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Late-onset depression (LOD) is regarded as a risk factor or a prodrome of Alzheimer’s
disease (AD). Moreover, LOD patients with cognitive deficits have the higher risk of
subsequent AD. Thus, it is necessary to understand the neural underpinnings of
cognitive deficits and its pathological implications in LOD. Consistent findings show that
the default mode network (DMN) is an important and potentially useful brain network
for the cognitive deficits in LOD patients. In recent years, genetics has been actively
researched as a possible risk factor in the pathogenesis of LOD. So, in this review,
we discuss the current research progress on the cognitive deficits and DMN in LOD
through a combined view of brain network and genetics. We find that different structural
and functional impairments of the DMN might be involved in the etiological mechanisms
of different cognitive impairments in LOD patients.
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INTRODUCTION

Late-onset depression (LOD) is defined as a depression occurring for the first time after the age of
50, 55, 60 or 65 years and the age of 55 is the most commonly used cutoff age (Unützer and Park,
2012; Wang et al., 2016; Geerlings and Gerritsen, 2017). Late-life depression (LLD) contains LOD
and early-onset depression (EOD) that recurs or continues into old age. It is a prevalent mental
disorder in geriatric population with the prevalence of 8–16% (Blazer, 2003) and its morbidity
increases with aging (Büchtemann et al., 2012). For the first antidepressant treatment, the response
rate is typically less than 50%, even after multiple treatments, 30 to 40% of the patients with LLD fail
to attain full remission (Roose and Schatzberg, 2005; Nelson et al., 2008; Tadayonnejad and Ajilore,
2014).

Late-onset depression (LOD) is associated with a high disability, high recurrence rate, and high
family caregiving burden as well as high risk for cognition deficits (Andreescu et al., 2013; Diniz
et al., 2014; Kaup et al., 2016). It is also known to be more vulnerable to accelerate brain aging
and might predispose to Alzheimer’s disease (AD) by exhausting brain’s structural and functional
reserve (Diniz et al., 2015; Freret et al., 2015). LOD patients with poorer cognitive performances
exhibit more deficits in a large-scale brain network around AD-related regions and have higher
rate of conversion to AD (Wang et al., 2012). Moreover, cognitive dysfunctions have been shown
to be persistent in LOD patients even after remission (Yin et al., 2016b). The residual cognitive
deficits are believed to be an important risk factor for AD (Alexopoulos et al., 1993; Liu et al.,
2018). In a 3-year longitudinal study, dementia eventually occurred in 43% of the elderly depressed
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patients with cognitive dysfunctions (Alexopoulos et al., 1993).
Another study followed up for 5 to 7 years revealed that the
conversion rate of dementia in depressed elderly patients with
reversible cognitive impairments was 71.4% (Sáez-Fonseca et al.,
2007). Butters et al. (2008a) suggested that the combination of
mild cognitive impairment (MCI) and depression represented
the superimposed AD neuropathology. Moreover, persistent
cognitive impairments were found to be associated with the
recurrence of LOD (Alexopoulos et al., 2000). Thus, to find
specific, objective biomarkers to assist clinicians in improving
specific treatments and to establish an individualized diagnosis
for the cognitive deficits of LOD has become an urgent problem
that needs to be solved.

Imaging genetic studies weight the possible genetic and
biological mechanisms behind imaging changes. Recently,
genetics has been actively researched as a possible risk factor for
the cognitive deficits of LOD (Hou et al., 2010; Wang et al., 2012;
Yin et al., 2015b). To improve early identification of LOD which
may convert to AD and to achieve further advances in the LOD
treatments, we review the progress of neuroimaging and genetic
investigations as well as the current clinical status on the cognitive
deficits in LOD.

THE RELATIONSHIP BETWEEN LOD
AND AD

Late-onset depression (LOD) and AD are two common mental
disorders that seriously endanger the life and health of the
elderly and impose a great burden on our society (Liguori et al.,
2018). They may share common mechanisms, such as alterations
in glucocorticoid steroids, hippocampal atrophy, inflammatory
changes, deficits in brain-derived neurotrophic factors (BDNF),
and increased deposition of β-amyloid plaques (Butters et al.,
2008b; Byers and Yaffe, 2011; Wang and Dan, 2014).

Alzheimer’s disease is the most common form of dementia in
the elderly (McKhann et al., 2011). It is primarily characterized by
cognitive deficits and often presents concomitant with depression
which may be a reaction of the early cognitive dysfunctions
(Espiritu et al., 2001). In turn, depression could lead the
accelerated cognitive declines in individuals with pre-existing
dementia (Espiritu et al., 2001; Rapp et al., 2011). It was
reported that the prevalence of dementia patients who suffer from
comorbid depression was from 17 to 50% (Rapp et al., 2011;
Leeuwis et al., 2018). A recent study revealed that the occurrence
of depressive symptoms in AD might be due to the potential effect
of cerebral amyloid angiopathy (Leeuwis et al., 2018).

Along with affective symptoms, a broad range of cognitive
deficits have been detected in the acute stage of LOD such
as episodic memory, executive function, visual perception
function, attention function, working memory, and visual spatial
construction function (Hou et al., 2016; Wang et al., 2016).
Therefore, when LOD is coupled with cognitive declines, the
differential diagnosis between LOD and AD could be challenging.
Tsuruoka et al. (2016) have proven that the neurobehavioral
cognitive status examination is useful in differentiating LOD and
AD although it is just a preliminary study.

The occurrence of depression could even precede the onset
of AD (Kobayashi and Kato, 2011). Many studies have shown
a relation between a history of depression and risk for AD
later in life (Tsolaki et al., 1997; Green et al., 2003; Ownby
et al., 2006; Steffens et al., 2011), although a few reported no
such risk (Becker et al., 2009). A meta-analysis suggested that
depression was a risk factor for AD rather than a prodrome,
but it just included studies of AD without including studies
of other dementia syndromes (Ownby et al., 2006). A study of
18,726 patients with depressive disorder demonstrated that the
rate of dementia tended to increase by 13% with every episode
(Kessing and Andersen, 2004). Geerlings et al. (2000) suggested
that depression was associated with the increased risk of AD only
in subjects with higher levels of education. An 8-year follow-up
study revealed that this relationship existed only in men (Fuhrer
et al., 2003). However, after controlling for education and sex, a
17-year follow-up study showed that LLD almost doubled the risk
of AD (Saczynski et al., 2010).

Some concluded that LOD was a prodrome to AD rather
than a risk factor (Li et al., 2011; Barnes et al., 2012). Yeh
et al. (2011) believed that LOD was not a risk factor for AD
because it had no sufficient duration of the “time-dose effect” on
neurotoxicity. Kessing (2012) suggested that EOD may be a risk
factor for dementia, whereas LOD may reflect a prodromal phase
of dementia.

At present, whether LOD is prodrome or a risk factor of
dementia remains controversial. However, no matter LOD is a
risk factor for AD or a prodrome, it is generally believed that
there is a close relationship between them, especially LOD with
cognitive deficits.

THE CHARACTERISTIC OF COGNITIVE
DEFICITS IN LOD

Cognitive impairment was common in depressed older adults,
especially in those with LOD. Approximately 50% LOD
had cognitive deficits which take various forms (Yeh et al.,
2011). Previous findings indicated that the LLD patients with
higher levels of education had a greater decrease in memory,
executive, and language performances (O’Shea et al., 2015).
The cognition deficits in LOD were believed to be an aging-
related phenomenon (Yeh et al., 2011). However, Thomas et al.
(2009) suggested that this was not caused by aging alone,
the illness itself was also accounted for the poorer cognitive
performances. In addition, the cognition deficits in LOD were
also suggested to be associated with sex and the severity of
LOD (Sheline et al., 2006). Vascular lesions and neurotoxicity
from the stress-glucocorticoid cascade were two major types of
depression-associated pathologies that have been hypothesized
to contribute to the cognitive impairments in LLD. It was
suggested that vascular lesions mainly resulted in prefrontal-
striatal dysfunction, whereas the neurotoxicity from the stress-
glucocorticoid cascade mainly led to hippocampal damage (Choi
et al., 2017).

Relevant studies of LOD by comprehensive assessment of
cognitive domains have demonstrated high rates of impairment
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TABLE 1 | Cognitive deficits in LOD patients compared with healthy aging subjects during different periods.

Cognitive functions Scale Acute episodes Remitted for 6 months Remitted for 21 months

Overall cognitive performances MMSE (Katzman et al., 1988) ↓ ↓ ↓

Auditory episodic memory AVLT (Barzotti et al., 2004) ↓ ↓ ↓

Visual episodic memory CFT (Lezak, 1983) ↓ − −

Executive function TMT-A&B (Gordon, 1972) ↓ ↑ ↑

Visual perception function SDMT (Wechsler, 1981) ↓ ↓ ↓

Sustained attention function SDMT (Wechsler, 1981) ↓ ↓ ↓

Working memory SDMT (Wechsler, 1981) ↓ ↓ ↓

Short-term attention function DST (Tolor, 1956) ↓ ↓ ↑

Visual spatial construction function CDT (Libon et al., 1996) ↓ − −

MMSE, Mini-Mental State Examination; AVLT, Audio Verbal Learning Test; CFT, Rey-Osterrieth Complex Figure Test; TMT-A&B, Trail Making Test A&B; SDMT, Symbol
Digit Modalities Test; DST, Digit Span Test; CDT, Clock Drawing Test. ↓, represents the decline of cognitive function; ↑, represents the improvement of cognitive function;
−, represents there is no data.

in nearly all major cognitive domains (Yin et al., 2015b;
Hou et al., 2016; Wang et al., 2016; Choi et al., 2017).
Episodic memory and executive function were found to be
much worse (Alexopoulos et al., 2005; Hou et al., 2016).
A longitudinal study with a mean follow-up of 5.45 years
suggested that LLD with cognitive deficits in the domains
of memory and executive function during acute stage were
the potential predictor for developing dementia (Potter et al.,
2013).

After the remission of depressive symptoms, about 45% LLD
patients suffered from persistent cognitive deficits; 94% patients
who had cognitive dysfunctions remained impaired, while
23% cognitively normal LLD developed cognitive impairments
1 year later (Bhalla et al., 2006). When LOD patients remitted
for more than 6 months, they still exhibited poor cognitive
performances, besides executive function (Hou et al., 2012).
At around 21 months, only executive function and short-
term attention function improved significantly in remitted LOD
(Jiang et al., 2014; Wang et al., 2015; Yin et al., 2016b;
Table 1).

Lee et al. (2007) showed that self-reported decline in
functional activities was a marker for persistent cognitive
impairments in LOD. However, the cognitive deficits in LOD
were increasingly considered a disorder of distributed effects of
aberrant interactions in the brain (Liu et al., 2018). For decades,
morphological and functional magnetic resonance imaging
(MRI) have been largely applied to reveal the abnormalities
of many different brain regions of LOD, particularly in the
default-mode network (DMN) (Hahn et al., 2015; Lebedeva et al.,
2015; Hou et al., 2016). DMN might be the neural basis of the
connection between LOD and AD (Figure 1).

FIGURE 1 | Default mode network (DMN) might be the neural basis for linking
LOD with AD. LOD, late-onset depression; DMN, default mode network; AD,
Alzheimer’s disease.

DEFAULT MODE NETWORK
UNDERLYING THE COGNITIVE DEFICITS
IN LOD

When the “default mode” of brain function was first characterized
by Raichle et al. (2001), it was mainly appreciated for the brain
remained active in an organized fashion during the resting state.
The network was also called “task-negative network” because it
exhibited task-induced deactivations (Raichle et al., 2001).

Default mode network (DMN) is generally believed to be
a large-scale brain network that encompasses a specific set of
brain regions including posterior cingulate cortex/precuneus
(PCC/PCu), superior frontal gyrus (SFG), medial prefrontal
cortex (mPFC), inferior parietal lobule (IPL), lateral temporal
cortex (LTG), angular gyrus (AG), hippocampus and cerebellum
(Garza-Villarreal et al., 2015; Hamilton et al., 2015; Mulders
et al., 2015). It is often divided into two distinct functional sub-
networks, the anterior DMN and the posterior DMN, centers on
the ventral mPFC (vmPFC) and the PCC, respectively (Andrews-
Hanna et al., 2010). DMN is primarily involved in self-referential
functions, such as autobiographical memory, planning the future,
remembering the past as well as the perspective taking of the
desires, beliefs and intentions of others (Spreng et al., 2009).

The failure to normally down-regulate activity of DMN
during an effective reappraisal task was suggested as a biological
mechanism of depression (Sheline et al., 2009). Lemogne et al.
(2012) demonstrated that rumination in depression might
emerge due to a lack of inhibition of DMN. It was reported
that anterior to posterior connection within DMN was most
severely disrupted with age (Andrews-Hanna et al., 2007).
While, in depression, the anterior and posterior DMN showed a
dissociation pattern; the functional connectivity (FC) in anterior
DMN was increased, decreased in posterior DMN (Zhu et al.,
2012; Mulders et al., 2015). The white matter integrity of cingulate
bundle which links anterior and posterior DMN has been showed
a reduced in LLD (Charlton et al., 2014), that might be the
responsible for the dissociation pattern of anterior and posterior
DMN.

As indicated above, abnormal DMN might be involved in
the mechanism of depression. In addition, consistent findings
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showed that the DMN was an important and potentially useful
network for cognitive deficits in the LOD patients (Tadayonnejad
and Ajilore, 2014; Hou et al., 2016). The detailed discussion of
cognitive impairments and DMN was as the following (Figure 2):

Overall Cognition
Mini-Mental State Examination (MMSE) is a widely used
questionnaire for the evaluation of cognitive impairments,
especially for AD patients. Generally, MMSE can detect the
overall cognitive impairments with sufficient accuracy including
memory, language, attention, and orientation function (Pezzotti
et al., 2008; Sawyer et al., 2012).

The frontal lobe was believed to be one of the most
consistently identified brain regions associated with LOD
(Seminowicz et al., 2004). Yue et al. (2015) reported that
the abnormal amplitude of low-frequency fluctuation (ALFF)
which could directly reflect the intensity of spontaneous neural
activity in the right SFG may be related to the overall cognitive
dysfunction.

The loss of hippocampal volume was believed to be associated
with cognitive deficits specific to AD and was regarded as the
most replicable structural abnormalities in LOD (Lloyd et al.,
2004; Hickie et al., 2005). Moreover, larger hippocampal volumes
were associated with better clinical response to antidepressant
treatment (Frodl et al., 2008). It was also suggested that
the abnormal hippocampus volume might participate in the
dysfunction of overall cognition in LOD patients (Lebedeva
et al., 2015). Sawyer et al. (2012) demonstrated that the loss
in hippocampal volume could predict the decrease on the
MMSE scores over a 4-year follow-up period. An over 2-year

longitudinal study also showed consistent results (Steffens et al.,
2011).

Previous studies uncovered that BDNF level was negatively
correlated with age-related change of hippocampal volume
(Erickson et al., 2010). Moreover, the loss of BDNF was suggested
play a major role in the pathophysiology of depression (Shimada
et al., 2014). LLD patients with MCI showed significantly lower
cerebrospinal fluid BDNF levels compared with those without
MCI (Diniz et al., 2014). Val66Met (methionine substitution
for valine at codon 66), as a common single-nucleotide
polymorphism (SNP) in BDNF gene was more frequent in LOD
subjects compared with non-depressed older individuals (Lin
et al., 2009). It could influence the regulated secretion of BDNF
in the hippocampus and was related to lower serum levels of
BDNF (Egan et al., 2003). BDNF Val66Met could also increase
the risk of AD-related depression and was associated with a
better antidepressant response (Zhang et al., 2011). Yin et al.
(2015b) found that BDNF Val66Met had an interaction with LOD
on decreasing functional connectivity (FC) between the right
hippocampi and the left cerebellum and that was associated with
the overall cognition dysfunction. Traditionally, the cerebellum
was thought to primarily coordinate sensorimotor function and
balance. However, recent studies found it was also involved
in cognition and emotion which may be due to its extensive
anatomically reciprocal connections with the limbic regions and
cerebral cortex and could receive projections via the pons from
the caudal and rostral anterior cingulate (Stein and Glickstein,
1992; Yin et al., 2015b).

In addition to the abnormal FC between cerebellum and
hippocampi, the disrupted FC between cerebellum posterior

FIGURE 2 | Aberrant default mode network underlying the different cognitive deficits in the patients with late-onset depression. (A) overall cognition, (B) episodic
memory function, (C) executive function, (D) visual perception function, (E) attention function, (F) working memory, (G) visuo spatial construction function. L, left; R,
right; PCC, posterior cingulate cortex; SMG, supramarginal gyrus; SFG, superior frontal gyrus; HIP, hippocampus; CRBL, cerebellum; MTG, middle temporal gyrus;
SMA, somatomotor area; dACC, dorsal anterior cingulate; PoCG, postcentral gyrus; THA, thalamus; PCu, precuneus; mPFC, medial prefrontal cortex; vmPFC:
ventral mPFC; TG: temporal gyrus. FC, functional connectivity; FA, fractional anisotropy; VMHC, voxel-mirrored homotopic connectivity.
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lobe and PCC was showed to be related with the dysfunctional
overall cognition (Yin et al., 2015a). PCC, as the structural and
functional core of DMN, had widespread connections with other
brain regions. Increasing studies suggested that it was associated
with emotion and internally directed cognition such as retrieve
autobiographical memory or plan for the future (Gusnard and
Raichle, 2001; Hahn et al., 2007; Spreng et al., 2009).

After the follow-up around 21 months, the overall cognition
was worse and might be due to the worse FC between PCC and
supramarginal gyrus (SMG) (Jiang et al., 2014). SMG is a part
of IPL and is involved in language-related function (Gazzaniga
et al., 2009). IPL plays an important role in the pathogenesis
of MCI and AD (Bai et al., 2008; Del Sole et al., 2008). Two
longitudinal studies showed that both the atrophy and reduced
regional cerebral blood flow (rCBF) of IPL had high predictive
value for the conversion from MCI to AD (Hirao et al., 2005;
Karas et al., 2008).

Episodic Memory Function
Episodic memory involves the ability to encode, retain and
recall informations about personal experiences that take place in
specific time and place (Budson and Price, 2005). It is suggested
as a prodrome of AD (Kidd, 2008) and typically supported by
a widespread network of brain regions including PCC, middle
temporal gyrus (MTG) and the prefrontal cortex (Cabeza and
Nyberg, 2000; Dickerson and Eichenbaum, 2010; Wu et al., 2013).
Among MTG structures, the hippocampus has been shown to be
critically involved in episodic memory processing (Dickerson and
Eichenbaum, 2010). In support of this model, previous studies
suggested that the episodic memory decline had a correlation
with the abnormal function of PCC and hippocampus in AD
patients (Yakushev et al., 2011).

Not only in AD, episodic memory impairment was also
showed to be common in LOD (Yuan et al., 2010; Wu et al., 2013;
Jiang et al., 2014). Wu et al. (2013) suggested that the disrupted
FC between PCC and right MTG was the basis for a decline in
episodic memory in the acute stage of LOD. In addition, the
impaired visual episodic memory was also suggested to be related
to the disrupted FC between PCC and cerebellum posterior lobe
(Yin et al., 2015a).

Previous studies suggested the angiotensin-converting
enzyme (ACE) gene to be involved in LOD onset (Ancelin
et al., 2013), antidepressant response (Baghai et al., 2004)
and considered as a candidate gene for AD (Hou et al.,
2010). It contained D (deletion) allele and I (insertion) allele.
Compared with the ACE ID and II genotypes, the DD genotype
was obviously associated with the lowest scores of cognitive
performances and was a protective factor for the development of
AD (Richard and Amouyel, 2001). Moreover, the ACE-D allele
and the status of LOD may synergistically induce larger volume
of left MTG and disrupted FC of PCC-left cerebellum, which
could increase the risk for visual episodic memory impairment
(Hou et al., 2010; Wang et al., 2012).

The human brain is a complex system with small-world
architecture. The small-world is an attractive model for it
could minimize wiring costs while maximizing the efficiency of
information propagation, so it could enable high efficiency in

information processing (Sporns and Zwi, 2004). Yin et al. (2016b)
revealed that the disturbed small-world properties of the DMN
might be a potential biomarker of episodic memory decline. The
nodal efficiency likely represented the importance of a nodal
region in the whole brain network, and it was suggested that the
decreased nodal efficiency of the left putamen was involved in the
deficit of episodic memory (Wang et al., 2016).

When LOD patients remitted for more than 6 months,
the visual episodic memory improved perhaps because of the
increase of left cingulate gyrus volume (Yuan et al., 2008b), the
auditory episodic memory improvement might be on account of
the increased FC between bilateral SMG and cerebellar (Yin et al.,
2015a). In view to both visual and auditory episodic memory,
the improvement might owe to the increased FC between right
hippocampus and left somatomotor area (Shu et al., 2014).

Executive Function
Executive function is a primary domain of cognition and involves
the abilities of planning and organizing, sequencing, set shifting
and response inhibition, these abilities play an important role
in goal-directed and complex activities (Alvarez and Emory,
2006). It has been known to be prominently dependent on
the incorporation of the prefrontal cortex, parietal cortex, basal
ganglia, thalamus, and cerebellum (Rabinovici et al., 2015).

Deficit in executive function is a major contributing factor to
the disability of LLD patients (Cahn-Weiner et al., 2007), and a
higher degree of executive dysfunction has been linked to poorer
or delayed response to antidepressants as well as depression
recurrence (Alexopoulos et al., 2005).

Executive function is vulnerable to white matter injury.
Fractional anisotropy (FA) is an efficient approach of diffusion
tensor imaging (DTI) which could explore the microstructural
abnormalities of the white matter tract by measuring the diffusion
of water in biological tissue and its reduction represents the
destruction of white matter integrity (Yoshiura et al., 2002).
Lower FA in distributed cerebral networks in LLD was found
to be associated with poor antidepressant response (Alexopoulos
et al., 2008). Importantly, the white matter integrity was
suggested to be the essential neuronal substrate of cognition
function, and Yuan et al. (2007, 2010) found that the deficit in
executive function might be due to the abnormal FA between left
posterior cingulate bundles and right SFG. They also showed that
the abnormal regional homogeneity (ReHo) of left SFG might
be involved in executive dysfunction in LOD patients (Yuan
et al., 2008a). ReHo is used to assess the temporal similarity of
a given voxel to its neighbors, and the abnormal ReHo is believed
possibly to reflect the abnormal activity in the regional brain
(Logothetis et al., 2001).

Voxel-mirrored homotopic connectivity (VMHC) is used
to indicate the synchrony of spontaneous brain functional
activities between symmetrical regions in bilaterally hemispheric
architecture. The reduced VMHC of bilateral posterior cerebellar
was found significantly associated with executive function
changes in LOD patients (Hou et al., 2016). Major depression
patients with reduced hippocampal volumes showed more
executive dysfunctions (Frodl et al., 2006). Moreover, the FC
between left hippocampus and left the temporal cortex could be
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disrupted by the interaction of LOD and BDNF Met allele in LOD
and was responsible for the executive function impairment (Yin
et al., 2015b). Recently, Liao et al. (2017) found that the abnormal
cerebral blood flow value in calcarine gyrus was also involved in
the executive dysfunction.

After treatments, Jiang et al. (2014) suggested that the
executive function improve and might be due to the increased
FC between right parahippocampal gyrus and PCC.

Visual Perception Function
Visual perception function refers to the abilities to gather visual
information from the environment and to integrate information
from experience, motivation and development, that in turn guide
our behavior (Butler et al., 2008).

Yin et al. (2015b, 2016a) found that the reduced visual
perception function in LOD was correlated with the abnormal FA
between PCC/PCu and dorsal anterior cingulate cortex (dACC),
the disrupted FC between the PCC/PCu and the thalamus and the
changed FC between the right hippocampi and right postcentral
gyrus. A recent study provided the risk factors associated with
cognitions for LOD patients based on the anterior DMN and
posterior DMN and revealed that visual perception function
impairment was associated with a lower FC of vmPFC- left
PCu and a higher vmPFC- right MTG and PCC- left PCu. The
opposite change in the vmPFC-left PCu (anterior DMN) and
PCC-left PCu (posterior DMN) might prove the dissociation
pattern between anterior and posterior DMN in depression (Liu
et al., 2018).

Moreover, the ACE-D allele and the status of LOD might
synergistically induce larger volume of left middle temporal
gyrus (MTG), which could increase the risk for visual episodic
memory impairment (Hou et al., 2010). The interaction of
LOD and BDNF Met allele was also responsible for the visual
perception dysfunction mainly by decreasing the FC between left
hippocampus and left the temporal cortex (Yin et al., 2015b).

After follow-up, LOD patients still demonstrated a poorer
visual perception, and Hou et al. (2012) revealed that the
poorer function might be due to the decreased volume of right
hippocampus. The greater longitudinal deficits in FC between
PCC/PCu and the left hippocampus also was found to be
correlated with the poorer visual perception function in LOD
(Wang et al., 2015).

Attention Function
Attention is a cognitive process that electively focus on an
information while ignoring other perceived information. It
contains the sustained and short-term attention, and is also the
basis of all other cognitive functions (Rizzo et al., 2000).

Yin et al. (2015b, 2016a) suggested that the reduced sustained
and short-term attention function in LOD were correlated with
the abnormal FA between PCC/PCu and dACC and the disrupted
FC between the right hippocampi and right postcentral gyrus.
Meanwhile, BDNF Met allele might have an interaction with
LOD and be responsible for the short-term attention and the
sustained attention dysfunction through disrupting FC of right
hippocampi-left cerebellum and the FC of left hippocampus-the
left temporal cortex (Yin et al., 2015b). ACE genetic variants

could be involved in the psychopathology and pathophysiology
of the sustained attention function in LOD by modulating the
microstructural alterations in white matter of left MTG (Yuan
et al., 2007).

Late-onset depression patients still demonstrated a poorer
sustained and short-term attention function after follow-up that
may be due to the greater longitudinal deficit in FC between
PCC/PCu and the left hippocampus (Wang et al., 2015). While,
in regard to sustained attention function, it might be due to the
disrupted FC between the PCC/Pcu and the thalamus (Yin et al.,
2016a) and the decreased volume of right hippocampus (Hou
et al., 2012).

Working Memory
Working memory refers to the abilities of temporary storage
and manipulation of information in the process of language
comprehension, learning and reasoning and is crucial to higher-
level tasks such as planning and making (Rabinovici et al., 2015).

Previous study suggested that the reduced working memory
function in LOD was correlated with the abnormal FA between
PCC/PCu and dACC, the FC between the PCC/Pcu and the
thalamus and the FC between the right hippocampi and right
postcentral gyrus (Yin et al., 2015b, 2016a).

Genetic studies revealed apolipoprotein Eε4 (APOEε4)
is associated with increased deposition of amyloid-beta,
hyperphosphorylation of tau, as well as impaired neuronal
plasticity, so it is regarded as the established genetic risk factor
for AD and serves to lower the age of onset (Corder et al.,
1993; Liraz et al., 2013). Compared with those lacking the allele,
LLD patients who were APOEε4 carriers showed significant
suicidality, hippocampal volume reduction, a significantly
decreased cognitive function, and a markedly increased risk
of dementia (Kim et al., 2002; Hwang et al., 2006; Niti et al.,
2009). A study investigated the separate and combined effects
of APOEε4 allele and depression on the incidence of dementia
in elderly Koreans, and found that LLD patients were at greater
risk for incident dementia in subjects with both APOEε4
and depression compared with those without both factors
(Kim et al., 2010). It was showed that APOEε4 could increase
hippocampal DMN synchronization during rest several years
before the clinical manifestation of AD (Westlye et al., 2011).
Shu et al. (2014) identified the interactive effect of LOD and
APOEε4 on the decreased FC between right hippocampus and
bilateral mPFC/ACC, and that involved the working memory
dysfunction.

Apart from APOEε4, ACE genetic variants were also
demonstrated to be involved in working memory dysfunction
in LOD by modulating the microstructural alterations in white
matter of left MTG (Hou et al., 2010). BDNF Met allele had
an interaction with LOD, and was responsible for the working
memory dysfunction mainly by decreasing left hippocampus FC
with left the temporal cortex (Yin et al., 2015b).

Late-onset depression (LOD) patients still demonstrated a
poorer working memory function after follow-up, which might
due to the still decreased volume of right hippocampus (Hou
et al., 2012) and the greater longitudinal deficits in FC between
PCC/PCu and left the hippocampus (Wang et al., 2015).
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Visuospatial Construction Function
Visuospatial construction function is defined as the ability to
see an object as a set of parts and then to construct a replica
of the original (Mervis et al., 1999). It was suggested that the
impairment of visuospatial construction function in LOD may
be due to the increased FC between the right hippocampi and
right postcentral gyrus (Yin et al., 2015b) and the decreased FC
between the amygdala and the right middle occipital gyrus (Yue
et al., 2013).

The interaction of LOD and BDNF Met allele also could
be responsible for the visuospatial construction dysfunction by
decreasing the FC of the right hippocampi to the left cerebellum
(Yin et al., 2015b). In addition, Hou et al. (2010) found that the
volume of right ACC modulated by ACE D-allele was also related
to visual spatial construction dysfunction.

DISCUSSION AND PROSPECT

Different structural and functional impairments of the DMN core
nodes (PCC, mPFC) and its extension nodes (SFG, PCu, IPL,
LTG, AG, hippocampus and cerebellum) might be involved in
the etiological mechanisms of different cognitive impairments in
LOD patients. The abnormal DMN may have an important early
warning value for the conversion of LOD to AD.

Apart from DMN, there are two core neurocognitive
networks, the executive control network (ECN) and salience
network (SN) which are considered to be relevant contributors
to the abnormal cognitive processes observed in LOD (Mulders
et al., 2015). ECN includes the lateral prefrontal cortex, the
frontal eye fields, the posterior parietal cortex and part of the
dorsomedial prefrontal cortex and plays a critical role in cognitive
control, working memory, judgment, and decision-making in
the context of goal-directed behaviors (Mulders et al., 2015;
Li et al., 2017). Alexopoulos et al. (2012) suggested that the
decreased FC within the ECN in LLD was predictive of poor
treatment response and executive dysfunction. The SN consists
of the fronto-insular cortex, the dorsal ACC, temporal poles
and the amygdala and is involved in detecting and orienting to
both external and internal salient stimuli and events (Menon

and Uddin, 2010; Manoliu et al., 2013; Mulders et al., 2015).
Disrupted FC within the SN was found might be reflective
of disease severity and increased somatization in depression
(Paulus and Stein, 2006; Manoliu et al., 2013). Karim et al.
(2017) revealed that the FC between ECN and DMN could
serve as early markers of treatment response variability in LLD.
A recent study revealed that the aberrant ECN-SN connectivity
correlated with executive dysfunction in LLD patients (Li et al.,
2017).

Converging evidences support brain network dysfunction as
a model for the potential neural mechanisms that involved in
the impaired cognitive processes in LOD. However, until now,
little is known about the altered functional patterns of these
three networks. To find potential imaging markers from the FC
between DMN, ECN and SN may be a better way to realize image
diagnosis, prevention of recurrence and further intervention to
prevent LOD progressing to AD in the future study.

Furthermore, potential genetics effect such as APOE, BDNF
and ACE behind brain structural and functional alterations were
found. However, previous studies were limited to single gene.
Candidate gene analyses usually only explain a tiny proportion
of brain alterations either structural or functional. Future studies
will need to include more genes acting together on brain
organized by pathways or through other polygenic analysis. In
addition, analyses combing clinical phenotypes, brain imaging
and genetics will enhance our understanding of the whole map
of cognitive deficits in LOD and AD.
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