
molecules

Communication

A Direct Method for β-Selective Glycosylation with
an N-Acetylglucosamine Donor Armed by a
4-O-TBDMS Protecting Group

Hidenori Tanaka 1,*, Yu Hamaya 2 and Hiyoshizo Kotsuki 2

1 Oceanography Section, Science Research Center, Kochi University, Otsu, Nankoku-shi, Kochi 783-8502, Japan
2 Laboratory of Natural Products Chemistry, Faculty of Science, Kochi University, Akebono-cho, Kochi-shi,

Kochi 780-8520, Japan; a_paradise_country@yahoo.co.jp (Y.H.); kotsuki@kochi-u.ac.jp (H.K.)
* Correspondence: htanaka@kochi-u.ac.jp; Tel.: +81-88-864-5148; Fax: +81-88-864-5787

Academic Editor: Shunichi Fukuzumi
Received: 6 January 2017; Accepted: 3 March 2017; Published: 8 March 2017

Abstract: A new direct method for β-selective glycosylation with an N-acetylglucosamine (GlcNAc)
donor was developed. This substrate, which can be readily prepared from commercially available
GlcNAc in two steps, contains a 4-O-tert-butyldimethylsilyl (TBDMS) protecting group as a key
component. We found that this functionality could have a favorable effect on the reactivity of
the GlcNAc donor. Glycosylation with the armed donor using primary alcohols in the presence
of a catalytic amount of trimethylsilyl trifluoromethanesulfonate (TMSOTf) in 1,2-dichloroethane
smoothly gave the desired coupling products in good yields with complete β-selectivity, while
sterically hindered acceptors were less efficient.

Keywords: N-acetylglucosamine; β-selective glycosylation; remote protecting group effect; O-TBDMS
protecting group

1. Introduction

N-Acetylglucosamine (GlcNAc) is one of the most abundant naturally occurring monosaccharides,
and it exists as a key component of oligosaccharides in glycoproteins and glycolipids that play
important biological roles [1]. For example, erythropoietin [2] is an N-linked glycoprotein that
enhances hematopoiesis. Several antibiotics, such as TMG-chitotriomycin [3] and bulgecins [4],
are also glycosylated with GlcNAc. For the syntheses of glycoconjugates containing GlcNAc
residues, it is necessary to use glycosamine (GlcN) donors activated by a phthaloyl [5] and
2,2,2-trichloroethoxycarbonyl [6,7] attached to the amine function. Unfortunately, however, methods
using GlcNAc donors suffer from several disadvantages: (1) GlcNAc donors are less reactive than
N-modified GlcN donors; (2) harsh conditions (reflux heating [8,9] and microwave irradiation [10,11])
are required to achieve the desired glycosylations; and (3) the corresponding oxazoline byproducts
are formed in many cases. In 2008, Christensen and coworkers reported that scandium(III)
trifluoromethanesulfonate (Sc(OTf)3) could serve as an effective activator for β-GlcNAc tetraacetate
donor 1 and the glycosylation of simple alcohols in refluxing dichloromethane (Figure 1a) gave
the desired β-glycosides in high yields [11]. With sterically hindered acceptors, disappointingly,
the couplings resulted in low to moderate yields even when using excess amounts of 1 with
microwave irradiation at 80 ◦C. On the other hand, Hashimoto et al. successfully developed
glycosylations with a diethyl phosphite donor of GlcNAc 2 in the presence of stoichiometric
bis(trifluoromethane)sulfonamide (Tf2NH) at −78 ◦C (Figure 1b), using sugar secondary alcohols, and
then proceeded smoothly to obtain the disaccharides in good yields with complete β-selectivity [12].
However, this glycosylation method requires a stoichiometric amount of Tf2NH and cumbersome
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preparation of 2. Accordingly, it would be desirable to develop a direct method for β-selective glycosylation
with the use of readily available GlcNAc donors under mild conditions without the need for expensive
rare-earth metal triflates and excess organic triflates.
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Demchenko and coworkers demonstrated that thioglycoside donors of Glc were dramatically
activated by the installation of electron-donating benzyl groups to both 4 and 6 positions, and disclosed
the correlation between the stability of the glycosyl cations and the reactivity of the glycosyl donors,
which led to the development of super-armed donors [13]. Takahashi and Toshima et al. reached a
similar conclusion to activate 2,3-dideoxy Glc donors by introducing with a benzyl protecting group at
either the 4 or 6 position [14]. This activation, which is called the “remote protecting group effect”,
can be explained by considering that the presence of an electron-donating group at either the 4 or
6 position of Glc has a favorable stereoelectronic effect on the ring oxygen and facilitates the formation
of an oxocarbenium ion intermediate by the elimination of a leaving group. We thought that the
concept of this “remote protecting group effect” could also be valuable in dictating our glycosylation
strategy. Based on these considerations, herein we examined a new direct method for β-selective
glycosylation under mild conditions with GlcNAc donor 3 armed by a 4-O-tert-butyldimethylsilyl
(TBDMS) protecting group (Figure 1c). Herein we describe the successful results of our implementation
and the substrate scope of this synthetic sequence.

2. Results and Discussion

Following Ling’s previous report [15], β-GlcNAc tripivaloate 5 was easily prepared in 70%
yield by the reaction of free GlcNAc 4 with pivaloyl chloride in pyridine and dichloromethane
(Scheme 1). Next, we examined the installation of electron-donating groups at the 4 position of 5.
Unfortunately, however, all attempts to introduce a benzyl group using benzyl trichloroacetimidate [16]
or 2,4,6-tris(benzyloxy)-1,3,5-triazine (TriBOT) [17] under acid catalysis failed. Not surprisingly, the
steric hindrance around the 4-hydroxyl group was quite strong due to the presence of the neighboring
bulky pivaloyl groups. To gain a similar “remote protecting group effect”, we examined the utility of
TBDMS protection. Thus, the exposure of 5 to silylation with highly reactive tert-butyldimethylsilyl
trifluoromethanesulfonate (TBDMSOTf) using 4-dimethylpyridine (DMAP) in pyridine [18] provided
the corresponding 4-O-TBDMS-protected GlcNAc 3 in almost quantitative yield. The observed ring
vicinal 1H-1H coupling constants (J1,2 = J2,3 = J3,4 = J4,5 = 8–9 Hz) show that the conformation of 3
would still be the 4C1 chair form. For comparison, we also prepared 4-O-acetylated derivative 6.
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Scheme 1. Preparation of GlcNAc donors 3 and 6.

To verify the “remote protecting group effect” by the 4-O-TBDMS group, we first examined
glycosylation with GlcNAc donors 1, 3, and 6 using 1.5 equivalent of 1-butanol (Scheme 2). All reactions
were carried out in 1,2-dichloroethane in the presence of a 20 mol % amount of a variety of acid
promoters. When 3 was reacted with trimethylsilyl trifluoromethanesulfonate (TMSOTf) at 25 ◦C for
48 h, after work-up, the coupling product 7 was obtained in 51% yield with complete β-selectivity,
accompanied by the formation of 10% of TBDMS-deprotected 8 along with 26% recovery of the starting
material 3 (Entry 1). As expected, at 40 ◦C, the TMSOTf-catalyzed glycosylation was completed
within 12 h to afford 7 and 8 in respective 67% and 12% yields (Entry 2). In contrast, the use of
trifluoromethanesulfonic acid (TfOH) resulted in a slight decrease in the product yield, which indicated
that TfOH was less efficient, probably due to its strong acidity and/or scarce solubility in this medium.
We found that other Lewis acids such as boron trifluoride diethyl etherate (BF3•OEt2) and ytterbium(III)
trifluoromethanesulfonate (Yb(OTf)3) were not as effective for our purpose (Entries 4 and 5). In all of
these examples, the corresponding oxazoline by-product was detected in a trace amount. Under the
conditions of Entry 2, as expected, glycosylation with 4-O-acetylated donor 6 dramatically reduced the
coupling yield to 18% (Entry 6). Compared with 6, β-GlcNAc tetraacetate donor 1 also gave only 16%
of 10, indicating the size of the acyloxy leaving group had no effect on the reaction efficiency (Entry 7).
These experiments suggested that the presence of an electron-donating TBDMS group at the 4 position
of GlcNAc was quite effective for promoting the desired β-glycosylation under mild conditions due to
its increased reactivity.
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With the optimized conditions in hand, we next investigated the substrate scope in glycosylation
with the armed donor 3 as shown in Scheme 3. Glycosylation of 2-(trimethylsilyl)ethanol 11 gave
glycoside 17 in 58% yield (Entry 1). Using primary alcohols of 12 and 13, the coupling products 18 and
19 were obtained in 66% and 56% yields, respectively (Entries 2 and 3). Interestingly, the reaction of 3
with thioglycoside Glc acceptor 14 proceeded successfully to give product 20, a convenient building
block in oligosaccharide synthesis, in 45% yield without aglycon transfer [19] (Entry 4). Despite several
attempts to obtain GlcNAc-β(1→4)-Glc disaccharide 21, a sterically hindered secondary alcohol of Glc
15 was not glycosylated even under high pressure conditions [20] (Entry 6) or with an excess amount
of 3 (Entries 5–7). Finally, the coupling with a less reactive primary alcohol 16 of N-Cbz–protected
L-serine provided the desired product 22 in only 18% yield (Entry 8).
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3. Experimental Section

3.1. General Methods

1H- and 13C-NMR spectra were recorded with a JEOL ECA-500 (JEOL Ltd., Tokyo, Japan).
High resolution mass spectrometry (HRMS) was performed with a Bruker Daltonics micrOTOF
(ESI-TOF, Bruker Corp., Billerica, MA, USA). Specific optical rotation was recorded with a JASCO
P-2200 (JASCO Corp., Tokyo, Japan). All reaction solvents were pre-dried with MS4 Å before use.
Thin layer chromatography was performed using Merck TLC silica gel 60F254 on glass (Darmstadt,
Germany). Developed TLC plates were stained with UV light (254 nm) and p-anisaldehyde solution.
High pressure experiments were performed with a LECO PG-200-HPC (LECO Corp., St. Joseph, MI,
USA). Purification was carried out by flash column chromatography (Silica Gel 60 N, 40–50 µm, Kanto
Chemical Co., Inc., Tokyo, Japan) and gel filtration (Sephadex LH-20, GE Healthcare Bio-Science AB,
Uppsala, Sweden). NMR spectra for all new compounds are available in Supplementary Materials.
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3.2. General Experimental Procedure and Physical Data for All New Compounds

2-Acetamido-2-deoxy-1,3,6-tri-O-pivaloyl-4-O-tert-butyldimethylsilyl-β-D-glucopyranoside (3). To a
solution of 2-acetamido-2-deoxy-1,3,6-di-O-pivaloyl-β-D-glucopyranoside 3 (4.73 g, 10.0 mmol) and
4-dimethylaminopyridine (244 mg, 2.0 mmol) in pyridine (10.0 mL) was added tert-butyldimethylsilyl
trifluoromethanesulfonate (2.7 mL, 12.0 mmol) at 4 ◦C under a nitrogen atmosphere. The reaction was
warmed up to 60 ◦C and stirred at the same temperature for 2 h. After the reaction was complete,
the mixture was cool to room temperature and evaporated with toluene (20 mL × 3). The residue
was dissolved in ethyl acetate (200 mL) and washed successively with 2.0 M HCl aq. (200 mL),
satd. NaHCO3 aq. (200 mL × 2), and brine (200 mL). The aqueous layers were back-extracted
with ethyl acetate (200 mL × 2). The combined extracts were dried over Na2SO4, filtered off, and
concentrated in vacuo. The crude product was purified by flash column chromatography (ethyl
acetate:hexane = 1:4–1:2) to give 2-acetamido-2-deoxy-1,3,6-tri-O-pivaloyl-4-O-tert-butyldimethylsilyl-
β-D-glucopyranoside as a colorless syrup (5.62 g, 96%). [α]D +3.17◦ (c 1.69, CHCl3); 1H-NMR (500 MHz,
CDCl3) δ 5.90 (d, 1H, J = 10.3 Hz, NH), 5.55 (d, 1H, J = 8.0 Hz, H-1), 5.08 (t, 1H, J = 8.9 Hz, H-3), 4.47
(dd, 1H, J = 2.6 Hz, J = 11.7 Hz, H-6a), 4.30 (q, 1H, J = 9.6 Hz, H-2), 4.11 (dd, 1H, J = 4.0 Hz, J = 12.0 Hz,
H-6b), 3.92 (t, 1H, J = 8.3 Hz, H-4), 3.65 (m, 1H, H-5), 1.86 (s, 3H, Ac), 1.22, 1.21 and 1.17 (s, 27H, 3Piv),
0.85 (s, 9H, tBu), 0.097 and 0.085 (2s, 6H, SiMe2); 13C-NMR (125.8 MHz, CDCl3) δ 179.5, 178.0, 177.0,
169.4, 92.6, 75.2, 68.5, 62.2, 52.5, 39.3, 38.9, 38.7, 27.4, 27.2, 26.7, 25.7, 23.3, 18.0, −4.2, −4.6; HRMS
(ESI-TOF) m/z: found [M + Na]+ 610.3381, C29H53NO9Si calcd. for [M + Na]+ 610.3382.

2-Acetamido-4-O-acetyl-2-deoxy-1,3,6-tri-O-pivaloyl-β-D-glucopyranoside (6). To a solution of 2-acetamido-
2-deoxy-1,3,6-tri-O-pivaloyl-β-D-glucopyranoside 3 (4.75 g, 10.0 mmol) and 4-dimethylaminopyridine
(241 mg, 2.0 mmol) in pyridine (10.0 mL) was added acetic anhydride (1.1 mL, 12.0 mmol) at
4 ◦C under a nitrogen atmosphere. The reaction was warmed up to room temperature and stirred
for 1 h. After evaporation with toluene (20 mL × 3), the residue was dissolved in ethyl acetate
(200 mL) and washed successively with 2.0 M HCl aq. (200 mL), satd. NaHCO3 aq. (200 mL × 2),
and brine (200 mL). The aqueous layers were back-extracted with ethyl acetate (200 mL × 2).
The combined extracts were dried over Na2SO4, filtered off, and concentrated in vacuo. The crude
product was purified by flash column chromatography (ethyl acetate:hexane = 1:3 to 2:3) to give
2-acetamido-4-O-acetyl-2-deoxy-1,3,6-tri-O-pivaloyl-β-D-glucopyranoside as a colorless syrup (4.95 g,
96%). [α]D +12.47◦ (c 3.84, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 6.21 (d, 1H, J = 10.3 Hz, NH), 5.60 (d,
1H, J = 8.6 Hz, H-1), 5.21(m, 2H, J = 9.0 Hz, H-3 and H-4), 4.44 (q, 1H, J = 9.8 Hz, H-2), 4.19 (m, 2H,
H-6a and H-6b), 3.87 (m, 1H, H-5), 2.04 (s, 3H, Ac), 1.88(s, 3H, Ac), 1.22, 1.19 and 1.15 (3s, 27H, 3Piv);
13C-NMR (125.8 MHz, CDCl3) δ 179.3, 178.1, 176.9, 169.5, 168.9, 92.5, 72.7, 72.5, 67.9, 61.6, 52.3, 38.9,
38.8, 38.7, 27.0, 26.8, 26.7, 22.9, 20.5; HRMS (ESI-TOF) m/z: found [M + Na]+ 538.2616, C25H41NO10Si
calcd. for [M + Na]+ 538.2623.

3.3. General Procedure for the Glycosylation with GlcNAc Donors

To a mixture of GlcNAc donor (1.00 mmol) and acceptor (1.50 mmol) in 1,2-dichloroethane
(5.0 mL) was added TMSOTf (36 µL, 0.2 mmol) at 40 ◦C. After the reaction was stirred at the same
temperature for 12 h, it was quenched by the addition of satd. aq. NaHCO3 (50 mL). The resulting
mixture was then extracted with CHCl3 (50 mL × 3) and washed with brine (50 mL). The combined
extracts were dried over Na2SO4, filtered off, and concentrated in vacuo. The crude product
was purified by flash column chromatography to give the desired GlcNAc glycoside. Additional
purification using Sephadex LH-20 (MeOH/CHCl3 = 1:1) was performed if needed.

Butyl 2-acetamido-2-deoxy-3,6-di-O-pivaloyl-4-O-tert-butyldimethylsilyl-β-D-glucopyranoside (7). [α]D

−12.28◦ (c 1.49, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 6.09 (d, 1H, J = 9.8 Hz, NH), 5.02 (t, 1H,
J = 8.3 Hz, H-3GlcNAc), 4.54 (dd, 1H, J = 3.7 Hz, J = 11.7 Hz, H-6aGlcNAc), 4.41 (d, 1H, J = 6.9 Hz,
H-1GlcNAc), 4.10 (m, 2H, H-6bGlcNAc and H-2GlcNAc), 3.85 (t, 1H, J = 7.5 Hz, H-4GlcNAc), 3.80 (m, 1H,
OCHaHb(CH2)2CH3), 3.59 (m, 1H, H-5GlcNAc), 3.40 (m, 1H, OCHaHb(CH2)2CH3), 1.92 (s, 3H, Ac), 1.44
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(m, 2H, OCH2CH2CH2CH3), 1.25 (m, 2H, O (CH2)2 CH2CH3), 1.23 and 1.21 (2s, 18H, 2Piv), 0.88 (t,
3H, J = 6.8 Hz, O(CH2)3CH3), 0.85 (s, 9H, tBu), 0.12 and 0.093 (2s, 6H, SiMe2); 13C-NMR (125.8 MHz,
CDCl3) δ 179.1, 178.0, 169.5, 100.7, 74.4, 74.3, 68.8, 68.4, 62.9, 52.5, 39.2, 38.8, 31.4, 27.3, 27.2, 25.7, 23.4,
19.0, 18.0, 13.7, −4.3, −4.7; HRMS (ESI-TOF) m/z: found [M + Na]+ 582.3432, C28H53NO8Si calcd. for
[M + Na]+ 582.3433.

Butyl 2-acetamido-2-deoxy-4-hydroxy-3,6-di-O-pivaloyl-β-D-glucopyranoside (8). [α]D −40.52◦ (c 3.83,
CHCl3); 1H-NMR (500 MHz, CDCl3) δ 6.40 (m, 1H, NH), 5.13 (t, 1H, J = 9.7 Hz, H-3GlcNAc), 4.47 (d,
1H, J = 8.6 Hz, H-1GlcNAc), 4.36 (dd, 1H, J = 2.1 Hz, J = 11.7 Hz, H-6aGlcNAc), 4.24 (dd, 1H, J = 5.7 Hz,
J = 12.1 Hz, H-6bGlcNAc), 3.86 (q, 1H, J = 9.3 Hz, H-2GlcNAc), 3.75 (m, 1H, OCHaHb(CH2)2CH3), 3.55
(m, 1H, H-5GlcNAc), 3.47 (m, 1H, OH), 3.44 (m, 1H, H-4GlcNAc), 3.39 (m, 1H, OCHaHb(CH2)2CH3), 1.84
(s, 3H, Ac), 1.53–1.40 (m, 2H, OCH2CH2CH2CH3), 1.31–1.21 (m, 2H, O (CH2)2CH2CH3), 1.15 and 1.13
(2s, 18H, 2Piv), 0.82 (t, 3H, J = 7.5 Hz, O(CH2)3CH3); 13C-NMR (125.8 MHz, CDCl3) δ 179.8, 179.0,
170.1, 100.8, 75.1, 74.0, 69.6, 69.1, 63.5, 53.9, 38.9, 38.8, 31.3, 27.1, 27.0, 23.0, 18.9, 13.6; HRMS (ESI-TOF)
m/z: found [M + Na]+ 468.2567, C28H53NO8Si calcd. for [M + Na]+ 468.2568.

Butyl 2-acetamido-4-O-acetyl-2-deoxy-3,6-di-O-pivaloyl-β-D-glucopyranoside (9). [α]D −8.91◦ (c 2.875,
CHCl3); 1H-NMR (500 MHz, CDCl3) δ 6.03 (m, 1H, NH), 5.22 (t, 1H, J = 10.0 Hz, H-3GlcNAc), 5.11 (t,
1H, J = 9.7 Hz, H-4GlcNAc), 4.57 (d, 1H, J = 8.1 Hz, H-1GlcNAc), 4.20 (dd, 1H, J = 2.3 Hz, J = 12.0 Hz,
H-6aGlcNAc), 4.15 (dd, 1H, J = 5.7 Hz, J = 12.1 Hz, H-6bGlcNAc), 4.06 (q, 1H, J = 9.5 Hz, H-2GlcNAc), 3.84
(m, 1H, OCHaHb(CH2)2CH3), 3.74 (m, 1H, H-5GlcNAc), 3.48 (m, 1H, OCHaHb(CH2)2CH3), 2.01 and
1.92 (2s, 6H, 2Ac), 1.61–1.49 (m, 2H, OCH2CH2CH2CH3), 1.34 (m, 2H, O (CH2)2CH2CH3), 1.22 and
1.15 (2s, 18H, 2Piv), 0.89 (t, 3H, J = 7.3 Hz, O(CH2)3CH3); 13C-NMR (125.8 MHz, CDCl3) δ 178.6, 178.1,
169.8, 169.0, 100.9, 72.2, 71.8, 69.1, 68.5, 62.3, 53.9, 38.8, 38.7, 31.3, 27.0, 26.8, 23.0, 20.5, 18.9, 13.6; HRMS
(ESI-TOF) m/z: found [M + Na]+ 510.2676, C28H53NO8Si calcd. for [M + Na]+ 510.2674.

2-Trimethylsilylethyl 2-acetamido-2-deoxy-3,6-di-O-pivaloy-4-O-tert-butyldimethylsilyl-β-D-glucopyranoside
(17). [α]D −16.51◦(c 3.465, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 6.26 (d, 1H, J = 9.8 Hz, NHGlcNAc),
5.04 (t, 1H, J = 8.6 Hz, H-3GlcNAc), 4.49 (dd, 1H, J = 1.95 Hz, J = 11.5 Hz, H-6aGlcNAc), 4.36 (d, 1H,
J = 6.9 Hz, H-1GlcNAc), 4.05 (m, 2H, H-2GlcNAc, H-6bGlcNAc), 3.85 (m, 1H, OCHaHbCH2SiMe3), 3.81 (t,
1H, J = 8.0 Hz, H-4GlcNAc), 3.51 (m, 1H, H-5GlcNAc), 3.45 (m, 1H, OCHaHbCH2SiMe3), 1.88 (s, 3H, Ac),
1.19 and 1.17 (2s, 18H, 2Piv), 0.83 (m, 2H, OCH2CH2SiMe3), 0.82 (s, 9H, tBu), 0.075 and 0.044 (2s, 6H,
SiMe2), −0.055 (s, 9H, SiMe3); 13C-NMR (125.8 MHz, CDCl3) δ 179.4, 178.0, 169.5, 100.2, 74.2, 68.8, 66.4,
62.8, 53.0, 39.2, 38.8, 27.3, 27.2, 25.7, 23.5, 18.0, 17.8, −1.5, −4.2, −4.6; HRMS (ESI-TOF) m/z: found
[M + Na]+ 626.3525, C29H57NO8Si2 calcd. for [M + Na]+ 626.3515.

2-Acetamido-2-deoxy-3,6-di-O-pivaloyl-4-O-tert-butyldimethylsilyl-β-D-glucopyranosyl-(1→6)-1,2:3,4-di-O-
isopropylidene-α-D-galactopyranose (18). [α]D +0.22◦ (c 1.04, CHCl3); 1H-NMR (500 MHz, CDCl3) δ
5.63 (d, 1H, J = 9.8 Hz, NHGlcNAc), 5.50 (d, 1H, J = 5.2 Hz, H-1Gal), 4.99 (t, 1H, J = 8.9 Hz, H-3GlcNAc),
4.56 (dd, 1H, J = 2 Hz, J = 8 Hz, H-3Gal), 4.54 (d, 1H, J = 3 Hz, H-1GlcNAc), 4.52 (dd, 1H, J = 3.3 Hz,
J = 4.3 Hz, H-6aGlcNAc), 4.29 (m, 1H, H-2Gal), 4.11 (m, 3H, H-6bGlcNAc, H-4Gal and H-2GlcNAc), 3.92
(m, 2H, H-5Gal and H-6aGal), 3.84 (t, 1H, J = 8 Hz, H-4GlcNAc), 3.67 (dd, 1H, J = 8.85 Hz, J = 12.9 Hz,
H-6bGal), 3.55 (m, 1H, H-5GlcNAc), 1.94 (s, 3H, Ac), 1.49 (s, 3H, COOMe2a), 1.42 (s, 3H, COOMe2a), 1.31
(s, 3H, COOMe2b), 1.30 (s, 3H, COOMe2b), 1.23 and 1.20 (2s, 18H, 2Piv), 0.844 (s, 9H, tBu), 0.093 and
0.064 (2s, 6H, SiMe2); 13C-NMR (125.8 MHz, CDCl3) δ 179.1, 178.0, 170.0, 109.2, 108.5, 101.8, 96.2, 75.1,
74.5, 71.1, 70.6, 70.2, 68.9, 68.2, 68.1, 62.7, 53.2, 39.2, 38.8, 27.4, 27.2, 26.1, 25.9, 25.7, 24.9, 23.5, 18.0, −4.2,
−4.6; HRMS (ESI-TOF) m/z: found [M + Na]+ 768.3954, C36H63NO13Si calcd. for [M + Na]+ 768.3961.

Methyl (2-acetamido-2-deoxy-3,6-di-O-pivaloyl-4-O-tert-butyldimethylsilyl-β-D-glucopyranosyl)-(1→6)-2,3,4-
tri-O-benzyl-α-D-glucopyranoside (19). [α]D +1.70◦ (c 1.49, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 7.30
(m, 15H, 3Ph), 5.70 (d, 1H, J = 9.2 Hz, NHGlcNAc), 4.98 and 4.80 (2d, 2H, J = 11 Hz, OCH2aPh), 4.96 (t,
1H, J = 7.8 Hz, H-3GlcNAc), 4.84 and 4.56 (2d, 2H, J = 11 Hz, OCH2bPh), 4.77 and 4.66 (2d, 2H, J = 12 Hz,
OCH2cPh), 4.53 (d, 1H, J = 7.0 Hz, H-1Glc), 4.49 (dd, 1H, J = 3.8 Hz, J = 11.9 Hz, H-6aGlcNAc), 4.39 (d,
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1H, J = 6.9 Hz, H-1GlcNAc), 4.11 (dd, 1H, J = 7.5 Hz, J = 11.8 Hz, H-6bGlcNAc), 4.08 (q, 1H, J = 9.0 Hz,
H-2GlcNAc), 4.02 (dd, 1H, J = 1.5 Hz, J = 10.5 Hz, H-2Glc), 3.97 (t, 1H, J = 9.5 Hz, H-3Glc), 3.82 (t, 1H,
J = 7.4 Hz, H-4GlcNAc), 3.72 (dd, 1H, J = 2.3 Hz, J = 9.3 Hz, H-5Glc), 3.60 (m, 2H, H-6aGlc and H-5GlcNAc),
3.48 (dd, 1H, J = 3.8 Hz, J = 10.3 Hz, H-6bGlc), 3.46 (t, 1H, J = 10 Hz, H-4Glc), 3.35 (s, 3H, OMe), 1.83 (s,
3H, Ac), 1.19 and 1.16 (2s, 18H, 2Piv), 0.86 (s, 9H, tBu), 0.097 and 0.074 (2s, 6H, SiMe2); 13C-NMR (125.8
MHz, CDCl3) δ178.8, 177.9, 169.3, 138.8 ,138.2, 138.1, 128.43, 128.39, 128.3, 128.1, 127.8, 127.77, 127.5,
100.9, 97.8, 82.0, 79.6, 77.4, 75.6, 74.7, 74.5, 73.9, 73.2, 69.5, 68.3, 67.3, 63.0, 55.0, 52.5, 39.1, 38.8, 27.2, 27.1,
25.7, 23.4, 17.9, −4.3, −4.7; HRMS (ESI-TOF) m/z: found [M + Na]+ 972.4902, C52H75NO13Si calcd. for
[M + Na]+ 972.4900.

Phenyl (2-acetamido-2-deoxy-3,6-di-O-pivaloyl-4-O-tert-butyldimethylsilyl-β-d-glucopyranosyl)-(1→6)-2,3,4-
tri-O-benzoyl-1-thio-β-d-glucopyranoside (20). [α]D −0.14◦ (c 2.06, CHCl3); 1H-NMR (500 MHz, CDCl3)
δ 7.96–7.23 (20H, 4Ph), 5.86 (t, 1H, J = 9.5 Hz, H-3Glc), 5.62 (d, 1H, J = 9.8 Hz, NHGlcNAc), 5.44 (t,
1H, J = 9.7 Hz, H-4Glc), 5.39 (t, 1H, J = 9.7 Hz, H-2Glc), 5.00 (m, 2H, H-3GlcNAc and H-1Glc), 4.51
(dd, 1H, J = 2.6 Hz, J = 11.7 Hz, H-6aGlcNAc), 4.36 (d, 1H, J = 8.0 Hz, H-1GlcNAc), 4.11–4.02 (m, 3H,
H-2GlcNAc, H-6aGlc and H-6bGlcNAc), 3.97 (m, 1H, H-5Glc), 3.82 (t, 1H, J = 8.6 Hz, H-4GlcNAc), 3.62 (dd,
1H, J = 6.3 Hz, J = 12.0 Hz, H-6bGlc), 3.46 (m, 1H, H-5GlcNAc), 1.86 (s, 3H, Ac), 1.23 and 1.20 (2s, 18H,
2Piv), 0.85 (s, 9H, tBu), 0.093 and 0.070 (2s, 6H, SiMe2); 13C-NMR (125.8 MHz, CDCl3) δ 178.7, 178.0,
170.0, 165.6, 165.4, 164.9, 133.6, 133.4, 133.3, 133.2, 131.5, 129.9, 129.8, 129.6, 129.3, 129.1, 128.7, 128.5,
128.3, 128.2, 101.8, 86.2, 78.1, 74.9, 74.6, 74.2, 70.3, 68.9, 68.9, 67.6, 62.5, 53.5, 39.2, 38.8, 27.4, 27.2, 25.7,
23.3, 18.0, −4.1, −4.6; HRMS (ESI-TOF) m/z: found [M + Na]+ 1092.4225, C52H75NO13Si calcd. for
[M + Na]+ 1092.4206.

Methyl (2-acetamido-2-deoxy-3,6-di-O-pivaloyl-4-O-tert-butyldimethylsilyl-β-D-glucopyranosyl)-(1→4)-2,3,6-
tri-O-benzyl-α-D-glucopyranoside (21). [α]D −4.12◦(c 0.98, CHCl3); 1H-NMR (500 MHz, CDCl3) δ

7.53–7.24 (m, 15H, 3Ph), 4.96 and 4.72 (2d, 2H, J = 11.5 Hz, OCH2aPh), 4.86 and 4.30 (2d, 2H, J = 12.3 Hz,
OCH2bPh), 4.67 and 4.54 (2d, 2H, J = 12.3 Hz, OCH2cPh), 4.66 (t, 1H, J = 9.5 Hz, H-3GlcNAc), 4.54
(d, 1H, J = 3.4 Hz, H-1Glc), 4.46 (d, 1H, J = 10.3 Hz, NHGlcNAc), 4.40 (dd, 1H, J = 2.0 Hz, J = 11.7
Hz, H-6aGlcNAc), 4.05 (d, 1H, J = 8.6 Hz, H-1GlcNAc), 3.87 (q, 1H, J = 9.4 Hz, H-2GlcNAc), 3.81 (t, 1H,
J = 9.2 Hz, H-6aGlcNAc), 3.75 (t, 1H, J = 9.5 Hz, H-6bGlcNAc), 3.65 (dd, 1H, J = 6.9 Hz, J = 11.5 Hz,
H-4Glc), 3.60 (m, 1H, H-5GlcNAc), 3.59 (dd, 1H, J = 3.6 Hz, J = 10.5 Hz, H-6aGlc), 3.55 (t, 1H, J = 8.9 Hz,
H-4GlcNAc), 3.44 (dd, 1H, J = 1.3 Hz, J = 10.4 Hz, H-6bGlc), 3.39–3.33 (m, 5H, H-3Glc, H-2Glc, OMe), 3.29
(m, 1H, H-5Glc), 1.68 (s, 3H, Ac), 1.17 (2s, 18H, 2Piv), 0.87 (s, 9H, tBu), 0.053 and 0.019 (2s, 6H, SiMe2);
13C-NMR (125.8 MHz, CDCl3) δ 178.7, 178.0, 169.2, 139.7, 138.3, 137.5, 129.4, 129.2, 129.1, 129.0, 128.3,
128.1, 128.0, 127.9, 127.8, 127.7, 127.5, 127.0, 100.7, 98.6, 79.6, 78.2, 75.9, 75.0, 73.9, 73.8, 73.4, 69.6, 69.4,
67.1, 63.3, 55.3, 54.3, 39.1, 38.8, 27.4, 27.2, 27.0, 25.7, 23.4, 18.0, −4.1, −4.4; HRMS (ESI-TOF) m/z: found
[M + Na]+ 972.4917, C52H75NO13Si calcd. for [M + Na]+ 972.4900.

N-(Benzyloxycarbonyl) 3-O-(2-acetamido-2-deoxy-3,6-di-O-pivaloyl-4-O-tert-butyldimethylsilyl-β-D-
glucopyranosyl)-L-serine methyl ester (22). [α]D −4.89◦ (c 2.13, CHCl3); 1H-NMR (500 MHz, CDCl3)
δ 7.34 (m, 5H, Ph), 5.94 (m, 1H, NHGlcNAc), 5.78 (d, 1H, J = 8.6 Hz, NHSer), 5.13 and 5.09 (2d, 2H,
J = 12.3 Hz, CH2Ph), 5.00 (t, 1H, J = 8.9 Hz, H-3GlcNAc), 4.48 (m, 2H, H-6aGlcNAc and H-2Ser), 4.39 (d,
1H, J = 7.4 Hz, H-1GlcNAc), 4.16 (dd, 1H, J = 3.8 Hz, J = 10.8 Hz, H-3aSer), 4.07 (dd, 1H, J = 4.5 Hz,
J = 11.5 Hz, H-6bGlcNAc), 4.02 (q, 1H, J = 8.8 Hz, H-2GlcNAc), 3.83 (t, 1H, J = 8.3 Hz, H-4GlcNAc), 3.78 (dd,
1H, J = 3.5 Hz, J = 10.5 Hz, H-3bSer), 3.73 (s, 3H, OMe), 3.50 (m, 1H, H-5GlcNAc), 1.84 (s, 3H, Ac), 1.22
and 1.18 (s, 18H, 2Piv), 0.84 (s, 9H, tBu), 0.092 and 0.061 (2s, 6H, SiMe2); 13C-NMR (125.8 MHz, CDCl3)
δ 179.2, 177.9, 170.2, 170.1, 156.0, 136.2, 128.4, 128.1, 101.0, 74.5, 74,49, 68.4, 68.0, 67.0, 62.3, 53.9, 53.0,
52.6, 39.2, 38.8, 27.3, 27.2, 23,3, 18.0, −4.3, −4.7; HRMS (ESI-TOF) m/z: found [M + Na]+ 761.3651,
C36H58N2O12Si calcd. for [M + Na]+ 761.3651.
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4. Conclusions

In summary, based on the concept of the “remote protecting group effect”, we developed a direct
method for β-selective glycosylation under mild conditions with GlcNAc donor 3 bearing a TBDMS
protecting group at the 4 position. Thus, the attachment of this functionality could improve the
reactivity of 3 compared with that of β-GlcNAc tetraacetate 1. Furthermore, the substrate scope in this
glycosylation revealed that, while primary alcohols gave the corresponding coupling products in good
yields, sterically hindered alcohols were less efficient. Further studies to improve this glycosylation
using GlcNAc donors are currently in progress in our laboratories.

Supplementary Materials: The following are available online: NMR spectra for all new compounds.
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