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Abstract

Uterine natural killer (uNK) cells are short-lived, terminally differentiated and the most abundant lymphocytes in the
uterus which play a crucial role in the spiral arteriole modification and establishment of successful pregnancy.
Dysregulation of uNK cells has been linked to gestational implications such as recurrent pregnancy loss, preeclampsia
and fetal growth retardation. There is evidence showing that progesterone and estrogen can regulate the recruitment,
proliferation, differentiation and function of uNK cells via direct action on intracellular nuclear receptors or through
intermediary cells in the uterus during early pregnancy. As the deepening of related research in this field, the role of
conceptus in such regulation has received extensive attention, it utilizes endocrine signaling (hCG), juxtacrine signaling
(HLA-C, HLA-E, HLA-G) and paracrine signaling (cytokines) to facilitate the activities of uNK cells. In addition, under the
influence of ovarian hormones, conceptus can increase expression of PIBF and HLA-G molecules to reduce cytotoxicity

of uNK cells and promote angiogenesis. In this review, we aim to concentrate on the novel findings of ovarian
hormones in the regulation of uNK cells, emphasize the regulatory role of conceptus on uNK cells and highlight the

proposed issues for future research in the field.
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Background

Uterine natural killer (uNK) cells are short-lived,
terminally differentiated and the most abundant gran-
ulated lymphocytes present in the non-pregnant endo-
metrium and pregnant decidua of human uteri [1, 2].
In non-pregnant endometrium, the proportion of
uNK cells in the endometrial stromal cells increases
since the proliferative phase (10%) of menstrual cycle
and reaches the maximal level in the late secretory
phase (20%). After pregnancy, the proportion sustains
to increase due to a large influx of NK lymphocytes
from peripheral circulation (30%) [2] and the cells differ-
entiate to present abundant cytoplasmic and membrane-
bound granules and enlarge to 50 mm in diameter.
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Uterine NK cells are transient and begin to apoptosis
to a much less prominent population of lymphocytes
after early pregnancy [3]. Immunophenotyping experi-
ments in both rodents and humans indicate that these
pregnancy-associated transient lymphocytes resemble
the CD56bright circulatory NK cell (cNK) subsets [4].
These cells are phenotypically identical to the typical
NK cells, which are characterized as presence of
CD56" and CD3". In addition, they also lack of
CD16, an important mediator of antibody-dependent
cellular cytotoxicity (ADCC) for NK cells to lyse
target cells and are less cytotoxic than other subsets
of c¢NK cells. The ability to produce large amounts of
cytokines upon activation is another important
characteristic for these cells [5]. Especially for uNK
cells, which are shown to play an important role in
early pregnancy, secreting cytokines is the main strat-
egy to regulate trophoblast invasion, spiral arterial
modification, placental formation and finally establish
successful pregnancy [6].
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Uterine NK cells also have additional characteristics
that are unique to themselves [1, 7]. A recent microarray
analysis has provided a detailed comparison of gene
expression between uterine NK cells and their corre-
sponding CD56bright NK population present in circula-
tory blood vessels [8]. The significant differences include
selective overexpression of lectinlike receptors (NKG2C,
NKG2E), KIRs and other potential immunoregulatory
proteins (Galetin-1 and Glycodelin) in uNK cells but not
in ¢NK cells. One possible explanation for the observed
differences refers to ulNK cells represent a distinct
lineage of NK cells from hematopoietic precursors.
Otherwise, the distinctions are probably a direct
reflection of CD56bright NK cells differentiation in the
uterine microenvironment. Previous reviews have
summarized the role of estrogen and progesterone in the
regulation of uNK cell recruitment, proliferation, differ-
entiation and function via direct action on intracellular
nuclear receptors or through intermediary cells in the
uterus during early pregnancy [9, 10]. In this review, we
emphasize the regulatory role of conceptus that have not
been described before and are critically dedicated to
construct a thorough regulatory network of uNK cells
during early pregnancy.

Regulation of ovary on the uNK cells

The anterior pituitary gland starts to synthesis follicle
stimulating hormone (FSH) and luteinizing hormone
(LH) since puberty and stimulate ovarian cells to synthe-
sis progesterone and estrogen in a cyclic manner. After
ovulation, the levels of progesterone and estrogen reach
a peak to create a “window of implantation” 6-10 days
and do not fall until the end of 10th week of gestation in
human. After that, conceptus-derived placenta replaces
ovarian cells to secret progesterone and estrogen.

Regulation of estrogen and progesterone on the
proliferation and recruitment of uNK cells
The changes that occur in uNK cell number in early
pregnancy are attributed to self-renewal or trafficking of
cNK cells [6]. Regulatory evidence of estrogen in uNK
self-renewal is not entirely clear. Administration of
estrogen in the culture medium did not significantly
affect the proliferation of uNK cell in vitro [11].
However, in tamoxifen (anti-estrogen)-exposed mouse,
proliferative activities of uNK cell were observed to be
interfered in vivo [12], which may be account of permis-
sive role of progesterone in vivo or other factors.
However, mechanism of progesterone-mediated self-
renewal is much clear. Some studies have showed that
progesterone can stimulate endometrial stromal cells se-
creting IL-15 to promote self-renewal of uNK cells [13].
Both estrogen and progesterone play an indispensable
role in uNK cell recruitment. Progesterone was initially
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found to upregulate VEGF and VEGF receptors on the
endometrial stromal cells in an in vitro model of decid-
ualization. VEGFs are factors required in angiogenesis,
so they can improve histological perfusion to assist uNK
cells homing [14]. Subsequent experiment has showed
that both estrogen and progesterone can also increase
homing through the increased expression of L-selectin
and o-integrin on the surface of circulatory CD56bright
NK cells [15] and CXCL10/CXCL11 on endometrial
cells [16]. Recently, a study carried out by our lab has
provided more visualized evidence to their recruited
action. Uterine NK cells did not appear in mice uterus
on day 2 of pregnancy, a time with low or no estrogen
and progesterone. However, they began to distribute in
uterine blood vessels in next day 3 and 4 of pregnancy
and the distributing pattern of them is identical to the
ovariectomized mice after administration of estrogen
and progesterone, which further confirmed their role in
homing of uNK cells during early pregnancy [17].

Regulation of estrogen and progesterone on the function
of uNK cells

Estrogen and progesterone can regulate the function of
uNK cells through a direct or an indirect way. In direct
way, estrogen and progesterone couple to their nuclear
receptors to activate gene expression of immunomodula-
tory or angiogenic proteins in the ulNK cells. In mice
model, they have been shown to upregulate the expres-
sion of galectin-1, an immunosuppressant, in decidual
NK population [9]. However, there is a slight difference
in their regulatory effect on angiogenesis of uNK cells.
Estrogen increases secretion of CCL2 in uNK cells to
construct blood vessels in endometrium [18], while
progesterone induces the expression of IFN-y [19]. In in-
direct way, endometrial stromal cells, trophoblast cell, T
lymphocyte are proposed intermediary cells transducing
effects of progesterone. In response to progesterone, the
cells produce Hoxa-10 [20], progesterone-induced block-
ing factor [21], and Th2 cytokines [22] respectively to
reduce cytotoxicity of uNK cells. In general, both direct
and indirect ways are necessary for maintenance of
pregnancy.

Potential mechanisms of steroid hormones action on the
uNK cell

Biological activities of steroid hormones are predomin-
antly mediated by binding to respective nuclear receptor
to initiate gene transcription, which is considered as the
most classical mechanism of steroid hormones. In 1996,
Henderson et al. confirmed mRNA expression of ERpI,
ERBcx/P2 and glucocorticoid receptor (GR) in purified
uNK cells, but failed to find ERa or progesterone recep-
tor (PR), and further colocalized immunohistochemistry
technique performed on uNK cells only confirmed
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presence of protein ERP1 and GR [23]. However, when
ERa and ERB knock-out bone marrows were trans-
planted in RAG-2-/-/yc—/- mice, a mutant lack of all
lymphocyte lineages, uNK cells were presented in a
cyclical distribution as usual and did not show signifi-
cant changes on the angiogenesis. It seems that ERs do
not play a role in regulation of uNK cells [24]. A recent
study discovered a new orphan receptor- estrogen recep-
tor related beta (ERRP, ESRRB/NR3B2) located in the
nuclei of uNK cells. The receptor shares significant
sequence homology with ERa and [ and might trans-
duce the effects of estrogen [25]. This provides an alterna-
tive evidence that classical mechanism is still applicable
in uNK cells, yet not through conventional ERs. While
we continue to identify novel subpopulation of ERs in
the nuclei of uNK cells, conventional ERs, ERa and ERP
have been trafficked into cell surface to initiate intracel-
lular signaling pathway in mice hypothalamus and stri-
atal neurons. Especially ERPs were found to couple to
metabotropic glutamate receptor 2 (mGIuR2) on cell
membrane and activate its intracellular signaling to in-
hibit phosphorylation of transcription factor cAMP-
response element binding protein (CREB) in the cells
(Fig. 1) [26]. However, the presence of non-classical
pathways in uNK cells is unknown.
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As described above, PRs have not been identified in
uNK cells. Effects of progesterone are postulated to per-
form by other common nuclear receptor-glucocorticoid
receptors (GR), because progesterone was illustrated to
share structural similarity with glucocorticoid [23].
Progesterone was proved to inhibit CD69 and IEN-y ex-
pression of human uNK cells and this effect cannot be
reversed by CDB-2914, an antibody specific to progester-
one. However, RU486 (antagonist of progesterone and
glucocorticoid) could restore expression of CD69 and
IFN-y on uNK cells, which indirectly proved GR may be
the target of progesterone [19]. Except for classical nu-
clear receptor, non-classical pathways of progesterone
may also play an indispensable role in such regulation.
In fact, the non-classical pathway of progesterone has
been studied by many investigators over the past
20 years. Membrane receptor component 1 (PGMRCI)
and progesterone membrane receptors (mPRs), two
membrane proteins unrelated to classical PRs (Fig. 1),
have been proven to be employed in the brain and re-
productive tissues in mammals [26-28]. In human
sperm and female reproductive tissue, they function as
G protein- coupled receptors (GPCRs) to activate down-
stream activated or inhibitory G-proteins [29]. What’s
more, in human NK cells, depolarization induced by
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Fig. 1 Potential mechanisms of steroid hormones action on the uNK cells. Through classical steroid receptors (e.g. GR, ERRB), non-classical pathways or
intermediary cells in the surrounding, progesterone and estrogen probably affect gene transcription, secondary messenger and membrane potential to
regulate the activities of uNK cells. Among them, non-classical pathways referring to ion channels (e.g. SLC) and membrane-bound receptors are mainly
contributed to rapid actions of the hormones. For progesterone, PGMRC1 and mPR are two potential candidates of membrane-bound receptors on the
uNK cells and function as G protein-coupled receptors to activate or inhibit downstream G protein. For estrogen, its membrane-bound receptors may be
coupled to mGIUR2 and initiate intracellular signaling pathway of mGIUR2 to regulate uNK cells activities. Otherwise, both progesterone and estrogen are
likely to reduce IL-18 level in endometrial stromal cell (SC) and dendiritical cells (DC) to inhibit cytotoxicity of uNK cells and improve pregnant outcomes
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steroid-like Na® channel (SLC) was identified due to
progesterone [30]. Whether uNK cells employ the same
mechanism as the cells, additional researches are still
required.

In addition to direct effects of sexual hormones on
the uNK cells, hormones could also regulate uNK
cells indirectly, via action on neighboring cells that
serve as intermediaries. In vitro studies indicate that
estradiol and progesterone can reduce IL-18 level in
the cultured endometrial stromal cells from patients
who experienced spontaneous abortion, which helps
to improve the pregnant outcomes [31].This is
because IL-18 is a strong enhancer of IL-12 that can
behave as proinflammatory cytokine engaging in cyto-
lytic effects of uNK cells at excessive doses to cause
pregnancy loss (Fig. 1) [32]. Otherwise, IL-18
synthesis were also found in monocyte-derived den-
dritic cells (mDCs) instead of stromal cells, thus,
mDCs are also regarded as a potential intermediators
of sex steroid hormones on uNK cells [33].

Collectively, there is some evidence related to potential
mechanisms involved in the regulation of progesterone
and estrogen on uNK cells. It may act through classical
steroid receptors in the nuclei, non-classical pathways or
through intermediary cells in the surrounding of uNK
cells. Among them, non-classical pathways referred to
intracellular kinase signalings or and membrane-bound
receptors are mainly responsible for rapid effects of the
hormones, which can be considered as a possible mech-
anism of dramatic tissue remodeling occurring in the
early pregnancy. Thus, non-classical regulation of estro-
gen and progesterone on uNK cells is a proposed subject
for future research.

Regulation of conceptus on the uterine NK cells

Except for ovaries, conceptus also plays a vital role in
the regulation of uNK cells. However, the regulations
were less discussed in previous review literatures. In
fact, conceptus can signal to uNK cells in more vari-
ous ways than ovaries, which mainly rely on endo-
crine  signaling (e.g.  estrogen, progesterone).
Conceptus nearly utilizes all possible signaling ways
to deliver signals to uNK cells. These signals include:
(1) Human chorionic gonadotropin (hCG), endocrine
molecules act on the whole body via entering blood
stream; (2) cytokines and chemokines, paracrine sig-
nals act locally via simple diffusion; (3) HLAs,
contact-dependent signals act directly by binding cell
surface receptors on target cells.

Hormonal regulation: hCG

HCG is a glycoprotein hormone exclusively secreted by
trophoblast cells during pregnancy [34]. It can be
detected in the blood on 10 days after fertilization and
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peaks at 10th and 11th week of pregnancy, and then
later declines since 12th week [35]. This temporal distri-
bution of hCGs implicates its roles in early pregnancy
and coincides with the life cycle of uNK cells. Therefore,
hCG can be considered as a potential regulator of uNK
cells. Although hCG has been ever added into endomet-
rial leukocyte-rich fractions in culture medium, it made
no significant changes on numbers of CD56bright (uNK)
cells in the experiment [6]. However, the role of hCG in
regulation of uNK cell proliferation was re-examined in
a recent study. The research observed that mature hCG
molecules with N-linked carbohydrate side chains could
promote uNK cell proliferation. But the impact is not
achieved through classical hCG/LH receptors for hCGs,
it acts via mannose receptors (CD206). Only hCG mole-
cules with carbohydrate chains can bind to the carbohy-
drate receptors and exert their actions on uNK cells
[36]. The divergence in the above experiments may be
attributed to the different types of hCG molecule used.
The hCG molecules added in the previous experiment
was believed to be de-glycosylated and cannot be recog-
nized by the mannose receptors (CD206) on uNK cells.
Another probable cause of failure in previous experi-
ment is the culture medium contained too excess
D-mannose, which was originally used to support cell
growth. D-mannose molecules serve as competitive an-
tagonists binding to the active sites of CD206 receptors
and impair access of glycosylated hCG molecules to the
receptor binding sites, resulting in an unsuccessful
activation of uNK proliferation. Evidence above shed
new insight into cross-talk between hCGs and uNK cells.
Still, additional interactions are remained to be
established.

A complicated network of regulation: Cytokine
Prior work has illustrated the regulation of endometrium-
derived cytokines on conceptus [37-39]. As several
cytokines (IL-1, IL-6, IL-10, TNF-a, TNF-f) secreted by
conceptus have been found in the maternal-fetal interface
[37], studies related to reversed regulation of conceptus
on the endometrium are onset. uNK cells, as the predom-
inant population of lymphocytes in the endometrium, are
the primary targets for conceptus-derived cytokines and
relevant evidence of regulation has been ascertained
progressively using clinical samples and rodent models.
Prolactin-like protein A (PLP-A) and prolactin family 8
subfamily a member 2 (PRL8A2) are two well-studied
members of prolactin family in this field. They are a subset
of conceptus-derived cytokines with unique functional
characteristics. They neither utilize classical receptors for
prolactin nor increase production of IFN-y in uNK cells
[40, 41]. In fact, the ability of uNK cell to secret IFN-y is
downregulated by the two prolactin-like proteins. How
the proteins achieve their biological activities, mechanisms
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involved are still unclear, only intracellular Ca2+
mobilization was detected upon activation of these
molecules [40, 42]. It is noteworthy that, through respect-
ive receptors, the prolactin-like proteins and prolactin can
contribute to regulation of uNK cell simultaneously
without disturbance to each other. In this way, PLP-A and
PRL8A2 can modulate effects of prolactin to avoid in-
appropriate release of IFN-y in uNK cells.

Chemokines constitute a group of cytokines that control
communication and migration of immune cells. According
to location of their cysteine residues, chemokines are classi-
fied into four groups: CXC, CC, CX3C and XC [43]. CXC
chemokines are the first family to describe, which are in-
volved in the regulation of conceptus on uNK cells.
Through comparing chemokine receptor repertoires of
cNK and uNK cells, preferential expression of CXCR3 and
CXCR4 has been found on CD16- uNK cells. Then
CXCL12, a ligand to CXCR4, was demonstrated to be
broadly expressed in invasive trophoblast cells in vivo [44].
In vitro experiment was also performed, culture of tropho-
blast cells showed concentration of CXCL12 can be up to
384.6 + 90.7 pg/ml after 60 h incubation, whereas ligands
for CXCR3 were all below minimal detectable concentra-
tion after 48 h incubation [44, 45]. Based on data above, we
would predict that, for conceptus, CXCL12/CXCR4 axis is
the main signaling of CXC family to induce recruitment of
ulNK cells. CXCR?7 is another receptor for CXCL12 and has
~10 folds higher affinity to CXCL12 in comparison to
CXCR4 [46]. Researchers postulated CXCL7 might have an
overriding advantage in mediating CXCL12 signaling.
However, both immunohistochemistry and flow cytometry
failed to identify CXCR7 molecules on peripheral NK cells
of mice and human [47]. Thus, CXCR7 seemed not to be
another desirable candidate receptor of CXC family in such
recruitment. Interestingly, CXCL12/CXCR4 axis was also
found to participate in ¢NK differentiation in the uterus
through JNK1/2/MAPK and ERK/MAPK  signaling
pathways [48]. CXCL-12 molecules stimulated uNK cells to
generate diverse factors to support conceptus invasion,
which further complicated functions of CXCL12-mediating
signaling pathways.

Both human and rodent studies have also suggested a
potent role of monocyte inflammatory protein (MIP)-1a
and macrophage chemotactic protein (MCP)-1 in migra-
tion of peripheral NK cells [49-51], which belong to CC
chemokine family. Peripheral NK cells of human and mice
constitutively express CCR2 for MCP-1, as well as CCR5
for MIP-1a in response to their chemotactic regulation
[52]. Because MIP-1la and MCP-1 are also present in
uterus during estrous cycle and increase in the early preg-
nancy, they are likely to be involved in the recruitment of
uNK cells. In human model, Penelope M. Drake et al.
confirmed localization of MIP-1la mRNA and protein in
cytotrophoblast cells. At the same time, subsequent
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addition of anti-MIP-1a antibodies eliminated chemotaxis
of 66.8 + 20.0% CD56bright NK cells in cytotrophoblast
conditioned medium, which implied that MIP-la is
responsible for conceptus-mediated chemotaxis of
CD56bright NK cells in human [53]. As for MCP-1,
although its level is in parallel to number of uNK cells in
human endometrium, its expression in conceptus has not
been proved. In mouse model, Chantakru et al. sug-
gested recruitment of NK cells in the uterus of preg-
nant mice is independent of chemotaxis of MIP-la
and MCP-1, whether diameter or distribution of uNK
cells was all identical in CCR2, CCR5 and MIP-1a
knock-out mutants and controls [52]. So far, no other
researches have illustrated the exact role of MIP-la/
CCR2 or MCP-1/CCR5 axis of uNK cells in mice
models. Thus, chemotactic ability of conceptus-
derived CC chemokines on uNK cells may be only
conserved in human rather than rodents.

Juxtacrine regulation: a novel but vital signaling specific
to conceptus

One of significant actions of NK cells in the periph-
eral blood is to attack infected cells without prior
sensitization. They can distinguish infected cells from
normal cells by recognizing alternation in MHC class
I molecules on cell surface [54]. In human, the MHC
class I molecules that play an important role in NK
cell recognition are members of MHC class Ia
(HLA-C) and Ib (HLA-E, HLA-F, HLA-G, MIC) [55].
Among them, only HLA-C, HLA-E and HLA-G are
particularly expressed by fetal- derived trophoblast
cells, the only cells that directly contact to NK cells
in the uterus [56, 57]. Thus, the molecules can serve
as ligands to activated or inhibitory receptors on uNK
cells to regulate their activities in a contact-dependent
manner. HLA-E and HLA-G molecules constitute a
more complicated network of regulation on uNK
cells, which will be discussed in Chapter III. Here we
focus on the interaction between HLA-C molecules
and uNK cells.

According to a dimorphism at position 80 of the al
domain, HLA-C molecules on trophoblast cells are
classified into 2 classes (Fig. 2): C1 and C2 allotype. C1
allotype are mainly bound by inhibitory KIR2DL2 and
KIR2DL3 on the uNK cells, whereas C2 allotype are
preferentially bound by inhibitory KIR2DL1 and
activated KIR2DS1 [58]. Killer immunoglobulin-like re-
ceptors (KIRs) are molecules developed by NK cells in
recognition of HLA-C molecules on cell surface and di-
vided into activated and inhibitory receptors based on
their action on NK cells [59]. Dependent on presence of
activated receptors, over 350 KIR genotypes are basically
divided into 2 haplotypes: A (only inhibitory receptors)
and B (inhibitory and activated receptors), which can be
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Fig. 2 KIR-A/homologous C2 and KIR-B/homologous C1 are two high-risk combination. a All possible combination of maternal KIR haplotypes with
trophoblastic HLA-C ligands. Combinations with intensive inhibition are failure to activate uNK cells to secrete relevant angiogenic cytokines and more
vulnerable to undergo pregnancy losses. Thus, KIR-A/homologous C2 and KIR-B/homologous C1 are two high-risk combinations than other combinations.

subdivided into centromeric and telomeric regions
(Cen-A, Tel-A, Cen-B, Tel-B) [60, 61]. The great diver-
sity of maternal KIRs and fetal HLA-C ligands means
that a huge number of combinations will be generated in
pregnancies and combinations failed in activation of
uNK cells are attributed to pathogenesis of preeclampsia,
fetal growth restriction and recurrent pregnancy, which
can be explained by poor angiogenesis [62]. Some
studies have demonstrated frequencies of affected
pregnancies increased in KIR AA mother, especially
accompanied with homologous C2 fetus [63]. Recently,
another high-risk combination is identified by direct
embryo HLA-C genotyping, which is the haplotype B/
homologous C1. In overall, the two combinations can
cause a 51% increased risk of pregnancy loss over all
other combinations. What’s more, the interaction of
HLA-C and KIRs not only can determine the possibility
of pregnancy losses but also the timing of them. Because
the homologous C1 embryos were observed to undergo
more biochemical pregnancy losses than clinical losses,
which caused its latent discovery in clinic practice
compared to the haplotype A/homologous C2 combin-
ation [64].

Combined action of ovary and conceptus on uNK cells

Evidence above has shown that whether ovary or
conceptus plays a vital role in the regulation of uNK cell
activities, however, it is also important to note that they
can act in synergistical manners. Animal and human
studies have suggested that progesterone regulates
expression of progesterone induced blocking factor
(PIBF) and HLA-G in trophoblast cells to modify uNK
cells function. Initially, PIBF proteins were found to be
synthesized by yd T lymphocytes in response to proges-
terone in circulatory system. The proteins exert their
immunosuppressive effects on peripheral NK cells and
maintain normal pregnancy [65]. Then PIBF proteins
attract considerable attention as a novel part of non-
classic regulatory pathway of progesterone. In fact, y0 T
lymphocytes are not the only cellular resource of them.
A human study illustrated that trophoblast cells in the
placenta could express PIBF proteins of 30, 50 and
90 kDa in first trimester [66]. Because neither PRs nor
homologies were verified in uNK cells [23], such non-
classical regulation was required by uNK cells in
response to progesterone. Moreover, as an immunosup-
pressant, PIBF proteins are likely candidates in
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mediating immune tolerance of uNK cells to conceptus.
The postulation has not been confirmed until Bogdan
et al. demonstrated PIBF proteins co-localized with
perforins in DBA* uNK cells [21]. In the study, proges-
terone was administrated to these cells and reduced 47%
perforin * cells from them, which directly proved the
presence of the non-classical pathway of progesterone
in the regulation of uNK cells.

In studies of HLA-G molecules, progesterone is also
shown to be correlated with expression of HLA-G mole-
cules on cell surfaces. Progesterone upregulates HLA-G
molecules via a novel progesterone response element
(PRE), which is located on promoter of HLA-G genes in
JEG-3 cell models and shares to 60% similarity to mouse
mammary tumor virus PRE [67]. Within the element, it
can enhance HLA-G expression on JEG-3 carcinoma cells
and human cytotrophoblast cells in vitro [68]. What's
more, normal human endothelial cells of heart vessel and
smooth muscle cells do not present HLA-G molecules on
their surface or in the cytoplasm, but they are able to
present the molecules after progesterone treatment [69].
Thus, HLA-G is likely to be another intermediary
molecule involved in progesterone-mediated indirect
modulation of uNK cells.

Unlike classical MHC class Ia molecules, HLA-G
molecules are exclusively expressed by fetus-derived
cells like extravillous cytotrophoblast cells or chori-
onic endothelial cells in the maternal-fetal interface
[9, 70]. In addition, their presence in endometrial
stroma cells, which are maternal-derived, has also
been proved [71]. However, not all HLA-G molecules
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are expressed on cell surface. Some alternative splice
transcripts of HLA-G mRNA lack exons encoding
transmembrane or cytoplasmic translated domains
and are translated as soluble forms [72]. For NK cells,
they only have 2 types of receptors for HLA-G
molecules: one is ILT2 for membrane-bound isoforms;
the other is KIR2DL4 for soluble isoforms [73, 74].
Despite of different isoforms, engagement of HLA-G
molecules yields completely the same consequence
that HLA-G molecules inhibit cytotoxicity of uNK
cells and increase the secretion of IL-6, IL-8, and
TNF-a, which play roles in spiral artery modification
[75]. HLA-G molecules also can reduce cytotoxicity
of uNK cells without the help of their cell surface
receptors. A leader peptide derived from HLA-G
molecules can bind to HLA-E molecules on cell sur-
face and stabilize their expression. The corresponding
receptor of HLA-E that is highly expressed on uNK
cells is NKG-2A. NKG-2A is an inhibitory receptor
and present on uNK cells in a complex with CD94
[76]. Thus, HLA-G molecules can indirectly activate
inhibitory NKG-2A/CD9% to reduce uNK cell cytotox-
icity by promoting HLA-E molecules expression.

Conclusion

In general, ovary and conceptus can regulate activity of
uNK cells in a separated or combined manner (Fig. 3).
Dysregulation of uNK cells has been linked to gesta-
tional implications such as recurrent pregnancy loss,
preeclampsia and fatal growth retardation. Given poor
understanding of the mechanisms involved in the
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(e.g.ERRB, GR) or through intermediary cells in the surroundings (e.g. T lymphocytes and endometrial stromal cells). Compared to ovaries, besides
endocrine signaling (e.g. hCG), conceptus also utilizes juxtacrine signaling (e.g. HLA-C) and paracrine signaling (e.g. cytokines) to facilitate activities
above of uNK cells. In addition, under the influence of ovarian hormones, conceptus can increase expression of PIBF and HLA-G molecules to
reduce cytotoxicity of uNK cells and promote angiogenesis




Gong et al. Reproductive Biology and Endocrinology (2017) 15:73

pathogenesis of the diseases, current therapies are all
specialized for the hormonal dysregulation of uNK cells.
Through giving a more comprehensive overview of
regulatory network of them in the uterine microenviron-
ment, our work can hopefully provide more conceptus-
derived targets for the development of novel and
effective therapies.
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