 260 µM ART, 67 µM SNP, 5.7 mM ARG, or 200 µM H2O2 in 50 µl injection

volume/20 g body weight. Each drug was injected into an identical loci of the skeletal

muscles on one hind-leg, and samples were collected from skeletal muscle tissues around

the injected sites. Animal procedures were in accordance with the animal care committee

at the Guangzhou University of Chinese Medicine, Guangzhou, China. The protocol was

approved by the Animal Care Welfare Committee of Guangzhou University of Chinese

Medicine (Permit Number: SPF-2011007).

Enzyme-linked immunosorbent assay (ELISA)
All target proteins/peptides, including CAT, COX4, eNOS, GSH, SIRT3, SOD1, and SOD2,

as well as the reference protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH),

were immunoquantified according to antibody manufacture’s manuals. The antibody

against eNOS was purchased from Assay Biotechnology Co. Ltd. (Sunnyvale, CA, USA).

The antibody against COX4 was purchased from Beijing Biosynthesis Biotechnology Co.

Ltd. (Beijing, China). Other first antibodies were purchased from R & D Systems, Inc.

ROS levels were measured with a Mouse ROS ELISA Kit (EIAab Science Co. Ltd., Wuhan,

China) following the manufacturer’s instructions.

Western blotting
The antibodies against AMPKα1/2 (H-300), AMPKα1/2 (Thr172), Akt1 (B-1), CYT C

(H-104), PGC-1 (H-300), p-Akt1/2/3 (Ser473), and p-MFN2 (H-68) were purchased from

Santa Cruz Biotechnology, Inc. (Dallas, Texas, USA). The SIRT1 antibody was purchased

from Milipore (Temecula, California, USA). The eNOS antibody was purchased from

Assay Biotechnology Co. Ltd. (Sunnyvale, CA, USA). The p-eNOS (Ser1177) antibody

was purchased from Cell Signaling Technology, Inc. (Danvers, Massachusetts, USA). The

blotting experiments were performed obeying to the manufacturer’s instruction manuals.

The gray scale values from blotted proteins were measured using a scanning instrument,

and the raw data of gray scale values were normalized by a gray scale value of the reference

protein GAPDH available from each group.

Southern blotting
Total DNA was extracted and digested by the restriction enzymes Hinf I and Rsa I. South-

ern blotting was performed by the hybridization of digested DNA with digoxin-labeled

(TTAGGG)4 probes according to the manufacturer’s instructions. The lengths of telomere

fragment bands on the gel were estimated by comparison with the base pairs of DNA

standards.
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Table 1 The primer sequences and fragment lengths of amplified genes.

Genes Primers Fragment lengths (bp)

GAPDH F:5’GTTGTCTCCTGCGACTTCA3’
R:5’GCCCCTCCTGTTATTATGG3’

293

BRCA2 F:5’AAGCCAAGCCACATAGCACAG3’
R:5’ACTCCAGCCGAACCTTCAAAT3’

164

RB F:5’AAATCATCGTCACTGCCTACAA3’
R:5’AGGAATCCGTAAGGGTGAACT3’

236

MYC F:5’GACTGTATGTGGAGCGGTTTCT3’
R:5’GCTGTCGTTGAGCGGGTAG3’

213

RAD50 F:5’AGTTTACTCCCAGTTCATTACGC3’
R:5’CTCTATTGACACTCTGTAGTCGGTT3’

287

RAD51 F:5’CTGCCCTTTACAGAACAGACTACTC3’
R:5’GGCTACTACCTGGTTGGTGATTAC3’

140

TERT F:5’GCCCAGACCTCAATTAAGACGA3’
R:5’CTTCAACCGCAAGACCGACA3’

96

Quantitative polymerase chain reaction (qPCR)
Total RNA was extracted from mouse skeletal muscle cells by a Trizol methods. The

primers with the sequences listed in Table 1 were synthesized by Invitrogen (Carlsbad,

California, USA). The copy numbers of amplified genes were estimated by 2−ΔΔCt, in

which ΔΔCt = [target gene (treatment group)/target gene (control group)]/[house-

keeping gene (treatment group)/house-keeping gene (control group)]. The raw qPCR data

were normalized by the copy numbers of the reference gene GAPDH.

RT-PCR array
The Mouse Ubiquitylation Pathway RT2 ProfilerTMPCR Array was provided by SABio-

science Qiagen, (Hilden, Germany). The experiments were performed by Kangchen

Biotechnology Co., Ltd., Shanghai, China.

Laser confocal microscopy
The fresh samples of mouse skeletal muscles were fixed in paraformadehyde for 24 h. After

repeatedly rinsed, the fixed tissues were dehydrated by gradient ethanol. For embedding

and sectioning, the tissue slices were pasted on the slides and coated at 50 ◦C. After

they were dewaxed by a transparent reagent and rinsed, the slides were incubated with

antibodies and stained by DAPI. After drying, a fluorescence quencher was added and

slides were sealed. The fluorescence-labeled second antibodies and the first antibodies

against BRCA1 and TERT were purchased from Beijing Biosynthesis Biotechnology

Co., Ltd. (Beijing, China). Immunoblotting was carried out based on the manufacturer’s

instructions.

Electronic microscopy
After treatment, cells were harvested and fixed in 2.5% glutaraldehyde in 0.1 M phosphate

buffer for three hours at 4 ◦C, followed by post-fixation in 1% osmium tetroxide for one
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hour. Samples were dehydrated in a graded series of ethanol baths, and infiltrated and

embedded in Spurr’s low-viscosity medium. Ultra-thin sections of 60 nM were cut in a

Leica microtome, double-stained with uranyl acetate and lead acetate, and examined in a

Hitachi 7700 transmission electron microscope at an accelerating voltage of 60 kV.

Determination of NO and ATP levels
The NO and ATP levels were determined by the reagent kits manufactured by

Jiancheng Biotechnology Institute, Nanjing, China. The NO levels (µM/g) =(ODtest −

ODblank)/(ODstandard − ODblank) • standard nitrate concentration (20 µM)/sample

protein concentration (µg/µl). The ATP levels (µM/g) =(ODtest − ODblank)/(ODstandard −

ODblank) • standard ATP concentration (1000 µM) • sample dilution folds/sample protein

concentration (µg/µl).

Statistical analysis
Statistical analyses were conducted by the one-way ANOVA method using SPSS version

17.0 for Windows. All data were represented as mean ± SEM unless otherwise stated.

The XY graphs and column graphs were plotted and depicted using GraphPad Prism

version 4.0.

RESULTS
CR and mimetics up-regulate eNOS and COX4 coordinately in a
time-dependent manner
Considering that the up-regulation of mitochondrial genes is essential for CR-elicited

mitochondrial biogenesis via NO signaling, we tried to validate whether CR might

up-regulate the mitochondrial biomarker COX4 via enhanced eNOS expression. For this

purpose, we determined the quantities of eNOS and COX4 in the skeletal muscles of

mice exposed to CR or injected by ART, SNP, or ARG. Because NO-driven mitochondrial

biogenesis was assumed to accompany with oxidative burst, we also used H2O2 to mimic

CR’s inducible effects on the expression of eNOS and COX4.

Like CR exposure for as long as three months, treatment of mice by ART, SNP, ARG,

or H2O2 for one, three, six hours, or three days allows the gradual increases of both eNOS

quantities (Fig. 1A) and COX4 quantities (Fig. 1B). To reach a level of significant difference

from the control (AL mice), ARG needs only one hour, H2O2 needs three hours, SNP

needs six hours, and ART needs even three days. Among groups, ARG treatment exhibits

the largest quantities of eNOS and COX4, even larger than those upon exposure to CR.

Interestingly, H2O2 treatment also induces larger quantities of COX4 and equal quantities

of eNOS as compared with NO generators.

These results indicate that ART, SNP, ARG, or H2O2 can mimic CR to induce the

enhanced expression of eNOS and COX4, implying that CR may affect mitochondrial

structure and enhance mitochondrial function through the involvement of NO and H2O2.

Because accompanying with NO-posed oxidative stress, CR and mimetics are anticipated

to elicit antioxidative responses at least in mitochondria or even throughout whole cells.
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Figure 1 ART, SNP, ARG, or H2O2 mimics CR to increase the quantities of eNOS and COX4 in mouse
skeletal muscle cells. (a) ELISA for eNOS measurement after treatment for different durations. (b) ELISA
for COX4 measurement after treatment for different durations. 0 h represents AL; 3 m indicates CR for
three months; and 1 h, 3 h, or 6 h means treatment for one hour, three hours, or six hours. ART (260 µM),
SNP (67 µM), ARG (5.7 mM), or H2O2 (200 µM) was injected into the mouse skeletal muscle in the
dose of 50 µl volume/20 g body weight. The 1 h, 3 h, or 6 h group had only one injection, and the 3d
group had three daily injections. The ages of mice used are two-month-old except for CR mice, which
are four-month-old with one-month AL and three-month CR treatment. The significance of statistical
difference between a treatment sample and the AL sample was represented by * P < 0.05; ** P < 0.01; ***
P < 0.001(n = 3).

CR and mimetics attenuate oxidative stress upon eliciting
antioxidative responses
To reveal the effects of CR-triggered NO and H2O2 on the oxidative and antioxidative

homeostasis, we monitored the dynamic changes of mitochondrial manganese superoxide

dismutase (Mn-SOD, SOD2) and its activator SIRT3 in the skeletal muscle cells of mice

treated by CR and mimetics. Consequently, both Mn-SOD (Fig. 2A) and SIRT3 (Fig. 2B)

are synchronously up-regulated in a time-dependent manner after exposure to CR or

injection by ART, SNP, ARG, or H2O2. While ARG induces the highest Mn-SOD quantity,

SNP induces the highest SIRT3 quantity. These results demonstrate that antioxidation

against oxidation is initiated from the activation of SIRT3-SOD2 in mitochondria of

skeletal muscle cells after treatment of mice by CR and mimetics.

Except for specifically up-regulating Mn-SOD, CR and mimetics were also found to

increase the quantities of total SOD enzymes that include cytosolic copper/zinc SOD

(Cu/Zn-SOD, SOD1) (Fig. 2C). Additionally, CR and mimetics-treated mice exhibit the

increases of catalase (CAT) and glutathione (GSH) (Figs. 2D and 2E), among which ARG

induces the highest levels of SOD and GSH, while H2O2 induces the highest level of CAT.

These results indicate that CR and mimetics can coordinately activate the antioxidative

network in skeletal muscle cells, at least including SOD, CAT, and GSH.

Accordingly, a significant decline of the total levels of reactive oxygen species (ROS)

in mouse skeletal muscle cells was observed after treatment of mice by ART, SNP, ARG,

H2O2, or CR (Fig. 2F), suggesting an essential consequence of ROS scavenging by activated

antioxidant enzymes. After treatment of mice by CR mimetics for one hour, SNP renders

the lowest ROS level, H2O2 confers the second lower ROS level, and ARG and ART keeps a

relatively lower ROS level than AL.
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Figure 2 ART, SNP, ARG, H2O2, or CR activates antioxidant networks for ROS scavenging. (A) and
(B) ELISA measurement of time-dependently induced mitochondria-localized Mn-SOD and SIRT3 by
CR and mimetics. (C), (D), and (E) ELISA measurement of time-dependently induced SOD, CAT, and
GSH by CR and mimetics. (F) ELISA measurement of the total ROS level in mice treated by CR and
mimetics. 0 h represents AL; 3 m indicates CR for three months; and 1 h, 3 h, or 6 h means treatment for
one hour, three hours, or six hours. ART (260 µM), SNP (67 µM), ARG (5.7 mM), or H2O2 (200 µM)
was injected into the mouse skeletal muscle in the dose of 50 µl volume/20 g body weight. The 1 h, 3 h,
or 6 h group had only one injection, and the 3d group had three daily injections. The ages of mice used
are two-month-old except for CR mice, which are four-month-old with one-month AL and three-month
CR treatment. The significance of statistical difference between a treatment sample and the AL sample
was represented by * P < 0.05; ** P < 0.01; *** P < 0.001 (n = 3).
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These results demonstrate that CR and mimetics can effectively stimulate the

antioxidative responses in mouse skeletal muscle cells to quench ROS and create a less

oxidative stress milieu.

CR and mimetics mostly down-regulate ubiquitylation pathway
genes including tumor suppressors responsible for DNA repair
To make sure the relevance of CR and mimetics to the ubiquitin-mediated proteolysis

pathway (UMPP) that is involved in the auto-regulated degradation of proteins, we set

out to investigate whether CR and mimetics would affect the expression of ubiquitylation

pathway genes. From the transcript profiling of ubiquitylation genes among ART, SNP,

ARG, H2O2, and CR groups, it was noted that all 84 ubiquitylation genes examined are

mostly down-regulated (Fig. 3, and see also Tables S1–S5 for details).

Among examined genes, 11 genes encoding ubiquitin-activating enzyme (E1)

are unchanged or down-regulated in different groups, whereas 73 genes encoding

ubiquitin-conjugating enzyme (E2) and ubiquitin-protein ligase (E3) genes are mostly

down-regulated at a different extent. For example, one of the autophagy genes, ATG7

(E1), is down-regulated for 35 folds in CR and for 2–5 folds in other treatment groups,

and UBE2C (E2/E3) is down-regulated for 112 folds in CR and for 16–45 folds in other

treatment groups. These results suggest that ubiquitylation-tuned protein degradation

has been compromised upon exposure to CR for three months or after treatment by CR

mimetics for three days.

The analysis of RT-PCR array data also indicates that a few of tumor suppressors and

some DNA repair proteins are down-regulated, in which BRCA1 is down-regulated for

approximately 25 folds among all treatment groups, while BARD1 is down-regulated for

30–60 folds by ART, SNP, or ARG, and five folds by CR. TRP53 is slightly down-regulated

in all treatment groups. Furthermore, we also detected the down-regulation of some

BRCA1 partner-encoding genes including BRCA2, MYC, RAD50, and RAD51 in CR

mice. While RB is unchanged in CR mice, MYC and RB are mildly up-regulated by ART

and H2O2. Besides, we observed that telomerase reverse transcriptase gene (TERT) is

down-regulated by ARG, CR, and SNP, and unchanged after treatment by ART and H2O2

(Table 2).

From the fact that DNA repair genes are mostly down-regulated by CR and mimetics,

we conclude that DNA damage in mice treated by CR and mimetics should be attenuated

in a low oxidative milieu that is resulted from antioxidative activation and ROS scavenging.

It is also conclusive that because oxidative DNA lesions are mitigated, TERT is of course

accordingly down-regulated or unchanged in all treatment groups.

CR and mimetics-maintained longer telomeres are correlated with
suppressed oxidative circumstance
From the results regarding the global down-regulation of tumor suppressor genes and

accessory DNA repair genes by CR and mimetics, it can be expected that mice treated by

CR and mimetics should have longer telomeres. To confirm this deduction, we compared

the lengths of telomere restriction fragments (TRFs) from the skeletal muscle cells of CR
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Figure 3 A hierarchical clustering illustration for the up/down-regulation of 84 ubiquitylation genes
from RT-PCR array data. The red color represents up-regulation as compared with AL; and the green
color represents down-regulation as compared with AL. The RT-PCR array was performed after daily
injection for three days into mouse skeletal muscle by 260 µM ART, 67 µM SNP, 5.7 mM ARG in the dose
of 50 µl volume/20 g body weight, or one injection by 200 µM H2O2 (50 µl/20 g), and sampling after
last injection for six hours. The ages of all mice used are four-month-old, among which CR mice have
one-month AL and three-month CR treatment.

Wang et al. (2015), PeerJ, DOI 10.7717/peerj.822 9/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.822


Table 2 Quantification of amplified transcripts from DNA repair genes and TERT in skeletal muscle
cells of mice treated by CR, H2O2, ART, SNP, ARG, or AL. (A) The normalization of quantified
transcripts of DNA repair genes and TERT by a specific target gene vs the reference gene GAPDH. (B)
The fold changes of quantified transcripts of DNA repair genes and TERT in treated mice vs AL mice.

Sample BRCA2
/GAPDH

RB
/GAPDH

MYC
/GAPDH

RAD50
/GAPDH

RAD51
/GAPDH

TERT
/GAPDH

CR 6.48E−05 3.21E−04 6.40E−05 3.33E−05 9.68E−05 1.64E−05

H2O2 9.87E−05 1.82E−03 4.62E−03 2.95E−04 1.39E−04 3.07E−05

ART 9.29E−05 1.48E−03 1.56E−03 5.79E−04 1.87E−04 4.14E−05

SNP 1.36E−04 1.64E−03 3.90E−04 3.31E−04 1.83E−04 1.94E−05

ARG 6.51E−05 1.17E−03 2.71E−04 3.02E−04 1.50E−04 7.36E−06

AL 1.13E−04 3.00E−04 2.83E−04 2.33E−04 1.29E−04 2.87E−05

Comparison BRCA2
/GAPDH

RB
/GAPDH

MYC
/GAPDH

RAD50
/GAPDH

RAD51
/GAPDH

TERT
/GAPDH

CR/AL 0.57 1.07 0.23 0.14 0.75 0.57

H2O2/AL 0.87 6.07 16.33 1.27 1.08 1.07

ART/AL 0.82 4.93 5.51 2.48 1.45 1.44

SNP/AL 1.20 5.47 1.38 1.42 1.42 0.68

ARG/AL 0.58 3.90 0.96 1.30 1.16 0.26

Notes.
The RT-PCR was performed after daily injection for three days into mouse skeletal muscle by 260 µM ART, 67 µM SNP,
5.7 mM ARG in the dose of 50 µl volume/20 g body weight, or one injection by 200 µM H2O2 (50 µl/20 g), and sampling
after last injection for six hours. The ages of all mice used are four-month-old, among which CR mice have one-month
AL and three-month CR treatment.

and mimetics-treated mice to those of an AL mouse. Consequently, TRFs of an AL sample

were found to shift faster than those of ART, SNP, ARG, H2O2, and CR samples on the gel,

suggesting AL TRFs being shorter than ART, SNP, ARG, H2O2, and CR TRFs (Fig. 4).

For more accurate comparison of TRFs among groups, we further measured the main

band lengths, the longest band lengths, and the shortest band lengths of TRFs, and

accounted for their average band lengths, as listed in Table 3. It is clear that SNP and

H2O2 render longer average band lengths, whereas AL and CR confer shorter average band

lengths. The main band lengths can be sorted as SNP > H2O2 > ARG > ART > CR > AL,

and the longest band lengths are in the order of SNP > CR/H2O2 > ARG > AL > ART.

Interestingly, SNP and H2O2 lead to the lowest ROS levels (see Fig. 2F), which may

partly decipher why SNP and H2O2 allow longer telomeres because longer telomeres are

correlated with few ROS and less DNA damage. In contrast, AL and CR show the higher

levels of ROS (see also Fig. 2F), thus providing an explanation on the relevance of more

ROS to shorter telomeres. Why does CR give rise to the shortest TRFs than CR mimetics

and even AL? This is likely due to the older ages of CR mice because they were older

than other mice by three months when the telomere lengths were measured. As to the

reason why younger mice were chosen for treatment by CR mimetics, we consider that the

shortened telomeres in older mice should not be extended by CR mimetics.
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Figure 4 Hybridization detection of TRFs in mouse skeletal muscle cells of AL, CR and mimetics-
treated mice. For Southern blotting, samples were collected from the skeletal muscle of AL and CR mice,
or from CR mimetics mice injected by 260 µM ART, 67 µM SNP, 5.7 mM ARG, or 200 µM H2O2 in the
dose of 50 µl volume/20 g body weight for three times, in which the 1st, 2nd, and 3rd injections are on
the 1st, 3rd, and 5th day, respectively. The ages of AL and CR mimetics-treated mice are two-month-old,
and the ages of CR mice are five-month-old, including one-month AL and four-month CR treatment.

Table 3 Measurement of TRF lengths in mouse skeletal muscle cells among AL, CR, and CR mimetics
groups.

Group The main
band length
(bp)

The longest
band length
(bp)

The shortest
band length
(bp)

The average
band length
(bp) (x̄ ± s)

AL 2353 3077 1592 2341 ± 743

ART 2450 2956 2058 2488 ± 450

SNP 2917 3917 1717 2850 ± 1102

ARG 2551 3566 1476 2531 ± 1045

H2O2 2691 3814 1717 2741 ± 1049

CR 2450 3814 1142 2469 ± 1336

Notes.
For TRF measurement, samples were collected from the skeletal muscles of AL and CR mice, or from CR mimetics mice
injected by 260 µM ART, 67 µM SNP, 5.7 mM ARG, or 200 µM H2O2 in the dose of 50 µl volume/20 g body weight
for three times every other day. The ages of AL and CR mimetics mice are two-month-old, but the ages of CR mice are
five-month-old, including one-month AL treatment and four-month CR treatment.

Co-existence of BRCA1 and TERT in similar abundance in nuclei
implies an interaction of BRCA1 with TERT
As described above, BRCA1 and TERT are down-regulated at the level of transcription

(the mRNA level) (see Fig. 3 and Table 2). To ensure if BRCA1 and TERT are also

down-regulated at the level of translation (the protein level), we tried to phenotyping

the localization of BRCA1 and TERT in the skeletal muscle cells of AL, CR, and CR

mimetics-treated mice. As a consequence, TERT was shown to co-exist with BRCA1 in

overlapped nuclear locations, which can be clearly observed from the AL sample (Fig. 5),

suggesting that TERT and BRCA1 may be interactive and cooperative. As to the dimmed

BRCA1-TERT signals in ART, SNP, and ARG samples, they might represent the dual

down-regulation of BRCA1 and TERT.
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Figure 5 Laser confocal microscopic phenotyping of coordinated down-regulation of BRCA1 with
TERT in mouse skeletal muscles treated by ART, SNP, ARG, H2O2, or CR. Green fluorescence indicates
BRCA1, red fluorescence indicates TERT, and blue fluorescence represents 4’,6-diamidino-2-phenylindole
(DAPI)-staining nuclear DNA. For observation by a laser confocal microscope, samples were collected
from the skeletal muscles of mice injected by 260 µM ART, 67 µM SNP, 5.7 mM ARG or 200 µM
H2O2 (50 µl/20 g) for three times, in which the 2nd and the 3rd injections are on the 3rd and 5th
day, respectively. The ages of AL and CR mimetic mice are two-month-old, but the ages of CR mice
are five-month-old, including one-month AL treatment and four-month CR treatment.
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Because the fluorescence strengths of TERT and BRCA1 are almost identical in each

group albeit with lighter or darker fluorescence due to up- or down-regulation, we assume

that both DNA-maintaining proteins perhaps accumulate with similar abundance, which

is likely tuned by oxidative-antioxidative homeostasis.

ART, SNP, or ARG up-regulates eNOS, upstream protein kinases,
and downstream respiratory biomarkers
To ascertain the possibility of ART, SNP, or ARG mediating NO signaling, we evaluated

the expression and phosphorylation of eNOS and its upstream protein kinases, including

Akt and AMPK. As results, their non-phosphorylated/phosphorylated forms, AMPK and

p-AMPKThr172, Akt and p-AktSer473, and eNOS and p-eNOSSer1177, are simultaneously

induced in the skeletal muscle cells of mice injected by ART, SNP, or ARG (Fig. 6A and

Table 4). AMPK and p-AMPKThr172 exhibit almost identical expression levels, suggesting a

synchronous mode of AMPK expression and phosphorylation. Akt and eNOS show higher

levels than p-AktSer473 and p-eNOSSer1177, implying only a minor of Akt and eNOS being

phosphorylated. These results indicate that ART, SNP, or ARG can synchronously induce

eNOS, Akt, and AMPK, and partially activate them into p-eNOSSer1177, p-AktSer473, and

p-AMPKThr172.

To reinforce the relevance of NO-induced gene expression to mitochondrial biogenesis,

we quantified some related signal transducers and mitochondria-targeted proteins in

mouse skeletal muscles injected by ART, SNP, or ARG. Consequently, it was found that

ART, SNP, or ARG leads to the significant up-regulation of the signaling components,

SIRT1 and PGC-1α, and mitochondrial biomarkers, MFN2 and CYT C. As noted, PGC-1α

shows the highest expression level, and SIRT1 also exhibits a mildly induced level (Fig. 6B

and Table 4). These results indicate that NO can up-regulate the mitochondria-localized

MFN2 and CYT C through inducing the mitochondrial biogenesis-necessitated SIRT1 and

PGC-1α.

To understand the sequential events occurring in NO signaling and mitochondrial

biogenesis, we followed up the time-course changes of selective signal transducers and

mitochondrial biomarkers. In monitoring the expression of AMPK, PGC-1α, and CYT

C in mouse skeletal muscles injected by ART, SNP, or ARG for three, six, and 24 h, we

observed that AMPK reaches its maximal level within three hours and subsequently

maintains a stable-steady level. PGC-1α and CYT C also exhibit the time-dependent

expression manners, namely the three hour-treatment allows only the lower levels, the six

hour-treatment leads to the elevated levels, and the 24 h-treatment gives rise to the highest

levels. Importantly, the 24 h-expression level of PGC-1α is higher than that of CYT C

(Fig. 6C and Table 4). These results demonstrate that the induction of understudied genes

occurs in the sequelae from AMPK to PGC-1α and CYT C rather than vice versa.

CR mimetics-derived high-level NO predisposes mitochondrial
biogenesis in mouse skeletal muscle cells
The ELISA and Western blotting data have revealed the induced up-regulation of eNOS

by CR mimetics, but direct evidence confirming the elevation of NO levels is still lacking.
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Figure 6 Western blotting of target proteins in mouse skeletal muscles injected by ART, SNP, or
ARG. (A) Up-regulation and phosphorylation of eNOS and upstream protein kinases. (B) Up-regulation
of mitochondrial biomarkers and relevant signal transducers. (C) The time-course mode of up-regulation
of signal transducers and mitochondrial biomarkers. Western blotting was performed after three days of
daily injection by 260 µM ART, 67 µM SNP, or 5.7 mM ARG (50 µl volume/20 g body weight). For each
group of blots, only one stripe of gel with GAPDH bands was shown as reference, but blotting of each
target protein was parallelly performed with GAPDH for comparison.

We monitored the NO levels in skeletal muscles of mice injected by ART, SNP, ARG, or

H2O2. A NO burst was seen after treatment for six hours although a decline trend was

observed after treatment for three days (Fig. 7A), addressing that all kinds of CR mimetics

used in this study play their roles upon NO signaling. Furthermore, we also measured the

ATP levels in the skeletal muscles of mice injected by ART, SNP, ARG, or H2O2. The results

as depicted in Fig. 7B indicate that ATP is increased after treatment for six hours, but
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Table 4 The time-course monitoring of expression levels of eNOS and upstream/downstream target
proteins in the skeletal muscle cells of mice treated by ART, SNP, or ARG. (A) The gray scale values
for target proteins to the reference protein GAPDH. (B) The fold changes of gray scale values for target
proteins in treated mice to AL mice.

Target/reference protein ART SNP ARG AL

AMPK/GAPDH 1.01 ± 0.01* 0.97 ± 0.23** 0.85 ± 0.08* 0.61 ± 0.09

p-AMPK/GAPDH 1.00 ± 0.02** 0.93 ± 0.04* 0.93 ± 0.01* 0.83 ± 0.01

Akt/GAPDH 0.97 ± 0.01** 0.95 ± 0.02** 0.62 ± 0.08* 0.31 ± 0.06

p-Akt/GAPDH 0.56 ± 0.40 0.21 ± 0.11 0.13 ± 0.11 0.09 ± 0.08

eNOS/GAPDH 0.93 ± 0.10*** 0.94 ± 0.01*** 0.97 ± 0.02*** 0.15 ± 0.01

p-eNOS/GAPDH 0.86 ± 0.11* 0.53 ± 0.37 0.21 ± 0.06 0.19 ± 0.16

SIRT1/GAPDH 1.01 ± 0.05** 0.90 ± 0.03** 0.80 ± 0.05* 0.62 ± 0.04

PGC-1α/GAPDH 1.04 ± 0.63** 1.00 ± 0.04** 0.99 ± 0.05** 0.26 ± 0.16

MFN2/GAPDH 0.93 ± 0.02 0.58 ± 0.38 0.68 ± 0.03 0.32 ± 0.24

CYT C/GAPDH 0.94 ± 0.01** 0.67 ± 0.18* 0.50 ± 0.41* 0.11 ± 0.04

3 h AMPK/GAPDH 1.27 ± 0.05 1.24 ± 0.05 1.09 ± 0.05 0.77 ± 0.27

6 h AMPK/GAPDH 1.05 ± 0.22 0.95 ± 0.27 0.93 ± 0.31 0.68 ± 0.14

24 h AMPK/GAPDH 1.05 ± 0.27 1.06 ± 0.12 0.85 ± 0.04 0.69 ± 0.12

3 h PGC-1α/GAPDH 1.07 ± 0.03** 0.94 ± 0.06* 0.90 ± 0.02* 0.75 ± 0.03

6 h PGC-1α/GAPDH 0.79 ± 0.14* 0.75 ± 0.01 0.58 ± 0.01 0.34 ± 0.15

24 h PGC-1α/GAPDH 1.30 ± 0.07** 1.16 ± 0.03** 1.06 ± 0.07 0.58 ± 0.11

3 h CYT C/GAPDH 1.13 ± 0.02* 0.95 ± 0.02 0.93 ± 0.17 0.76 ± 0.02

6 h CYT C/GAPDH 1.29 ± 0.04** 1.01 ± 0.07* 0.97 ± 0.17* 0.64 ± 0.03

24 h CYT C/GAPDH 1.40 ± 0.03** 1.25 ± 0.05** 0.71 ± 0.22 0.53 ± 0.06

Treated mice/AL mice ART/AL SNP/AL ARG/AL

AMPK/GAPDH 1.66 1.59 1.39

p-AMPK/GAPDH 1.20 1.12 1.12

Akt/GAPDH 3.13 3.06 2.00

p-Akt/GAPDH 6.22 2.33 1.44

eNOS/GAPDH 6.20 6.27 6.47

p-eNOS/GAPDH 4.53 2.79 1.11

SIRT1/GAPDH 1.63 1.45 1.29

PGC-1α/GAPDH 4.00 3.85 3.81

MFN2/GAPDH 2.91 1.81 2.13

CYT C/GAPDH 8.55 6.09 4.55

3 h AMPK/GAPDH 1.65 1.61 1.42

6 h AMPK/GAPDH 1.54 1.40 1.37

24 h AMPK/GAPDH 1.52 1.54 1.23

3 h PGC-1α/GAPDH 1.43 1.25 1.20

6 h PGC-1α/GAPDH 2.32 2.21 1.71

24 h PGC-1α/GAPDH 2.24 2.00 1.83

(continued on next page)
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Table 4 (continued)

Treated mice/AL mice ART/AL SNP/AL ARG/AL

3 h CYT C/GAPDH 1.49 1.25 1.22

6 h CYT C/GAPDH 2.02 1.58 1.52

24 h CYT C/GAPDH 2.64 2.36 1.34

Notes.
Western blotting was performed after daily injection for three days by 260 µM ART, 67 µM SNP, or 5.7 mM ARG (50 µl
volume/20 g body weight). GAPDH: glyceraldehyde-3-phosphate dehydrogenase. For each group of blots, only one
stripe of gel with GAPDH bands was shown as reference, but blotting of each target protein was parallelly performed
with GAPDH for comparison. The fold changes of gray scale values were calculated by comparing each target protein
with corresponding GAPDH.

* The significance of statistical difference between a treatment sample and AL is represented by P < 0.05.
** The significance of statistical difference between a treatment sample and AL is represented by P < 0.01.

*** The significance of statistical difference between a treatment sample and AL is represented by P < 0.001 (n = 3).

maintains a steady-state higher level after treatment for three days. These results provide

support to the assumption of CR mimetics-enhanced mitochondrial functionality.

At last, we scrutinized whether the density of mitochondria would be changed in mouse

skeletal muscle cells exposed to ART, SNP, ARG, or H2O2. As compared with one-layer and

linear-arrayed mitochondria in AL-exposed cells (Fig. 7C), SNP-treated cells (Fig. 7D) or

H2O2-treated cells (Fig. 7E) show remarkable mitochondrial proliferation with multi-layer

mitochondria, and ART-treated cells (Fig. 7F) or ARG-treated cells (Fig. 7G) also possess

more mitochondrial layers than AL-exposed cells after treatment for six hours.

These results unambiguously indicate that CR and mimetics can produce NO, drive

mitochondrial biogenesis, and recover energy supply in mice during a short period, for

example, within six hours as examined in the present study.

DISCUSSION
The mechanisms underlying CR-mediated lifespan extension have been eagerly and

extensively investigated in recent years. A current research work in nematodes has well

deciphered the reason why CR decreases ATP by reporting that increase of the citrate cycle

intermediate α-ketoglutarate during CR exposure targets the subunit β of ATP synthase

(complex V) and inhibits its activity, addressing an important role of mitochondrial

uncoupling in prolonging lifespan (Chin et al., 2014). Although whether mitochondrial

uncoupling correlates with redox homeostasis remains largely unknown, evidence is

emerging to support the concept of mitochondrial hormesis (mitohormesis), which

suggests that potent ROS burst from mitochondria evokes antioxidative responses and

promotes life expectancy (Ristow & Kim, 2010; Ristow, 2014).

Indeed, mitochondrial superoxide production was found to increase the longevity

of nematodes by triggering ROS-scavenging responses (Yang & Hekimi, 2010). It has

been recently indicated that aspirin promotes mitochondrial biogenesis through H2O2

production and SIRT1/PGC-1α induction in cultured mouse liver cells (Kamble et al.,

2013). A most new report has also demonstrated that H2O2 enables the up-regulation

of mitochondria-specific SIRT3 and Mn-SOD in mice (Qiu et al., 2010). Following the

finding of H2O2-mediated extension of yeast chronological lifespan through inducing
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Figure 7 Determination of NO and ATP levels and electronic microscopic phenotyping of mitochon-
dria in mouse skeletal muscles injected by ART, ARG, SNP, or H2O2. (A) The elevation of NO levels
upon treatment by CR mimetics. (B) The elevation of ATP levels upon treatment by CR mimetics.
(C)–(G) Mitochondrial density and structure in ART, ARG, SNP, H2O2, and AL, respectively. Samples
were collected from mouse skeletal muscles after 6 h by one injection or by daily injection for three days
by 260 µM ART, 67 µM SNP, 5.7 mM ARG, or 200 µM H2O2 (50 µl injection volume/20 g body weight).

antioxidative responses (Mesquita et al., 2010), we have also confirmed the mitohormetic

effects of H2O2 on yeast chronological lifespan (Wang & Zeng, 2014). Most recently,

metformin has been proven to promote lifespan in nematodes via the peroxiredoxin

PRD-2-involved mitohormesis (De Haes et al., 2014).

In the present study, we found that ART, SNP, ARG, or H2O2 can mimic CR to induce

SOD, CAT, and GSH, which lead to the alleviation of ROS-engaged stress. In particular,

we observed the synchronous induction of mitochondrial SOD2 and its activator SIRT3

by CR and mimetics, which is in consistence with the known fact that CR dramatically

reduces oxidative stress by inducing SIRT3-activated SOD2 (Qiu et al., 2010). Although it
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is understandable that H2O2 as an oxidant enables the induction of antioxidant enzymes,

why ART, SNP, and ARG also induce antioxidant enzymes seems puzzling. In our opinion,

there may be two possibilities: one is the direct exertion by H2O2 generation, and another

is indirect affection via NO production. It has been shown that H2O2 induces eNOS via

a Ca+

2 /calmodulin-dependent protein kinase II/janus kinase 2-dependent pathway (Cai

et al., 2001). We also found in this study that H2O2 not only up-regulates eNOS, but also

produces NO, suggesting a plausible dependence of H2O2-induced antioxidation on NO

signaling.

Nevertheless, how NO attenuates oxidative stress remains inclusive. It has been

previously described that NO can non-covalently bind to COX, leading to the reversible

COX inhibition and transient respiratory dysfunction (Mason et al., 2006). We assumed

that an interaction of NO with COX should block electron transport, elicit ROS burst,

and trigger antioxidative responses. Our quantification results of antioxidant enzyme

quantities as well as the measurement data of ROS levels have altogether confirmed that

CR and mimetics allow enhanced antioxidative ability and attenuated oxidative stress in

mice. Another consequence of electron transport interruption is a short-term decrease of

ATP due to mitochondrial uncoupling and a feedback increase of ATP upon mitochondrial

biogenesis. Indeed, we detected the remarkable elevation of ATP levels in the skeletal

muscles of mice treated by CR mimetics.

As to the debating issue of NO-mediated mitochondrial biogenesis, we also provided

new supporting testimony by showing considerable mitochondrial propagation in the

skeletal muscle cells of mice treated by CR mimetics. The discrepancy of findings that

CR-mediated lifespan extension with or without mitochondrial biogenesis may be resulted

from the earlier or later stages, in other words, an acute short-term or a chronic long-term

CR. We have suggested a mechanistic model of dual-phase responses to CR exposure in

yeast, in which the phase of mitochondrial enhancement within hours is a respiratory

burst phase, and the phase of post-mitochondrial enhancement within days and months

is a respiratory decay phase (Wang et al., 2015). It is reasonable that respiratory burst

may be attributed to mitochondrial biogenesis, whereas respiratory decay should not be

accompanied with mitochondrial biogenesis.

CR is evident to trigger NO production upon Akt-mediated eNOS activation in

mice (Nisoli et al., 2003; Nisoli et al., 2005; Cerqueira, Laurindo & Kowaltowski, 2011).

ARG is also shown to enhance eNOS expression (Ou et al., 2010), but how ART and SNP

affect eNOS remains uncertain. We found in this study that ART, SNP, and ARG not

only activate eNOS, but also produce NO, suggesting that they act as CR to initiate NO

signaling in mice. A previous investigation has revealed that increase of the AMP/ATP ratio

activates AMPK (Anderson & Weindruch, 2010). Earlier evidence has been filed that AMPK

activates eNOS through the signaling cascade AMPK→ Rac1→ Akt→ eNOS (Levine, Li &

Michel, 2007), in which AMPK and Akt are coordinately responsible for the activation of

eNOS through the phosphorylation of Ser1177 (Chen et al., 1999; Dimmeler et al., 1999).

Conclusively, ART, SNP, ARG, and H2O2 should activate eNOS along AMPK→ Rac1→

Akt→ eNOS.
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Because SNP is an NO donor, and ARG is an NO precursor, it should be reasonable that

SNP-released NO and ARG-produced NO in vivo can initiate NO signaling. However,

ART neither releases NO as SNP, nor produces NO like ARG, so why would it also

up-regulate eNOS? It has been indicated that ART alkylates the prosthetic heme of

hemoproteins (Zhang & Gerhard, 2009). Our previous work has also shown that ART

promotes NO generation by inhibiting the hemoprotein NOS via conjugating the heme

moiety and inducing NOS expression either in human cell lines (Zeng & Zhang, 2011)

or in bacteria (Zeng et al., 2011). Therefore, we anticipated that ART may interfere with

the activity of the mitochondrial hemoprotein COX in direct and indirect ways: it may

conjugate to the heme moiety of COX to repress its function; and it may also firstly

conjugate to the heme moiety of eNOS to inhibit its activity, and secondly induce the

overexpression of eNOS for NO generation and COX binding.

To verify those two possibilities, we should confirm the synchronous up-regulation of

COX and eNOS upon induction by ART, thereby validating ART-COX and ART-eNOS

interactions. As shown in our results, ART can simultaneously up-regulates eNOS and

COX4, suggesting that the inhibition of eNOS and COX by ART may lead to the induction

of eNOS/NOS3 and COXexpressions. Although the adducts of ART with hemoproteins

were identified in human cell lines, bacteria, and yeast (Zeng & Zhang, 2011; Zeng et al.,

2011; Wang & Zeng, 2014), we are at present unable to discriminate the ART-eNOS adducts

from the ART-COX adducts or other ART-hemoprotein adducts.

It is worthy of indicating that low-dose ART is found, for the first time, to simulate the

lifespan-prolonging effect. In regard to the dose-effect issue of ART, an earlier pharma-

cokinetical research indicated that when ART was administered at a dose of 6.7 mg/kg,

a peak level of 0.82 µg/ml was attained in mice after four hours. This is a concentration

more than 5000 times the IC50 of ART in the in vitro tests on Plasmodium berghei for

antimalarial activity, and is also close to the human exposure that we see with clinical doses

of ART (Zhao et al., 1989). Therefore, we used quite a low dose (50 µl 260 µM or 0.25

mg/kg) of ART for telomere protection in mice. We choose the dose of ART in the present

study because we have previously used a similar dose of ART (100 µl 60 µg/ml or 0.3

mg/kg) for NOS induction and NO production in mice (Bao et al., 2012; Wu et al., 2012).

In this study, we noticed that CR or mimetics leads to the global down-regulation of

many ubiquitylation pathway genes including DNA repair genes, such as BRCA1, BARD1,

and TRP53, implying a cause-result relationship between rare DNA damage and less DNA

repair. Furthermore, we also observed that some BRCA1 partners are down-regulated or

unchanged in CR and mimetics-treated mice, strengthening a reverse relevance of DNA

repair to DNA damage. BRCA1 is structurally identified to interact with other partner

proteins for DNA repair (Clark et al., 2012), during which BRCA1 is recruited to the

telomere and regulate telomere length and stability, in part through its presence at the

telomere (Ballal et al., 2009). BRCA1 and BARD1 constitute a heterodimeric RING finger

complex with ubiquitin ligase (E3) (Hashizume et al., 2001). A conclusion of repressed

protein degradation is supported by the findings that CR significantly reduces age-related
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impairments in proteasome-mediated protein degradation, and inhibits age-related

increases in ubiquitinated, oxidized, and sumoylated proteins (Li et al., 2008).

Telomeres have been recently verified to be a favored target of persistent DNA damage

in aging and stress-induced senescence (Hewitt et al., 2012), and a reverse correlation of

BRCA1 with TERT has been previously established (Xiong et al., 2003), implying that

the down-regulation of DNA repair genes is an important hint indicating attenuated

DNA damage due to ROS scavenging by inducible antioxidation. Indeed, we detected

longer telomeres in mouse skeletal muscle cells among treatment groups than those in AL

mice. However, whether longer telomeres are due to compromised telomere shortening

or enhanced telomere extension is unclear. Our preliminary results on the amplification

of TERT mRNA show that it is unlikely up-regulated after underlying treatments. At

the same time, we also observed the co-localization and overlap of BRCA1 and TERT

with almost identical abundance, implying that TERT is synchronously fluctuated with

BRCA1. Actually, we have testified the down-regulation of BRCA1 in RT-PCR array, so it is

likely that longer telomeres are attributed to less DNA damage due to mitigated telomere

shortening rather than more DNA repair leading to active telomere extension.

In conclusion, we revealed the mechanistic episodes of the effects of CR and mimetics on

the dynamic changes of telomeres in mouse skeletal muscle cells. We also provide the direct

information supporting the hormesis hypothesis by the validation of beneficial roles of CR

mimetics on DNA protection. Therefore, our study should shed light on the discovery of

new targets and development of new anti-aging drugs towards longevity.
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