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Abstract

Background. Polygenic risk scores (PRS) are linear
combinations of genetic markers weighted by effect size that
are commonly used to predict disease risk. For complex
heritable diseases such as late onset Alzheimer’s disease
(LOAD), PRS models fail to capture much of the heritabil-
ity. Additionally, PRS models are highly dependent on the
population structure of data on which effect sizes are as-
sessed, and have poor generalizability to new data. Objec-

tive. The goal of this study is to construct a paragenic risk
score that, in addition to single genetic marker data used
in PRS, incorporates epistatic interaction features and ma-
chine learning methods to predict lifetime risk for LOAD.
Methods. We construct a new state-of-the-art genetic model
for lifetime risk of Alzheimer’s disease. Our approach inno-
vates over PRS models in two ways: First, by directly in-
corporating epistatic interactions between SNP loci using
an evolutionary algorithm guided by shared pathway infor-
mation; and second, by estimating risk via an ensemble of
machine learning models (gradient boosting machines and
deep learning) instead of simple logistic regression. We
compare the paragenic model to a PRS model from the liter-
ature trained on the same dataset. Results. The paragenic
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model is significantly more accurate than the PRS model un-
der 10-fold cross-validation, obtaining an AUC of 83% and
near-clinically significant matched sensitivity/specificity of
75%, and remains significantly more accurate when evalu-
ated on an independent holdout dataset. Additionally, the
paragenic model maintains accuracy within APOE geno-
types. Conclusion. Paragenic models show potential for
improving lifetime disease risk prediction for complex heri-
table diseases such as LOAD over PRS models.

1. Introduction
Alzheimer’s Disease (AD) is the most common cause of

dementia, affecting millions of Americans, and is the only
disease among the leading causes of death in the US for
which no effective prevention or cure exists [1]. The FDA
recently drafted a set of industry guidelines for clinical trials
of AD treatments targeting the earliest stages of disease [2],
indicating increasing focus on and investment in presymp-
tomatic intervention. However, trials aimed at averting the
underlying causes of disease have proven difficult because
pathological changes in AD happen well in advance of cog-
nitive decline. While changes in levels of amyloid-� (A�)
and tau in cerebrospinal fluid [3] and even blood [4] can be
seen prior to onset of symptoms, these changes indicate that
pathogenic processes have already begun. Furthermore, a
biomarker test administered too far in advance of symptom
onset may not indicate future risk of developing AD. An ac-
curate genetic test for AD, on the other hand, could be used
at any point in life to identify individuals at high risk for
developing the disease before changes in biomarkers can be
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detected.
Development of such a test is complicated by the com-

plex genetic structure of the more common, late-onset form
of AD (LOAD). The strongest risk factor for LOAD, the
Apolipoprotein E (APOE) "4 allele, increases risk of devel-
oping LOAD ⇡ 15 fold for those with two copies of the "4
allele and ⇡ 3 fold for those with one copy [5]; however, it
only accounts for ⇡ 6% of phenotypic variance [6]. Many
additional genetic risk factors have since been identified, all
having much smaller effect sizes.

Recent genetic risk prediction models for LOAD have
attempted to capture this complexity using polygenic risk
scores (PRS), in which an individual’s risk is calculated by
summing their total number of risk alleles across multiple
markers, weighted by effect size. PRS models for LOAD
have reported area under the receiver operator characteris-
tic curve (AUC) ranging from 0.62–0.78 for clinically diag-
nosed LOAD [7] and 0.82 in pathologically confirmed cases
[8]. These models focus only on the additive effects of sin-
gle nucleotide polymorphisms (SNPs) leaving a significant
amount of heritability unexplained; of the nearly 75% esti-
mated heritability of LOAD [9], only 24% is explained by
additive genetic components [10]. PRS models capture only
21% of the estimated heritability (90% of the heritability
explained by additive genetic components) [8].

One possible source of missing heritability is non-
additive, or epistatic, interactions between SNPs. Epistatic
interactions have been discovered involving genes that are
independently associated with LOAD, as well as between
genes that are not significantly associated with LOAD on
their own [11]. A recent study [12] constructed a LOAD
genetic risk prediction model combining epistatic risk with
polygenic risk and achieved an AUC of 0.67. Although this
was lower than other reported PRS models, it was a mi-
nor improvement over their model using only PRS scores
in the same dataset. Genome-wide epistasis studies are of-
ten limited to two-way interactions between SNPs; the large
number of SNPs means that the number of possible geno-
type combinations for higher order interactions is virtually
infinite.

In this paper, we use Crush-MDR [13], a machine learn-
ing algorithm that combines multifactor dimensionality re-
duction (MDR) with an evolutionary search algorithm, to
identify epistatic interactions in LOAD. These interactions
are included with single SNPs and PRS values to produce
a state-of-the-art LOAD risk prediction model. We term
our model a paragenic risk model as it incorporates genetic
markers beyond individual SNPs and it is an ensemble con-
sisting of a PRS model along with machine learning models.
The paragenic risk model shows significant improvement
over PRS and gradient boosting machines alone, obtaining a
mean 10-fold cross-validated area under the receiver opera-
tor characteristic curve (AUC) of 0.83 (95% CI [0.82, 0.84])

in predicting LOAD in clinically diagnosed cases. Addi-
tionally, our paragenic model maintains high AUC within
APOE genotype strata, unlike PRS models.

2. Methods
2.1. Participants

The dataset used for modeling consisted of data from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
the National Alzheimer’s Coordinating Center and the
Alzheimer’s Disease Genetics Consortium (NACC/ADGC),
the Framingham Heart Study (FHS), the Knight-ADRC at
Washington University in St. Louis (Knight-ADRC), and
Emory University. Phenotypes and covariates (case/ control
status, age, APOE genotypes, and education level) were not
defined consistently across studies, and were re-categorized
to be as consistent as possible (Supplementary Methods).
Individuals under the age of 55 were excluded from the
dataset. To minimize the effect of population stratification,
only individuals of European ancestry were included, as de-
termined by the first two genetic principal components. A
total of 9139 participants were included (Table 1).

The ADNI3 dataset was held out as an independent val-
idation set. After removing individuals related to or in-
cluded in the main dataset, the ADNI3 data consisted of
316 individuals, assessed at multiple ages, for a total of
681 records. There were 28 unique cases and 238 unique
controls. There were 77 unique instances of mild cognitive
impairment (MCI), which were excluded from modeling.
Participants were included at multiple ages if possible, to
evaluate the effect of paragenic risk score on disease pro-
gression.

2.2. Data Collection
For data collected on the Emory University cohort, all re-

search participants provide informed consent for blood and
CSF collection and allowed clinical and biospecimen data
to be repurposed under protocols approved by the Institu-
tional Review Board of Emory University. A clinical diag-
nosis using standard clinical research criteria was assigned
by a neurologist with subspecialty training in behavioral
neurology. Blood and CSF were collected using a standard-
ized approach from volunteers who were asked to fast at
least 6 hours prior to collection. Genotyping was performed
using the Affymetrix Precision Medicine Array using DNA
extracted from the buffy coat by the Qiagen GenePure kit
following the manufacturer’s recommended protocol.

2.3. Genotypes
Different genotyping chips were used across studies;

therefore, genotypes from all studies were imputed to
the Haplotype Reference Consortium (HRCr1.1) panel us-
ing the Michigan Imputation Server [14]. All files were
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Cross-Validation Holdout (ADNI3)

Covariate Cases
(n = 3749, 41%)

Controls
(n = 5390, 59%)

Cases
(n = 59, 11%)

Controls
(n = 447, 89%)

Age 78.0 (8.8) 74.3 (8.7) 73.0 (9.5) 71.7 (6.2)
Sex 1868 (49%) 3165 (59%) 22 (37%) 283 (63%)
APOE-"2 3470, 274, 5 4619, 744, 27 56, 3, 0 407, 40, 0
APOE-"4 1752, 1518, 479 3923, 1351, 116 17, 27, 15 286, 144, 17
Education 15.1 (3.1) 15.9 (2.6) 15.8 (2.8) 16.8 (2.2)

Table 1. Overview of study participants. Age and Education are presented as mean and standard deviation in years, sex as number of
males, and APOE as count for 0, 1, and 2 alleles.

prepared for imputation using the provided perl script
(HRC-1000G-check-bim.pl). The imputed genotypes
were filtered to biallelic SNPs with Rsq > 0.8 in all stud-
ies. SNPs with large differences in minor allele frequency
(MAF) across studies or with potential strand flips were also
removed. KING [15] was used to identify duplicate partic-
ipants that were then removed from the dataset. Variants
were then filtered to include those with MAF > 0.1 using
PLINK.

2.4. Model Overview
To compare different modeling strategies and feature

sources, we trained and evaluated several different models
on our dataset. Throughout this work, we will use the fol-
lowing terminology to refer to different models trained to
predict AD status:

1. Baseline model: a gradient boosting model trained on
age, sex, and APOE genotype.

2. PRS model: a logistic regression model in which a
PRS was computed and used as a feature along with
the features of the baseline model.

3. Epistatic model: any model trained on mined epistatic
features along with individual SNP markers and other
covariates. We used two separate epistatic models
trained on the same features, one using gradient boost-
ing machines, and one using neural networks.

4. Ensemble model: any model trained on the predictions
of other models.

5. Paragenic model: any ensemble model containing a
PRS model and at least one epistatic model.

2.5. Epistatic Models
A feature engineering and association testing pipeline

was run to select individual SNPs as well as interactions
between SNPs to include in the individual epistatic mod-
els. The selected features, along with covariates (age, sex,
APOE, education level, and the first 20 genomic principal

components) were used to separately train and validate gra-
dient boosting machine (XGBoost gradient boosting clas-
sifier algorithm [16]) and neural network (Neural Oblivi-
ous Decision Ensemble neural network (NODEnn) archi-
tecture [17]) models predicting case/control status. Feature
selection and model building were performed using 10-fold
nested cross-validation on the aggregated dataset. The same
cross-validation fold partitions were used throughout.

2.5.1 Individual SNP Selection

Individual SNPs were selected by linear mixed model-
ing association with case/control status using BOLT [18].
The participants were randomly partitioned into 10 cross-
validation folds. Related individuals were detected using
KING [15] and assigned to the same fold for the mixed
model association testing step, after which the maximum
unrelated set for each family group was computed and re-
tained. The resulting training sets (each consisting of nine
folds) had a mean of 3374 (sd 18.9) cases and 4851 (sd 23.5)
controls, and the test sets (one fold) had a mean of 375 (sd
18.9) cases and 539 (sd 23.5) controls. The top 50 SNPs
ranked by log odds ratio were included as features in the
modeling step.

2.5.2 Epistatic Interaction Feature Engineering

Epistatic interaction terms were selected using multifactor
dimensionality reduction (MDR) [19], a nonparametric ap-
proach that collapses the genotype combinations into high
risk or low risk, then tests this new variable’s association
with the phenotype using cross validation. The Crush-MDR
algorithm [13] uses an evolutionary algorithm guided by
expert knowledge to mine the space of SNP interactions.
Candidate SNPs to include in the interaction mining were
selected within each training set of unrelated individuals.
To reduce the dataset to a size that could fit in memory
for the epistatic feature pipeline, we used PLINK to re-
move SNPs in linkage disequilibrium (LD) to downsample
to approximately 100,000 SNPs. We empirically chose a
downsampling r2 > 0.11, which resulted in 98,903 SNPs.
These SNPs were then run through an iterated version of
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the MultiSURF algorithm [20], and the top 10,000 SNPs
associated with disease status were retained. The space
of epistatic interaction terms using combinations of either
two or three SNPs was mined using the Crush-MDR algo-
rithm with multi-objective optimization and expert knowl-
edge provided in the form of the number of shared path-
ways between each pair of SNPs as well as pairwise mu-
tual information conditioned on case/control status. Shared
pathways were computed using annotations from the Gene
Ontology database [21, 22]. Each SNP was associated with
the gene closest in distance to it, or containing it if there
was such a gene. SNPs were considered to share a path-
way if the associated genes shared a pathway as defined in
the Gene Ontology database. Interaction terms were ranked
by Pareto optimality with respect to balanced accuracy and
mean cartesian entropy, and the top 100 were selected as
features for downstream modeling. Interaction terms were
represented for each individual as whether they had a low
risk or high risk genotype combination. Genotype combi-
nations that were not found in the training set were coded
as missing.

2.5.3 Gradient Boosting Model

The variants, epistatic terms, and covariates selected above
were provided to XGBoost [16], a gradient boosting ma-
chines algorithm, as features. Within each cross-validation
training fold, hyperparameters were tuned in an inner cross-
validation loop using Origin [23], a distributed implemen-
tation of the nondominated sorting genetic algorithm II
(NSGA II) [24]. Origin was run on a cluster of Amazon
Web Services spot instances.

2.5.4 Neural Network Model

The NODEnn architecture does not support missing feature
values; therefore, only variants and epistatic terms were
included in the modeling as there was no way to mean-
ingfully impute the covariates. Imputed genotype dosage
values were used in place of allele counts for single SNPs
to minimize missing values; any remaining missing values
were imputed using k-nearest neighbors (k = 5) imputa-
tion on the training set. After imputation, the dosage and
epistatic features were normalized to be between 0 and 1.
The NODEnn model was constructed using the PyTorch
implementation provided by the original authors [17]. Our
network consisted of two blocks, each consisting of 1024
neural trees with depth = 6 and dimension = 3 and quasi-
hyperbolic Adam [25] with the recommended hyperparam-
eter settings of ⌫0 = 0.7, ⌫1 = 1.0, �0 = 0.95 and
�1 = 0.998 as the optimizer. The network was trained
on an NVIDIA Titan RTX GPU. The NODEnn model was
regularized using early stopping. On each fold, 10% of the

training set was held out as a validation set; training was
stopped when the model failed to improve after 5 epochs.

2.6. Calculation of PRS Model
Construction of a polygenic risk score (PRS) was per-

formed according to the methodology of [26]. The same
cross-validation folds as the epistatic model were used; the
training sets were used as discovery sets in the PRS model
and the test sets were used for validation. Standard qual-
ity control procedures were applied: only SNPs having
MAF � 0.01, Hardy–Weinberg equilibrium �2 test p-
value � 1 ⇥ 10�6 and genotyping call rate � 0.9 were
included in the discovery set [27]. We removed individ-
uals with genotype missingness � 0.1 and randomly re-
moved related individuals with a kinship coefficient cut-
off of 0.125. We performed random linkage disequilibrium
pruning and intelligent pruning with the --clump option
in PLINK using r2 > 0.2 and a physical distancing thresh-
old of 1Mb to be consistent with [26].

Markers were selected using p-value thresholds ranging
from 0.05 to 1.0, and the polygenic risk score was calcu-
lated with effect sizes from the IGAP study as weights [28].
Performance of the PRS models were computed using lo-
gistic regression on disease risk against PRS, APOE-"2, -
"4, genotype, age, and sex using the StatsModels package
[29]. The model with significance threshold p = 0.6 resulted
in the PRS model with the highest AUC, and was used for
comparative analysis.

2.7. Paragenic and Ensemble Models
To train the ensemble models, within-training-set pre-

dictions were computed on each fold for the XGBoost and
NODEnn epistatic models as well as the PRS model. For
each training fold, these predictions were provided as fea-
tures to train an ensemble model by stacking [30] with lo-
gistic regression as a meta model using Scikit-Learn [31].
Predictions for the stacked model were then computed on
the test set for each fold and used for final ensemble model
evaluation. We also trained and evaluated an ensemble
model for each of the various combinations of individual
XGBoost, NODEnn, and PRS models. Figure 1 summa-
rizes the modeling process.

3. Results
The paragenic ensemble models were compared to their

individual component models as well as all combinations of
the individual components. A baseline logistic regression
model on age, sex, and number of APOE-"2 and -"4 alleles
was included as well. Model efficacy was determined by
area under the receiver operator characteristic curve (ROC
AUC or just AUC), specificity and sensitivity. Models were
evaluated both by cross-validation performance and in an
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Figure 1. Schematic of mining and modeling procedure. Raw
data is labeled in gray, derived features in orange, and models in
blue.

independent holdout set of ADNI3 participants who were
new to the model.

3.1. Model Performance

Models were first assessed using the test set predictions
from 10-fold cross-validation. Model AUC was calculated
for each test set (Table 2). Probability thresholds minimiz-
ing the difference between sensitivity and specificity were
computed in the training sets for each fold and then applied
to the test sets; standard deviations of sensitivity and speci-
ficity statistics were computed using bootstrap sampling.

The paragenic model on PRS + XGBoost + NODEnn
significantly outperformed all individual models in terms of
AUC and specificity (DeLong test statistic Z = �3.2555,
p-value = 0.0006, McNemar test statistic for specificity
�2 = 553.0, p-value < 10�10 between the paragenic model
and the model with the next highest AUC/specificity). The
standard PRS model performed significantly better than the
model ensembles in terms of specificity (�2 = 553.0, p-
value < 10�10), but at the cost of having a significantly
lower sensitivity than the least performant paragenic model
(PRS + NODEnn, �2 = 88.0, p-value < 10�16).

Models were then trained on the entire dataset and pre-
dictions were made on the ADNI3 holdout set. Again,
the minimized difference between sensitivity and specificity
probability threshold was computed on the training set, and
sensitivity and specificity standard deviations were com-
puted via bootstrapping in the holdout set (Table 3). Com-
parison of ROC curves in the cross-validation and ADNI3
sets are shown in Figure 2.

The XGBoost model outperformed all other models in
the holdout set in terms of AUC (Z = �42.9, p-value
< 10�15) and had significantly higher sensitivity over PRS
(�2 = 6.0, p-value = 0.0003). It had significantly higher
specificity among models incorporating SNP or epistatic
features (�2 = 79.0, p-value = 4.5 ⇥ 10�5). The base-
line model was the most specific (�2 = 82.0, p-value =

0.0006); however it had extremely poor sensitivity and AUC
and therefore is less performant overall. Interestingly, the
ensemble models (even those including XGBoost) failed to
outperform the component models on the holdout set; in
particular, inclusion of PRS in an ensemble was generally
detrimental to performance. Despite the XGBoost model
performing well on the holdout set, this performance falls
off significantly in terms of specificity and AUC when en-
sembled with PRS (Z = 42.9, p-value < 10�15, �2 =
149.0, p-value < 10�30).

3.2. Model Performance by APOE Genotype

The full paragenic model (PRS + XGBoost + NODEnn)
showed strong AUC performance within all APOE geno-
types in the cross-validation dataset, significantly outper-
forming PRS within all APOE genotypes (Figure 3). The
paragenic model performed consistently well within each
stratum, staying within 4% points of the unstratified AUC
for all genotypes except "4/"4. The PRS model largely per-
formed much poorer within each stratum compared to the
unstratified AUC, generally 6–7% lower with the exception
of the "2/"4 stratum. Both models had AUCs on the "2/"4
stratum on par with their respective unstratified AUCs. The
"2/"2 genotype was not well-represented in our data and so
was discarded from this analysis.

3.3. Risk Prediction by Age

To assess age-dependent risk, the Kaplan–Meier sur-
vival curve was estimated on the cross-validation dataset
within each score quantile of the full paragenic model using
the lifelines package in Python [32]. The resulting curve
showed significant discrimination for LOAD risk at differ-
ent ages (Figure 4). The logrank p-values between Q1 and
Q2, Q2 and Q3, Q3 and Q4 were 0.0016, < 10�14, and
< 10�17 respectively.

3.4. Clinical Utility

To assess our model for clinical utility, we analyzed the
positive and negative predictive values (PPV and NPV) in
Python. Following [26], we computed adjusted PPV and
NPV values assuming varying LOAD population preva-
lences of 17% (overall lifetime risk) and 32% (risk for ages
85+ [33]). The results for cross-validation are presented in
Table 4.

The full paragenic model and the paragenic XGBoost +
PRS model had nearly identical predictive value, and both
were significantly better than the next closest contender.

The predictive values on the holdout set are consistent
with the analysis on the cross-validation dataset. The full
paragenic model had the strongest PPV at both prevalences
analyzed, but poorer NPV than the purely epistatic models
(XGBoost and NODEnn) (Table 5).
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Model ROC AUC Specificity Sensitivity
Baseline (age + sex + APOE) 0.749 (0.739, 0.759) 0.735 (0.723, 0.747) 0.641 (0.626, 0.657)
PRS 0.796 (0.786, 0.805) 0.757 (0.746, 0.769) 0.698 (0.683, 0.712)
XGBoost 0.804 (0.795, 0.813) 0.707 (0.695, 0.719) 0.746 (0.732, 0.759)
NODEnn 0.727 (0.716, 0.737) 0.687 (0.675, 0.699) 0.648 (0.632, 0.664)
PRS + XGBoost 0.829 (0.820, 0.837) 0.758 (0.745, 0.769) 0.741 (0.726, 0.755)
XGBoost + NODEnn 0.803 (0.794, 0.812) 0.711 (0.699, 0.722) 0.740 (0.725, 0.753)
PRS + NODEnn 0.801 (0.792, 0.810) 0.726 (0.714, 0.737) 0.738 (0.724, 0.752)
PRS + XGBoost + NODEnn 0.829 (0.821, 0.838) 0.761 (0.750, 0.772) 0.736 (0.722, 0.749)

Table 2. Comparison of individual models and ensembles on cross-validation, calculated as mean and 95% confidence intervals across
folds

Model ROC AUC Specificity Sensitivity
Baseline (age + sex + APOE) 0.750 (0.660, 0.831) 0.653 (0.608, 0.696) 0.696 (0.569, 0.807)
PRS 0.730 (0.650, 0.800) 0.667 (0.625, 0.711) 0.712 (0.593, 0.824)
XGBoost 0.818 (0.764, 0.864) 0.729 (0.685, 0.769) 0.817 (0.706, 0.910)
NODEnn 0.754 (0.691, 0.811) 0.559 (0.514, 0.604) 0.816 (0.700, 0.912)
PRS + XBGoost 0.796 (0.729, 0.852) 0.729 (0.687, 0.771) 0.750 (0.627, 0.852)
XGBoost + NODEnn 0.818 (0.765, 0.867) 0.735 (0.693, 0.774) 0.817 (0.706, 0.904)
PRS + NODEnn 0.748 (0.670, 0.816) 0.651 (0.608, 0.694) 0.783 (0.667, 0.883)
PRS + XGBoost + NODEnn 0.797 (0.734, 0.856) 0.751 (0.710, 0.791) 0.750 (0.629, 0.853)

Table 3. Comparison of individual models and ensembles on holdout dataset (ADNI3).

4. Discussion
In this study, we built a genetic risk prediction model for

LOAD using machine learning techniques with the goal of
improving upon existing PRS models. Though PRS models
have successfully captured the additive genetic components
of disease, they do not capture more complex genetic struc-
ture such as epistatic interactions. We constructed a PRS
model on our dataset and additionally mined the data for
epistatic features to include with single SNPs in machine
learning models. The final paragenic risk model, an ensem-
ble of a logistic PRS model, a deep learning epistatic model
(NODEnn), and a gradient boosted trees epistatic model
(XBGoost), achieved an AUC of 0.829 in cross-fold vali-
dation. This performance is significantly higher than pub-
lished PRS models (Figures 2, 3) and, while other machine
learning models have reported comparable or higher AUCs
[34], they performed feature engineering in-sample, which
can lead to overestimation of expected performance on real-
world (out-of-sample) data [35].

The XGBoost epistatic model and paragenic models out-
performed PRS in terms of ROC AUC, sensitivity, and
specificity both in cross-validation and in an independent
holdout set. Ensembling PRS and epistatic models gener-
ally improved the modeling over the individual component
models across all metrics. As expected, all types of models
performed less well on the held-out dataset than in cross-
validation. The XGBoost model suffered the least from data
drift, particularly in terms of AUC. Ensembling of epistatic
models with PRS did not give the same improvement as was
observed in the cross-validation analysis, likely because the

PRS model performed poorly on the holdout dataset in gen-
eral. We suspect this is due to the well-known difficulties in
applying PRS models trained on one dataset to another [36].
However, ensembling with a PRS model did improve model
specificity and positive predictive value on the holdout set.
This issue was not apparent in the cross-validation study,
likely because the folds were partitioned without stratifica-
tion by data source, resulting in test/train splits comprising
similar populations. Moreover, the holdout dataset had a
significantly smaller proportion of cases, leading to poorer
performance of the paragenic models in terms of specificity
and NPV.

Importantly, the paragenic model showed improved dis-
criminative ability over PRS alone regardless of APOE
genotype. Although the "4/"4 genotype is a strong sin-
gle marker predictor of LOAD, only 9.6% of people with
AD carry this genotype and the prevalence is heterogeneous
among populations [37]. Thus, predicting AD risk even in
the absence of "4 alleles, and conversely predicting which
"4/"4 carriers will not develop AD, is necessary. Interest-
ingly, the genotype within which the paragenic model had
the lowest ROC AUC was "4/"4. This may be due to the
lower number of participants in this group and could possi-
bly be improved through modeling within APOE genotypes,
or synthetically increasing the prevalence of "4/"4 through
oversampling.

It should be noted that the goal of this study was high
predictive accuracy rather than interpretability or to provide
insights into the etiology of LOAD. As such, feature sig-
nificance was not explored in depth. Markers included in
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Figure 2. Comparison of ROC curves between PRS and Paragenic models on cross-validation and hold out data (ADNI3).

Figure 3. Comparison of ROC curves between PRS and Paragenic models on cross-validation and hold out data (ADNI3).

the model may be informative in predicting disease without
being the true causative factor.

To the best of our knowledge, the paragenic model has
the highest AUC of genetic risk prediction model for clini-
cally diagnosed LOAD to date and can potentially be used
to identify individuals at high and low risk of develop-
ing disease for stratification in clinical trials as well as for
personal use. Further improvements can likely be made
through inclusion of environmental and lifestyle covariates
[38]. We found that the differences across studies in data
collection methods and completeness for these factors re-
sulted in informative missingness, and thus we were not
able to use them in modeling. Inclusion of these factors
in a personal risk prediction test would allow users to see
how lifestyle changes can reduce their risk of developing

disease. Additionally, this study, like others, was con-
ducted on individuals of European ancestry only and thus
sheds no insight into the efficacy of machine learning over
PRS, which does not translate across ancestries, in non-
Europeans. Modeling on diverse populations is required in
order to extend this risk prediction test to individuals of all
ancestries.
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Negative Predictive Value Positive Predictive Value
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Table 4. Comparison of positive and negative predictive value of individual models and ensembles on cross-validation data.

Negative Predictive Value Positive Predictive Value
Model 17% prevalence 32% prevalence 17% prevalence 32% prevalence
Baseline (age + sex + APOE) 0.913 (0.883, 0.944) 0.820 (0.764, 0.878) 0.274 (0.232, 0.324) 0.455 (0.391, 0.535)
PRS 0.919 (0.889, 0.949) 0.831 (0.773, 0.894) 0.286 (0.241, 0.337) 0.471 (0.402, 0.550)
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PRS + XGBoost + NODEnn 0.935 (0.907, 0.961) 0.864 (0.810, 0.917) 0.383 (0.325, 0.452) 0.593 (0.511, 0.690)

Table 5. Comparison of positive and negative predictive value of individual models and ensembles on holdout data (ADNI3).

Figure 4. Comparison of ROC curves between PRS and Paragenic
models on cross-validation and hold out data (ADNI3).
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