
FEMS Microbiology Reviews, fux050, 42, 2018, 1–21

doi: 10.1093/femsre/fux050
Advance Access Publication Date: 23 October 2017
Review Article

REVIEW ARTICLE

Metals in fungal virulence
Franziska Gerwien#, Volha Skrahina#, Lydia Kasper, Bernhard Hube∗

and Sascha Brunke

Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and
Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
∗Corresponding author: Department Microbial Pathogenicity Mechanisms, Adolf-Reichwein-Straße 23, 07745 Jena, Germany.
Tel: +49 3641 532 1401; Fax: +49 3641 532 0810; E-mail: bernhard.hube@leibniz-hki.de
#These authors contributed equally to this work.
One sentence summary: Pathogenic fungi require metals to survive and cause disease in the host. Their complex regulatory, uptake and detoxification
systems are often uniquely adapted to conditions in vivo. This review compares and contrasts metal homeostasis mechanisms of human fungal
pathogens.
Editor: Gerhard Braus

ABSTRACT

Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact,
an important aspect of microbial pathogenesis is the ‘nutritional immunity’, in which metals are actively restricted (or, in
an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently,
fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron,
zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even
within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here
compare the common and species-specific mechanisms used for different metals among different fungal species—focusing
on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at
model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These
direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take
up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species—not the
least to exploit this knowledge for new antifungal strategies.

Keywords: transition metals; pathogenic fungi; nutritional immunity; metal homeostasis; host–pathogen interactions;
regulatory networks

INTRODUCTION

Fungi are frequently underestimated as causes of disease and
death worldwide—by the public, by health practitioners, and
even by national and global health organizations (Brown et al.
2012). Because of their often highmortality rates, infectionswith
invasive fungi from genera as diverse as Candida, Aspergillus,
Cryptococcus, Histoplasma, Paracoccidioides or Blastomyces are re-
sponsible for about one and ahalfmillion deaths per year (Brown
et al. 2012), and non-fatal infections will affect most people at

least once in their lifetime, with correspondingly high costs for
healthcare systems worldwide. The search for fungal virulence
factors and thus potential new drug targets in these eukaryotic
pathogens is therefore all the more important.

Metals play a surprisingly central role in infection processes,
as they serve as cofactors in a multitude of enzymes—including
many with direct and indirect roles in virulence, such as
metal-dependent superoxide dismutases (SODs), metallopro-
teases or melanin-producing laccases. Especially the first-row
transition metals—manganese (Mn), iron (Fe), cobalt (Co), nickel
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(Ni) and copper (Cu)—provide the necessary redox and catalytic
activity for many important biological processes. Their ioniza-
tion energies increase slowly both over the row and for subse-
quent ionization events in the same metal. In the case of first-
row transition metals, this is due to the shielding effect of their
3d-electrons on the 4s-electrons, and these are first lost during
ionization. In fact, all these transition metals thus have a sta-
ble +2 oxidation state (lacking the 4s-electrons) and generally
many additional stable states (up to seven in the case of Mn),
which allows them to readily change their oxidation states in bi-
ological reactions. Zinc (Zn), with its single oxidation state (+2)
and its filled d-orbital, is a notable exception, but nonetheless
plays important roles especially in eukaryotic gene regulation.

The host is similarly dependent on metals, and should the-
oretically present a near optimal, metal-rich environment for
infecting microbes. However, this is counterintuitively not the
case, a fact that helps our intact immune system to fend
off pathogenic fungi and bacteria. This is due to a process
aptly named ‘nutritional immunity’, where the host actively
sabotages and counteracts metal uptake by microorganisms
(Weinberg 1975) and to make matters worse—as seen from the
pathogen’s side—can also fight invaders by deploying toxic lev-
els of certain metals (Hood and Skaar 2012). Iron, copper and
manganese, for example, are intrinsically toxic via Fenton chem-
istry (Fenton 1894), the metal-catalyzed generation of oxygen
radical species from hydrogen peroxide, which at high metal
concentrations results in oxidative damage to the microbes
(Higson, Kohen and Chevion 1988; Touati 2000). Furthermore,
many of the common biological metals have similar divalent
cation properties in binding ligands, but strikingly different cat-
alytic functions. Mismetallation, i.e. the replacement of an en-
zyme’s metal cofactor by a different metal by host-induced
metal excess and oxidative stress (reviewed in Imlay 2014), could
thus inhibit the function of microbial enzymes that require de-
fined metals as cofactors (Macomber and Imlay 2009; McDevitt
et al. 2011; Veyrier et al. 2011). Consequently, the pathogensmust
keep these essential metals within strict homeostatic bound-
aries even when moving through rapidly changing metal mi-
croenvironments within the host. Finally, in biologically rele-
vant pH ranges, these metals are frequently more soluble under
acidic conditions, which results in often pH-dependent systems
of metal homeostasis, many of which are described below.

Many of the metal conditions in microbial organisms still re-
flect the environment that we envision to have existed during
the emergence of life. Then, iron was mainly present in its fer-
rous form (Fe2+)—due to the anoxic environment, which also
led to copper and other soft metals to be trapped away in sul-
fide minerals. Especially eukaryotes, like fungi, later learned to
include zinc and, to a certain extent, copper into the spectrum
of biologically useful metals. Still, the profound differences be-
tween the evolutionary inherited patterns of metal use and the
modern lower availability of iron (mostly ferric (Fe3+) rather than
ferrous, due to the newly oxic conditions), and the relative abun-
dance of soft metals, like copper, presents a continuing chal-
lenge to microbes, which nonetheless may have ‘trained’ the
microorganisms to better deal with the metal-based nutritional
immunity of mammals.

In fact, pathogenic fungi have developed often complex and
advanced detection and signaling networks to upregulate the
import of specific metals in times of need. Frequently, biological
processes that rely on these metals are downregulated by ded-
icated regulators, reducing the consumption and liberating the
bound metal. Under metal excess, often (but not always) a dif-
ferent regulator stops the expression of importers and initiates

the sequestration of surplus metal to special proteins like met-
allothioneins (MTs) or to the vacuole, which serves as an over-
flow basin and emergency reservoir for many different metals.
Many transporters have evolved that allow the transport of the
chargedmetal ions over the plasma or vacuolarmembranes, but
unspecific transport of several metals by the same transporter
is not uncommon—bringing with it the danger of the loss of full
control over the metals that enter the cell and possibly leaving
the microbe vulnerable to metal toxicity (Liu et al. 1997; Li and
Kaplan 1998; Viau et al. 2012; Caetano et al. 2015).

Excellent recent reviews exist on many aspects of bacterial
metal use, and among those we highly recommend (Palmer and
Skaar 2016) for readers interested in non-fungal systems. On the
topic of nutritional immunity, we recommend (Hood and Skaar
2012) for an outstanding overview ofmetal-related bacteria–host
interactions, and (Crawford andWilson 2015) for a view on com-
mon fungal pathogens. For an in-depth view on individual met-
als and their role in microbial pathogenesis, we refer the reader
to Garcia-Santamarina and Thiele (2015) for copper, and for iron
to Ganz and Nemeth (2015) and Soares and Weiss (2015) for a
host view and Bairwa, Hee Jung and Kronstad (2017) for the fun-
gal side.

In this review, we compile and compare strategies that fungi
employ to obtain metals during pathogenesis, and we provide
examples for different homeostatic mechanisms, and how they
connect to fungal virulence. To this end, we summarize here the
basic principles of homeostatic regulation in pathogenic fungi
for iron, zinc, copper and manganese—metals for which a suffi-
ciently large body of literature exists. The direct comparisons of
knownmechanisms among fungi will, we hope, allow the reader
to discover common principles and identify open questions in
order to complete our picture of the role of metals in fungal
infections.

IRON

Most texts on microbial metal homeostasis start with a focus
on iron. This is for good reason, as iron is the most abundant
of the trace metals in organisms and arguably the one with the
most diverse roles in cellular processes. These include central
metabolic pathways such as oxygen transport, the tricarboxylic
acid (TCA) cycle or electron transport chains, mostly via incor-
poration of iron or the iron-containing prosthetic group heme
into the active centers of key enzymes. For these reasons, iron
is an essential metal in nearly all organisms (Borrelia burgdorferi,
the causative agent of Lyme disease, is one of the rare and no-
table exceptions; Posey and Gherardini 2000). While the ubiquity
of iron is related to its chemical redox properties, namely the ca-
pacity to readily switch between the ferric and the ferrous form,
this same quality is also at the root of the problems that can
be caused by iron in many biological systems. For instance Fe3+,
the prevalent formunder aerobic conditions, is essentially insol-
uble in water and hence inaccessible to most microbes. Fe2+ in
contrast is muchmore soluble, but at the same timemore prone
to elicit iron-induced toxicity mediated by the formation of radi-
cals via the Fenton reaction. Additionally, iron, similar to copper,
has a high affinity to replace other metals in enzymatic reactive
centers, a mismetallation that usually results in a disruption of
the enzymatic function (Vance andMiller 1998;Martin and Imlay
2011).

Accordingly, vertebrates and microorganisms alike have de-
veloped sophisticated strategies to ensure solubility, distribu-
tion and steady supply of iron while keeping its homeostatic
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levels sufficiently low to prevent toxicity. In vertebrates, this in-
cludes the almost complete binding of iron via a plethora of
transport and storage proteins, such as hemoglobin, transfer-
rin, lactoferrin and ferritin (reviewed in Wang and Pantopoulos
2011). During infection, microbial access to iron (and other met-
als) is actively restricted even further by nutritional immunity
mechanisms (Weinberg 1975). This occurs at the systemic level
by hepcidin-induced reduction of circulating iron (Nemeth et al.
2004) and at the tissue level by the active redistribution of iron
away from sites of infection (Potrykus et al. 2013). In these pro-
cesses, iron is shuttled to intracellular stores to keep it out of
reach of invading pathogens—predominantly in macrophages,
which also act as natural heme recycling sites via phagocytosis
of senescent erythrocytes (reviewed in Wang and Pantopoulos
2011).

However, a range ofmicrobial pathogens have adopted an in-
tracellular lifestyle and use macrophages as hiding places from
the immune system, or even as a source of nutrients andmetals
for their own growth. This includesmany pathogenic fungi such
as the dimorphic ascomycete Histoplasma capsulatum (Newman
et al. 1994; Hwang et al. 2008), the basidiomycete Cryptococcus ne-
oformans (Levitz et al. 1997), the yeast-like ascomycete Candida
glabrata (Nevitt and Thiele 2011; Seider et al. 2014) and other di-
morphic ascomycetes e.g. Paracoccidioides brasiliensis (Cano et al.
1994) or Blastomyces dermatitidis (Sterkel et al. 2015). All these
species are able to survive phagocytosis and replicate inside
macrophages, and they use diverse strategies in order to exploit
the intracellular iron stores of macrophages, not all of which
have yet been elucidated (Hilty, Smulian and Newman 2008,
2011; Nevitt and Thiele 2011; Hu et al. 2015).

Iron homeostasis and uptake

Pathogens have evolved elaborate systems to acquire iron from
their environment (Fig. 1). A common theme in iron uptake is
the utilization of siderophores, a heterogeneous class of small
molecules, which are secreted by bacteria and fungi to bind
extracellular ferric iron with extremely high affinity. This is
achieved by coordinating Fe3+ by normally six oxygen ligands
per molecule in an octahedral geometry, although siderophores
with less donor atoms per molecule can bind in stochiometries
different from 1:1 or use water as an additional oxygen donor.
Siderophore–iron complexes are then either taken up directly
or they deliver their precious load to receptors of the microbe’s
surface for uptake via specific transporters (reviewed for fungi
in Haas, Eisendle and Turgeon 2008). Like in bacteria, many dif-
ferent classes of fungal siderophores are known, such as the
most commonly produced hydroxamates [triacetylfusarinine C
(Charlang et al. 1981; Oide et al. 2006; Schrettl et al. 2007), co-
progens (Matzanke et al. 1987), ferrichromes (Neilands 1952),
rhodotorulic acid (Muller, Barclay and Raymond 1985)], polycar-
boxylates produced by zygomycetes (Thieken and Winkelmann
1992) and phenolates-catecholates, which are present in wood-
rotting fungi (Fekete, Chandhoke and Jellison 1989). Some fun-
gal siderophores have highly specialized roles: Aspergillus fumi-
gatus and A. nidulans ferricrocins, for example, are found inside
the fungus rather than being secreted, and are involved in in-
tracellular iron homeostasis and storage (Eisendle et al. 2006;
Schrettl et al. 2007; Gsaller et al. 2012). Similarly, ferrichromes
of the plant-pathogenic fungi Ustilago sphaerogena and U. maydis
can be secreted or store iron intracellularly (Ecker, Lancaster and
Emery 1982; Budde and Leong 1989). Importantly, Fe3+ bound to
siderophores, due to their strongly negative redox potential, is
not readily reduced to Fe2+ and hence will not generate hydroxyl

radicals (Cornish and Page 1998). By this mechanism, intracel-
lular siderophores can help to protect microbes from the toxic
effects of iron (Eisendle et al. 2006).

Overall, siderophore producers are widespread in the fungal
kingdom and include animal and human pathogens such as As-
pergillus spp. (Zähner et al. 1963; Nilius and Farmer 1990; Gressler
et al. 2015), H. capsulatum (Howard et al. 2000), Rhodotorula pili-
manae (Carrano and Raymond 1978), Neurospora crassa (Horowitz
et al. 1976), Paracoccidioides spp. (Silva-Bailao et al. 2014) and
the plant pathogens U. maydis (Budde and Leong 1989) and
Alternaria brassicicola (Oide et al. 2006), among many others.
In fact, siderophores are essential for the virulence of most
fungal pathogens producing them. Deletion mutants lacking
siderophore synthesis genes show severe virulence defects in
A. fumigatus (Schrettl et al. 2004; Hissen et al. 2005), and also in
H. capsulatum (Hwang et al. 2008). Consequently, the host has
been shown to sequester fungal (and bacterial) siderophores
via siderocalins, special siderophore-binding lipocalins (Goetz
et al. 2002; Leal et al. 2013). Notably, the cellular energy cost to
sustain siderophore synthesis is rather high for the microbe.
Hence, biosynthesis is generally tightly controlled and activated
solely upon significant iron shortage (Mei, Budde and Leong
1993; Oberegger et al. 2001). In addition, many fungal species, in-
cluding C. albicans, C. glabrata or Saccharomyces cerevisiae, as well
as Cr. neoformans, Geotrichum candidum and Rhizopus spp., lack
the key enzyme L-ornithine N5-oxygenase (Sid1/SidA), which is
needed for the initiation of hydroxamate siderophore biosyn-
thesis, and they thus do not produce their own siderophores
(reviewed in Haas, Eisendle and Turgeon 2008). Controversially,
siderophore production was reported for C. albicans (Ismail,
Bedell and Lupan 1985), but no putative biosynthesis genes were
subsequently found in the genome.

Lacking their own biosynthetic machinery, these species of-
ten rely on xenosiderophores, i.e. siderophores produced by
other fungi or bacteria. Dedicated xenosiderophore transporters
with different substrate specificities have evolved, e.g. Sit1 ho-
mologs for hydroxamate-type fungal siderophores in C. glabrata
(Nevitt and Thiele 2011), C. albicans (Heymann et al. 2002;
Lesuisse et al. 2002), Cr. neoformans (Tangen et al. 2007) and S. cere-
visiae [Arn1–4, with Arn3 and Arn4 specific for bacterial ferrox-
amines and Enterobactin B, respectively (Heymann, Ernst and
Winkelmann 2000a,b; Yun et al. 2000)] and in many other fungi.
Candida glabrata Sit1 enhances fungal survival in macrophages
(Nevitt and Thiele 2011), and C. albicans Sit1 is required for inva-
sion of human epithelial cells in vitro (Heymann et al. 2002); in
the absence of xenosiderophores, these observations seem puz-
zling, and although mammals were recently found to produce
siderophores (Devireddy et al. 2010), these are similar to enter-
obactin und thus unlikely to be taken up via Sit1. Accordingly,
SIT1 deletion causes no attenuation in virulence of C. albicans in
a systemic mouse model of infection (Hu et al. 2002). Similarly,
Cr. neoformans Sit1 deletionmutants showed changes inmelanin
and capsule formation and in cell wall density, but were not re-
duced in virulence (Tangen et al. 2007)—however, there are six
more potential siderophore transporters encoded in the Cr. neo-
formans genome (Jung and Kronstad 2008).

Overall, the ability to use a broad spectrum of
xenosiderophores likely reflects microbial competition for iron.
This would make such a strategy advantageous when close
interspecies contacts are frequent, such as in biofilms in the
oral cavity, gut or vagina, as well as generally in co-infections.
However, in the absence of any evident producer, the role of
xenosiderophore binding during dissemination in blood or
host tissue remains unclear at best. In these environments,
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Figure 1. Fungal iron homeostasis. Regulation of iron homeostasis (left panel side) is shown for different fungal species (species is color coded, shape defines phy-
logenetic ancestry according to Gabaldon et al. 2013). Major transcription factors upregulated during iron starvation to initiate fungal iron uptake (right panel side)
are written in bold. Functional orthologs are color shaded and aligned vertically, X indicates lack of ortholog and a white box with dashed borders indicates that an
ortholog is present but not involved in iron homeostasis. HA, high affinity; LA, low affinity.

it seems more important that many fungi have developed
multiple mechanisms to directly exploit iron-binding molecules
of the host. Candida albicans shows an impressive versatility in
using host sources and can directly or indirectly obtain iron
from hemoglobin (Moors et al. 1992), hemin (Santos et al. 2003),
ferritin (Almeida et al. 2008) and transferrin (Knight et al. 2005).
Similarly, Cr. neoformans can use transferrin (Jung et al. 2008),
heme and hemin (Jung et al. 2008; Cadieux et al. 2013; Hu et al.
2015), andH. capsulatum is known to obtain iron from transferrin
and hemin (Timmerman and Woods 1999; Foster 2002), but
Aspergillus spp. appear to be unable to acquire iron from heme
(Vaknin et al. 2014).

In hemoglobin, iron is incorporated in heme in its ferrous
form and can be acquired by C. albicans and Cr. neoformans
with specific heme uptake mechanisms. The former relies on
a family of heme receptors [Rbt51 (Moors et al. 1992; Weiss-
man and Kornitzer 2004)] and hemophores [Rbt5, Pga7, Csa2

(Weissman and Kornitzer 2004; Weissman et al. 2008; Kuznets
et al. 2014; Nasser et al. 2016)] for initial uptake followed by ES-
CRT complex-mediated internalization into the vacuole via the
endocytic pathway (Weissman et al. 2008). In Cr. neoformans, the
ESCRT complex similarly has a pronounced role in heme uti-
lization [Vps23, Vps22, Snf7 (Hu et al. 2013, 2015)] along with
the putative hemophore Cig1 (Cadieux et al. 2013). The inter-
nalized heme-bound iron is then released by a heme oxyge-
nase, which has been described in many Candida species and in
S. cerevisiae to recycle self-generated heme (Santos et al. 2003;
Kim et al. 2006). Other host iron sources containing Fe3+ can
also be taken up directly, or, more commonly, the bound Fe3+

is first extracted from host molecules (or siderophores) on the
cell surface via ferric reductases. Fe2+ is then oxidized again by
permease-coupled multicopper ferroxidases followed by trans-
membrane transport of Fe3+ via high-affinity permeases to com-
plete the uptake process. This system is especially important
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for virulence in non-siderophore producing fungi such as Cr. ne-
oformans (Jung et al. 2009; Han, Do and Jung 2012), C. albicans
(Ramanan and Wang 2000; Fang and Wang 2002; Knight et al.
2005; Cheng et al. 2013) and C. glabrata (Srivastava, Suneetha and
Kaur 2014), which heavily rely on the reductive pathway for iron
uptake to facilitate growth and virulence (Srivastava, Suneetha
and Kaur 2014; Gerwien et al. 2016, 2017). In contrast, while A.
fumigatus siderophore synthesis mutants were dramatically at-
tenuated in virulence (Hissen et al. 2005), defects in reductive
iron assimilation had no significant effect (Schrettl et al. 2004).
Similarly, other siderophore producers, such as Fusarium gramin-
earum (Greenshields et al. 2007) orAl. brassicicola (Oide et al. 2006),
cannot fully compensate the loss of siderophore-mediated iron
uptake by the reductive uptake system alone.

As described above, the reductive uptake system com-
prises reductase and linked permease/ferroxidase functions.
Pathogenic fungi commonly have large families of cell-surface
NAD(P)H-dependent ferric reductases at their disposal, such as
Cr. neoformans (eight known reductases) (Saikia et al. 2014), C. al-
bicans (18 putative) (Jeeves et al. 2011; Xu et al. 2014b) orA. fumiga-
tus (15 putative) (Blatzer, Binder and Haas 2011)—with no num-
ber currently available for H. capsulatum. Candida albicans Fre2,
Fre5/Frp1 and Fre9 (Bensen et al. 2004; Baek, Li and Davis 2008)
are expressed under alkaline conditions, and there are indica-
tions that Fre2 might be secreted or shedded under azole treat-
ment (Sorgo et al. 2011). In Cr. neoformans, transcription levels of
Fre3 seem to be associated with virulence: RNAi suppression of
FRE3 decreased survival in macrophages, while artificial upreg-
ulation led to increased virulence in mice (Hu et al. 2014).

Ferric reductases are best characterized in S. cerevisiae,
where, despite obvious redundancy, the nine known members
each play specific roles in siderophore-Fe reduction (Fre1, Fre2,
Fre3, Fre4) (Martins et al. 1998; Yun et al. 2001), copper reduc-
tion (Fre1, Fre2, Fre7) (Martins et al. 1998) and presumably in in-
tracellular transmembrane shuttling at the vacuole (Fre6) (Huh
et al. 2003). In C. albicans, similar specific functions have been
attributed to Fre7 and Fre10 as cupric reductases (Jeeves et al.
2011). Candida glabrata (Srivastava, Suneetha and Kaur 2014) and
the fission yeast Schizosaccharomyces pombe (Roman et al. 1993)
are notable exceptions, since they each possess only two ferric
reductase genes. In C. glabrata, the lack of FRE6 has been asso-
ciated with attenuated virulence in a Drosophila model (Brunke
et al. 2015) and slightly decreased kidney fungal burdens in mice
(Srivastava, Suneetha and Kaur 2014). However, our own work
has shown that both Fre6 and Fre8 might have roles other than
ferric or cupric reduction in C. glabrata, since this fungus does
not exhibit evident surface ferric reductase activity (Gerwien
et al. 2017). Finally, low-affinity broad-spectrum metal trans-
porters for iron, copper and zinc have been identified in S. cere-
visiae (Fet4) (Dix et al. 1994) and in C. glabrata (Fet4) (Srivastava,
Suneetha and Kaur 2014; Gerwien et al. 2016) with possible or-
thologs in Cr. neoformans (Jacobson, Goodner and Nyhus 1998;
Jung et al. 2008) and in Sc. pombe (Dainty et al. 2008).

Non-siderophore secreted molecules with the capacity to
bind and reduce iron are also known in fungi. For in-
stance, H. capsulatum uses the glutathione-dependent γ -
glutamyltransferase Ggt1 to extracellularly reduce ferric iron
from siderophores, transferrin and hemin (Timmerman and
Woods 1999; Timmerman and Woods 2001; Zarnowski et al.
2008). Non-enzymatic ferric reductants are also excreted by this
fungus (Timmerman and Woods 1999), although their exact na-
ture is still unknown. In Cr. neoformans, 3-hydroxyanthranilate
has been identified as an extracellular ferric reductant, but ad-
ditional active compounds seem to exist (Nyhus, Wilborn and

Jacobson 1997; Jacobson, Goodner and Nyhus 1998; Jung et al.
2008). As melanized Cr. neoformans cells reduce iron at a much
higher rate than non-melanized cells, ferric reduction activity
may be associated with this polymer (Nyhus, Wilborn and Ja-
cobson 1997). In S. cerevisiae, excretion of anthranilate and 3-
hydroxyanthranilate correlates with ferric reduction capacity
in the extracellular medium, although, counterintuitively, cells
grown in iron-rich medium show a higher secretion than those
in iron-poor medium (Lesuisse et al. 1992). Likewise, culture su-
pernatants of C. albicans, C. glabrata and S. cerevisiae show fer-
ric reduction activity, which depends on a so far unknown low-
molecular-weight compound (Gerwien et al. 2017), and A. terreus
has recently been shown to secrete terrein under iron starvation,
which acts as a ferric reductant and can partially rescue strains
defective in siderophore biosynthesis (Gressler et al. 2015).

In a similar fashion, the active lowering of the environmen-
tal pH can increase iron bioavailability, either by increasing the
overall solubility or via pH-dependent release of iron from host
molecules such as transferrin (Lestas 1976). Histoplasma capsula-
tum is known to exploit this strategy inside macrophages, keep-
ing the intraphagosomal pH at 6.5 (Eissenberg, Goldman and
Schlesinger 1993). This is alkaline enough to inhibit phagolyso-
some function, but acidic enough to keep iron accessible and
possibly even release it from host transferrin (Newman et al.
1994; Hilty, Smulian andNewman 2008). In fact, this strategywas
found to be essential for intracellular growth and virulence of
H. capsulatum (Hilty, Smulian and Newman 2008). Similar mech-
anisms are probably also used by other fungi with the abil-
ity to manipulate phagosomal pH, like, for example, C. glabrata
(Kasper et al. 2014).

Excess iron is stored both as a stockpile for times of need
and to avoid its toxicity at high concentrations. Storage is me-
diated either by vacuolar polyphosphates or by intracellular
siderophores (see above); with the exception of zygomycetes,
ferritin-like molecules with this purpose are so far unknown in
fungi (Carrano, Bohnke and Matzanke 1996). In S. cerevisiae, the
transporter Ccc1 mediates vacuolar iron (and manganese) im-
port (Lapinskas, Lin and Culotta 1996; Li et al. 2001), while ex-
port is controlled by Smf3 (Portnoy, Liu and Culotta 2000) or a
complex consisting of Fth1/Fet5 coupled to a ferric reductase, re-
sembling the reductive uptake system of the plasmamembrane
(Urbanowski and Piper 1999). Ccc1 orthologs with similar roles
in iron storage exist in C. glabrata (Gerwien et al. 2016), C. albi-
cans (Xu et al. 2014a), A. fumigatus (Gsaller et al. 2012), A. nidulans
(Eisendle et al. 2006) and Sc. pombe (Mercier, Pelletier and Labbe
2006), indicating that vacuolar iron storage is important in both
siderophore producers and non-producers. Similarly, Smf3 has
been associated with intracellular iron homeostasis in S. cere-
visiae (Portnoy, Jensen and Culotta 2002) and in C. albicans (Xu
et al. 2014a), and an ortholog is present in C. glabrata. Deletion
of C. glabrata Fth1 or Fet5 does not cause sensitivity to the iron
chelator bathophenanthroline disulfonate (Srivastava, Suneetha
and Kaur 2014), although FTH1 was found to be iron regulated
(Gerwien et al. 2016).Aspergillus nidulans and Sc. pombe finally lack
orthologs for both genes—however, in the latter, Abc3 has been
suggested to have a similar role in vacuolar iron mobilization
(Pouliot et al. 2010).

The organelles with the highest need for iron are mitochon-
dria. Here iron-sulfur (Fe-S) clusters are synthesized as pros-
thetic group for respiratory chain complexes, the TCA cycle
and various other metabolic processes. Consequently, a highly
conserved short-term storagemolecule has evolved in fungi and
mammals: the mitochondrial matrix iron chaperone Yfh1 (Huy-
nen et al. 2001), which has been found in S. cerevisiae (Babcock
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et al. 1997; Wilson and Roof 1997), Sc. pombe (Fxn1) (Wang et al.
2014), C. albicans (Santos et al. 2004) and C. glabrata (Srivastava,
Suneetha and Kaur 2014).

Iron-sensing and transcriptional regulation

Regulation of fungal iron homeostasis has mostly been studied
in the model yeast S. cerevisiae. However, baker’s yeast is barely
representative of other fungi, since it employs a rather unusual
regulation system, which among the pathogenic fungi has so far
only been found in the closely related C. glabrata (Gerwien et al.
2016). In both species, an Aft transcription activator (Aft1 and
Aft2 in S. cerevisiae) upregulates genes involved in Fe uptake un-
der iron limitation (Yamaguchi-Iwai, Dancis and Klausner 1995;
Ueta et al. 2012). Mechanistically, this is mediated by Fe-S clus-
ters produced in themitochondria, which—when present—bind
the glutaredoxins Grx3 and Grx4 and enable them to interact
with Aft1 to remove it from its promoter targets (Rutherford et al.
2005; Ueta et al. 2012). Such Fe-S clusters also play a role in adap-
tation to high iron, as they can activate the high iron-responsive
regulator Yap5 (Li et al. 2012). Its limited range of target genes
includes CCC1 (Li et al. 2008), coding for the vacuolar iron im-
porter (Li et al. 2001), and CUP1 (Pimentel et al. 2012), encoding a
copper-binding MT.

During Fe starvation, iron-requiring processes are post-
transcriptionally further downregulated via degradation of
mRNAs that carry the target sequence 5′-(U)UAUUUAU(U)-3′

in their 3′UTR region. This process is mediated by the com-
bined action of the RNA-binding proteins Cth1 and Cth2 in
S. cerevisiae (Shakoury-Elizeh et al. 2004; Puig, Askeland and
Thiele 2005; Puig, Vergara and Thiele 2008; Martinez-Pastor et al.
2013) and by a single Cth2 ortholog in C. glabrata (Gerwien
et al. 2016). Thus, C. glabrata and S. cerevisiae (and likely their
closest relatives) uniquely share the Aft/Cth iron regulatory
system, although their opportunistic pathogenic and environ-
mental lifestyleswould at first glance suggest the need for vastly
different iron homeostasis mechanisms. Interestingly, further
Aft orthologswith roles in iron homeostasis have been identified
in Kluyveromyces lactis (Conde e Silva et al. 2009), also a part of the
Saccharomycetaceae clade (Gabaldon et al. 2013), and surprisingly
in the evolutionary more distant yeast C. albicans (Liang et al.
2010; Xu et al. 2013). However, K. lactis lacks any Cth2 ortholog,
whereas the one present in C. albicans (Zfs1) has no function in
iron homeostasis, but influences biofilm formation (Wells et al.
2015). Notably also, C. albicans Aft2 has only a very minor func-
tion in iron homeostasis regulation (Liang et al. 2010; Xu et al.
2013), since, like most other fungi, C. albicans relies on a differ-
ent iron regulation strategy.

This other system has so far been found (often with slight
variations) in C. albicans, Cr. neoformans, both A. fumigatus and
A. nidulans, and Sc. pombe. It usually comprises two repres-
sors: a GATA transcription factor for the downregulation of
iron acquisition (called Sfu1, Cir1, SreA, or Fep1 in these fungi)
and a CCAAT-binding complex to downregulate iron consump-
tion pathways (Hap43, HapX, HapX, or Php4) (Haas et al. 1999;
Oberegger et al. 2001; Tuncher et al. 2005; Mercier, Pelletier and
Labbe 2006; Hortschansky et al. 2007; Schrettl et al. 2008; Jung
et al. 2010; Schrettl et al. 2010; Chen et al. 2011; Hsu, Yang and
Lan 2011; Kronstad, Hu and Jung 2013). In H. capsulatum (Hwang
et al. 2012), N. crassa (Zhou, Haas and Marzluf 1998), Penicillium
chrysogenum (Haas, Angermayr and Stoffler 1997) and U. maydis
(Voisard et al. 1993), a GATA factor (Sre1, Sre, SreP, Urbs1) with
an iron-regulatory function has been characterized, but in these
fungi, a complete iron-related CCAAT-binding complex has not

been described yet. It is likely to be present, though, as both com-
ponents play complementary roles for the efficient adaption to
varying iron levels: under iron depletion, which is frequently en-
countered during active infections, the CCAAT-binding complex
represses the iron-consuming cellular processes. At the same
time, it indirectly induces iron acquisition by repressing the
GATA transcription factor to alleviate its repressive effect on iron
uptake. The latter function of the GATA transcription factor is in
turn important under iron-replete conditions likely encountered
by C. albicans cells commensally growing in the mammalian gut
(Chen et al. 2011). In these environments, it also downregulates
the CCAAT-binding complex, increasing the iron-consuming cel-
lular processes. In A. fumigatus, HapX was recently shown to be
important under both iron starvation and excess. Through dif-
ferent domains, this factor can either repress consumption or
activate vacuolar sequestration of iron, depending on the cur-
rent concentration of the metal (Gsaller et al. 2014). With these
central roles, it is not surprising that a deletion of the CCAAT-
binding complex results in attenuated virulence in Cr. neofor-
mans (Jung et al. 2010), C. albicans (Hsu, Yang and Lan 2011; Singh
et al. 2011) and A. fumigatus (Schrettl et al. 2010). Deletion of the
GATA transcription factor leads to more varied outcomes, from
complete avirulence in Cr. neoformans (Jung et al. 2006) to un-
changed, wild-type level virulence in mouse infections for A. fu-
migatus �sreA (Schrettl et al. 2008) and C. albicans sfu1�/� (Chen
et al. 2011). Notably, however, the C. albicans sfu1�/� mutant is
severely defective in GI tract colonization, where iron is abun-
dant (Chen et al. 2011).

Candida albicans adds a twist to this established system,
as this fungus has incorporated a third regulator into the
GATA/CCAAT partnership. Sef1 is an activator of Hap43 expres-
sion (Chen et al. 2011) and is required for full virulence (Chen and
Noble 2012). Possibly, the two lifestyles of C. albicans—both as a
pathogen and as a commensal in the gut where iron levels can
change rapidly through food intake andmicrobial competition—
require an additional stabilizing element in iron homeostasis
regulation (Chen et al. 2011). Interestingly, a Sef1 ortholog is also
present in C. glabrata, like C. albicans a commensal of mucosal
surfaces, but with a vastly different regulatory network, and this
has been shown to play an (albeit less pronounced) role in iron
homeostasis (Gerwien et al. 2016).

Finally, with the close connection between pH andmetal sol-
ubility, some fungi, such as C. albicans and Cr. neoformans, use the
pH-responsive factor Rim101 to detect alkaline pH as a marker
for iron starvation and signal to upregulate the iron acquisi-
tion systems (Bensen et al. 2004). Consequently, a C. albicans
rim101�/� mutant is attenuated in virulence (Davis et al. 2000).
Similarly, a Cr. neoformans rim101�/� mutant is unable to utilize
heme (Cadieux et al. 2013), but was found to be hypervirulent
(O’Meara et al. 2010) likely because of an (unrelated) defective
shedding of capsule polysaccharides, which results in a hyperac-
tivation of the host immune response (O’Meara et al. 2010, 2013).

The evolution of these various and partly redundant sys-
tems for iron homeostasis throughout fungal pathogens reflects
the importance of this particularmicronutrient. Adaptations oc-
curred in response to host-induced scarcity, to conditions of
varying pH, and to the changing availability of host iron sources.
Our current knowledge on these adaptations is already being
used to develop new therapeutic approaches, for example, by
supporting the host in its iron restriction during fungal infec-
tions (reviewed in Bruhn and Spellberg 2015; Lamb 2015) or by
using fungal iron acquisition systems as targets for potential
vaccines—as has been donewith C. albicansAls3, although its in-
volvement in iron uptake was not known at that time (Spellberg
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et al. 2006, 2008). It is therefore noteworthy that, beyond well-
researched examples such as C. albicans or A. fumigatus, many
fungal iron acquisition strategies are likely still unknown to us.

ZINC

Zinc is a structural and catalytic co-factor for many proteins,
including the ubiquitous zinc finger DNA-binding proteins. Re-
cently, zinc was also shown to be an intracellular second mes-
senger in various transduction signaling pathways (Yamasaki
et al. 2007). In fact, zinc is the secondmost abundant trace metal
in the human body: there are more than 300 zinc-dependent en-
zymes, and≈10% of human genes code for zinc-binding proteins
(Andreini et al. 2006a). The importance of zinc is sadly evident
in the two billion people who suffer from zinc deficiency, es-
pecially in developing countries: A lack of zinc leads to thymic
atrophy and lymphopenia, and weakens both the innate and
adaptive immune responses: phagocytosis, cytokine production
by macrophages, host defense by neutrophils and natural killer
cells, and antibody secretion of both T and B cells are all im-
paired under zinc deficiency (reviewed in Prasad 2012).

Like for humans, zinc is of high importance for microorgan-
isms. Within the fungi, zinc homeostasis has been investigated
mainly in S. cerevisiae: Following the pattern of a high propor-
tion of zinc-binding proteins in eukaryotes, about 8% of the yeast
proteome is thought to bind zinc (Andreini et al. 2006b) and
more than 400 yeast genes are involved in growth under zinc
limitation (North et al. 2012). These include genes essential for
zinc homeostasis, but also endoplasmic reticulum (ER) function,
oxidative stress resistance, protein folding, vesicular trafficking
and chromatin modification. Moreover, SODs, which are essen-
tial for the detoxification of reactive oxygen species (ROS) gener-
ated by host cells, are copper-, manganese- and zinc-dependent
enzymes (Huang et al. 2009).

Consequently, zinc is vital for growth andmetabolism in both
the host and pathogens. Thus, like for iron, there is a constant
competition for zinc during infections, and zinc sequestration is
another aspect of the vertebrates’ nutritional immunity (Corbin
et al. 2008). The frequently near-neutral pH in the host lowers the
solubility of zinc and therefore restricts its accessibility for mi-
croorganisms. In the oral cavity, antimicrobial peptides within
saliva, the histatins, are able to bind zinc and copper, which adds
to their inhibitory effect on the growth of C. albicans (Gusman
et al. 2001). Intracellularly, stimulated T cells, macrophages and
dendritic cells decrease their lysosomal zinc content via the ex-
pression of the zinc transporter ZIP8, inducing zinc limitation
for pathogens in the phagolysosome (Begum et al. 2002; Aydemir
et al. 2009). Similarly, stimulated dendritic cells reduce their cy-
toplasmic zinc concentration by upregulating zinc exporters and
downregulating zinc importers (Kitamura et al. 2006). Cytokine-
activatedmacrophages restrict the intracellular growth ofH. cap-
sulatum by diminishing intracellular zinc availability (Winters
et al. 2010) via binding to MTs and by sequestering labile zinc
into the Golgi apparatus (Vignesh et al. 2013).

The host protein calprotectin inhibits bacterial and fungal
growth by chelating transition metals, including zinc (Lulloff,
Hahn and Sohnle 2004; Corbin et al. 2008). In fact, calprotectin
is the most abundant cytosolic protein of neutrophils and is
released mainly during the formation of neutrophil extracel-
lular traps (NETs) as their key antifungal effector (Urban et al.
2009; Bianchi et al. 2011). In vitro the stimulation of neutrophils
with phorbol myristate acetate triggers NET formation, which
leads to the reduction of the supernatant zinc content, while

no changes were detected for Fe, Cu and Mn concentrations
(Niemiec et al. 2015). NET-dependent inhibition of fungal growth
is consequently reversible in vitro by zinc supplementation
(Urban et al. 2009; McCormick et al. 2010; Bianchi et al. 2011).

Fungi have developed sophisticated countermeasures to this
host-imposed zinc limitation, including the expression of high-
affinity membrane zinc importers and specialized secreted zinc
uptake proteins, known as zincophores, in order to obtain zinc
from the host environment (Citiulo et al. 2012). However, exces-
sive zinc levels can also be toxic for cells—mainly due to com-
petition with other metals for metal-binding sites in enzymes
(McDevitt et al. 2011; Gu and Imlay 2013), as zinc does not par-
ticipate in Fenton chemistry. Vertebrates use this to their ad-
vantage and are able to accumulate zinc to toxic levels in cer-
tain niches. As an example from bacteria, a drastic increase of
the intraphagosomal zinc level leads to an impaired growth of
Mycobacterium tuberculosis, although the bacterium can partially
cope with this metal excess by the expression of metal efflux
ATPases (Botella et al. 2011).

Zinc homeostasis and uptake

Our knowledge of zinc transporters, their transcriptional regu-
lation and zinc trafficking mechanisms within the cell (Fig. 2)
is (again) based, for a good part, on studies in S. cerevisiae—
all these were first described in baker’s yeast. There are two
known classes of eukaryotic zinc transporters: ZRT-IRT-like pro-
teins (ZIP) (Grotz et al. 1998), which include S. cerevisiae Zrt1, Zrt2
and Zrt3 (MacDiarmid, Gaither and Eide 2000), and the cation dif-
fusion facilitators (Paulsen and Saier 1997), represented by Zrc1,
Cot1, Msc2 (Li and Kaplan 2001) and Zrg17 (Ellis, Macdiarmid and
Eide 2005).

The uptake of zinc from the extracellular milieu takes place
mainly via two ZIP transporters in S. cerevisiae, the high-affinity
Zrt1 (Zhao and Eide 1996a) and the low-affinity Zrt2 membrane
transporters (Zhao and Eide 1996b). Under severe zinc limita-
tion, ZRT1 expression increases 30-fold (Zhao and Eide 1996a)
compared to optimal zinc conditions, while ZRT2 is usually ex-
pressed only under mild zinc limitation. In addition, under con-
ditions of low zinc, S. cerevisiae also expresses the low-affinity
metal transporter Fet4 that imports zinc, iron and copper into
the cell (Li and Kaplan 1998). An additional system that ex-
ists is the phosphate/H+ symporter family member Pho84, a
known phosphate transporter, which is also able to import zinc
complexed with phosphate (Jensen, Ajua-Alemanji and Culotta
2003).

Aspergillus fumigatus is able to robustly grow under a broader
range of pH values than S. cerevisiae, especially in alkaline envi-
ronments (Wheeler, Hurdman and Pitt 1991; Amich et al. 2010)
where metal solubility is low (Martinez and Motto 2000). Of its
eight putative ZIP transporters, ZrfA and ZrfB have functions in
zinc uptake that resemble S. cerevisiae Zrt1, although ZrfB ap-
pears to be the main transporter (Vicentefranqueira et al. 2005).
Interestingly, and in contrast to baker’s yeast, this system is ac-
tive only under acidic pH (Vicentefranqueira et al. 2005). In neu-
tral to alkaline low zinc environments, resembling host tissue,
A. fumigatus instead employs the ZrfC zinc transporter, which
does not have a S. cerevisiae ortholog (Amich et al. 2010). Its abil-
ity to acquire zinc in alkaline environments seems to depend
on its long N-terminus (not present in ZrfA and ZrfB), which
contains four putative zinc-binding motifs (Amich et al. 2010).
Consequently, this N-terminal sequence was found to be impor-
tant for zinc uptake during lung infections, and it enables growth
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Figure 2. Fungal zinc homeostasis. Regulation of zinc homeostasis (left panel side) is shown for different fungal species (species is color coded, shape defines phylo-
genetic ancestry according to Gabaldon et al. 2013). Major transcription factors upregulated during zinc starvation to initiate fungal zinc uptake (right panel side) are
written in bold. Orthologs are color shaded and aligned vertically. ZRE, recognition of target genes via zinc responsive elements. HA, high affinity; LA, low affinity.

even in the presence of zinc-binding calprotectin (Amich et al.
2014).

The Cr. neoformans and Cr. gattii zinc uptake systems com-
prise the ZIP transporters Zip1 and Zip2, orthologs of S. cere-
visiae Zrt1 and Zrt2, respectively (Do et al. 2016). In both
fungi, the high-affinity membrane transporter Zip1 is the main
(pH-independent) zinc importer, while Zip2 seems to con-
tribute little, if anything, to zinc uptake in vitro (de Oliveira
Schneider et al. 2015; Do et al. 2016). In Cr. gattii, both transporters
must be deleted for a visible effect on virulence (de Oliveira
Schneider et al. 2015), while in Cr. neoformans, deletion of Zip1
already results in attenuation in a mouse model of cryptococ-
cosis (Do et al. 2016). However, residual virulence even in a Cr.
neoformans zip1�zip2� double deletionmutant hints towards ad-
ditional, still undetected zinc uptakemechanisms in this fungus
and possibly, Cr. gattii. Interestingly, a connection between phos-
phate uptake and zinc homeostasiswas shown forCr. neoformans
(Kretschmer et al. 2014), which could imply a role of its Pho84
homologs in zinc uptake similar to S. cerevisiae. Further zinc-

regulated homologs of Zrt1 and/or Zrt2 have been described in
H. capsulatum (Dade et al. 2016), P. brasiliensis (Parente et al. 2013)
and B. dermatitidis (Muñoz et al. 2015), generally in connection to
virulence—indicating the central role of zinc and this conserved
acquisition system in fungal diseases.

Not surprisingly,C. albicans follows the samepattern of trans-
port via Zrt1 and Zrt2 ZIPs (Kim et al. 2008), and again zinc up-
take was found to be upregulated in the early stages of C. albi-
cans infection in mice (Xu et al. 2015). However, the C. albicans
zinc uptake system was shown to additionally include a ‘zin-
cophore’ (Citiulo et al. 2012). In response to alkaline pH and to
zinc limitation, C. albicans releases themetalloprotease-like Pra1
into the medium, where it is able to bind zinc ions with high
affinity. Zinc-loaded Pra1 can then bind back to Zrt1, in amanner
reminiscent of siderophores used by other fungi for iron (Citiulo
et al. 2012). Interestingly, PRA1 and ZRT1 are co-expressed
(Ihmels et al. 2005), as they share the same upstream intergenic
region, and both were found to be upregulated on epithelial cells
and in a liver infection model (Thewes et al. 2007; Zakikhany
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et al. 2007). So far, the C. albicans Pra1-Zrt1 pairing is the only
proven zincophore system in fungi, but a similar locus struc-
ture is conserved in A. fumigatus: ASPF2-ZRFC is orthologous to
PRA1-ZRT1 (Amich et al. 2010), and like Pra1, AspF2 is secreted
in high amounts during infections (Segurado et al. 1999). Not
surprisingly, a possible zincophore function has recently been
suggested (Amich et al. 2014). In B. dermatitidis mice infections,
BDFG 05357 is one of themost highly expressed genes. Like Pra1,
it encodes an HRXXH domain-containing secreted protein, and
has also been predicted to function as a zincophore (Muñoz et al.
2015). It seems that research into zincophores and their role in
fungal pathogenesis is still gathering momentum.

High zinc levels can pose the opposite problem, and sur-
plus zinc must be dealt with swiftly by the microorganism. In
fungi, the vacuole serves as an organelle for zinc sequestration,
storage and detoxification. Vacuolar zinc homeostasis has been
investigated in some detail in S. cerevisiae, where it depends—
among others—on the Zrc1 and Cot1 zinc importers of the vac-
uolar membrane (MacDiarmid, Gaither and Eide 2000). Surpris-
ingly, ZRC1 transcription is also induced under low zinc concen-
tration, likely in anticipation of a possible sudden zinc excess:
as all zinc importers are fully active, they will immediately re-
lay any environmental increase in zinc abundance (MacDiarmid,
Milanick and Eide 2003). Inside the vacuole, zinc is likely bound
to polyphosphates, as shown for Cr. neoformans (Kretschmer et al.
2014). In contrast, Sc. pombe does not rely on the vacuole as a zinc
sink; instead, the zinc homeostasis factor, Zhf, transports ex-
cess zinc into the ER (Borrelly et al. 2002; Clemens et al. 2002)—a
function derived maybe from its S. cerevisiae counterpart, Msc2,
which in a heterodimer with Zrg17 imports zinc into the ER
for proper protein processing (Li and Kaplan 2001; Ellis et al.
2004). Schizosaccharomyces pombe strikingly also uses the metal-
lothionein Zym1 to sequester zinc, similar to higher eukaryotes,
but in contrast to other fungi, where MTs mainly sequester cop-
per (Borrelly et al. 2002).

The vacuole not only serves as an emergency disposal site,
but can also replenish cellular zinc in times of need. Zinc mo-
bilization under starvation occurs via the Zrt3 vacuole zinc ex-
porter in S. cerevisiae (MacDiarmid, Gaither and Eide 2000). Its
orthologs have been found upregulated during co-incubation of
B. dermatitidis with macrophages (Muñoz et al. 2015) and dur-
ing zinc starvation in C. dubliniensis (Böttcher et al. 2015). An-
other approach to deal with low zinc is to conserve the metal
by decreasing its use. S. cerevisiae reduces the expression of ma-
jor zinc-dependent enzymes and induces expression of alter-
native proteins of identical function, which either require less
zinc or different metals. For example, the alcohol dehydroge-
nases Adh1 and Adh3 (which bind two zinc ions each) are re-
placed under zinc limitation by Adh4, which only requires one
zinc ion, allowing cells to continue fermentation even under zinc
deficiency (Bird et al. 2006). Important infection-associated ex-
tracellular SODs of C. albicans (Sod4–6) and H. capsulatum (Sod3)
uniquely use a single copper instead of the otherwise nearly uni-
versal Cu and Zn cofactors of SODs, likely reflecting the copper-
rich, zinc-poor host environment (Gleason et al. 2014a)—a factor
we will come back to in the section on copper.

Zinc sensing and transcriptional regulation

In contrast to iron and copper, zinc is a redox-inactivemetal and
does not damage cells via ROS. However, it avidly binds to many
metallation sites of proteins, replacing the native metal and in-
terfering with their function. Hence, like for the other metals,
zinc homeostasis must be precisely regulated. In yeast, the zinc

responsive activator protein 1 (Zap1) is the major transcription
factor regulating zinc homeostasis genes (Zhao and Eide 1997). It
binds to conserved zinc responsive elements in the promoters of
more than 80 genes, including ZRT1, ZRT2, ZRT3, FET4 and ZRC1
(Wu et al. 2008). Moreover, Zap1 positively autoregulates its own
expression to ensure a robust response to zinc limitation (Zhao
and Eide 1997; Wu et al. 2008). The structure of Zap1 was ana-
lyzed in detail in S. cerevisiae: it contains two activation domains,
AD1 and AD2, which are evolutionary conserved within the fun-
gal species (Frey and Eide 2011); AD1 is responsible for the induc-
tion of most Zap1 target genes, while AD2 regulates genes when
zinc deficiency appears in concert with other stresses (Frey and
Eide 2011). The intracellular zinc level is sensed via direct inter-
action ofmetal and protein: under a sufficient cytosolic zinc con-
centration, zinc ions directly bind AD1 and AD2 to inhibit the ex-
pression of Zap1 targets (Frey and Eide 2011). Overall, this system
is highly conserved within fungi and can be foundwith few vari-
ations throughout the non-pathogenic and pathogenic species,
including Cr. gattii (Zap1, de Oliveira Schneider et al. 2012) and
A. fumigatus (ZafA, Moreno et al. 2007), and in both it was found
important for full virulence.

For a fast downregulation of the importers during zinc reple-
tion, post-translational effects come into play. Zrt1 is a stable
membrane protein under low environmental zinc levels; how-
ever, the presence of zinc leads to its rapid ubiquitination and
internalization for vacuolar degradation (Gitan et al. 1998). More-
over, under low zinc, Zap1 activates the expression of PIS1, en-
coding a phosphatidylinositol synthase, and DTT1, encoding a
diacylglycerol pyrophosphate phosphatase, which results in in-
creased levels of phosphatidylinositol and decreased levels of
phosphatidylethanolamine in the membrane (Carman and Han
2007). This change in the membrane phospholipid composition
is thought to influence the function and the localization ofmem-
brane zinc transporters.

The C. albicans Zap1 ortholog, also called Csr1, controls zinc
homeostasis including Pra1 expression (Nobile et al. 2009), but is,
of note, also involved in filamentation and biofilm matrix elab-
oration (Kim et al. 2008; Nobile et al. 2009)—two important con-
tributors to C. albicans virulence. However, the virulence defect
of a csr1� mutant likely depends not only on these morpholog-
ical effects, but also directly on defective zinc homeostasis in
the host. In support of this, a csr1� mutant of the closely re-
lated species C. dubliniensis shows no such filamentation defects,
but still exhibits reduced virulence (Böttcher et al. 2015). Inter-
estingly, in C. albicans, an additional transcription factor, Sut1,
was recently implicated in controlling Csr1 expression in vivo,
but surprisingly not in vitro (Xu et al. 2015). No functional re-
lationship between the two S. cerevisiae counterparts is known
(Xu et al. 2015), which suggests that this seemingly host-specific
interaction is an adaptation to the pathogenic lifestyle of C. al-
bicans. It will be interesting to see whether any other pathogen
exhibits a similar departure from S. cerevisiae’s zinc regulation
template.

A final twist is the pH-dependency of zinc uptake. As men-
tioned before, A. fumigatus switches from zinc uptake via ZrfA
and ZrfB to ZrfC (and possibly AspF2) depending on the envi-
ronment’s alkalinity. While the Zap1 ortholog ZafA activates all
transporters under zinc limitation independent of pH, the pH-
dependent transcription factor PacC represses ZrfA and ZrfB un-
der alkaline pH (Amich, Leal and Calera 2010) and ZrfC/AspF2
under acidic conditions (Amich et al. 2010). In C. albicans, expres-
sion of the Zrt1/Pra1 zincophore is similarly alkaline specific via
the PacC ortholog Rim101 (Bensen et al. 2004; Citiulo et al. 2012;
Xu et al. 2015), mirroring the Rim101-dependent expression of
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Figure 3. Fungal copper homeostasis. Regulation of copper homeostasis (left panel side) is shown for different fungal species (species is color coded, shape defines
phylogenetic ancestry according to Gabaldon et al. 2013). Major transcription factors upregulated during copper starvation to initiate fungal copper uptake (right panel
side) are written in bold. Orthologs are color shaded and aligned vertically. CuRE, recognition of target genes via copper responsive elements. HA, high affinity; LA, low

affinity.

iron uptake-related genes. It seems likely that these expression
patterns evolved as highly effective systems to deal with the low
solubility of metals under alkaline conditions.

COPPER

Copper is inmanyways a different beast than iron or zinc (Fig. 3).
Like those metals, it is required as an essential trace element
in many biochemical reactions, but it rapidly becomes highly
toxic at increased levels (reviewed in Festa and Thiele 2011).
Copper started to be bioavailable at a large scale only after the
great oxidation event ≈2.4 billion years ago, when earth’s at-
mosphere became oxidizing. Eukaryotes, which evolved after
these events, consequently harbor many more Cu-containing
proteins than the more ancient bacteria (Dupont et al. 2010). For
the same reason, many Cu-containing enzymes have oxygen-
related functions. For instance, the mitochondrial cytochrome c
oxidase requires Cu for its function in the respiratory elec-
tron transport chain. Cytoplasmic or cell-wall associated Cu/Zn-
SODs (like their mostly mitochondrial manganese-dependent
counterparts) can protect fungal cells from externally and in-

ternally generated oxidative stress. Again, the C. albicans SODs
are unusual: C. albicans is the only known organism to con-
tain both Cu/Zn- and Mn-SOD enzymes in the cytosol (Lamarre
et al. 2001)—in addition to the Cu-only variety of extracellular
SODs mentioned above. The Mn-dependent Sod3 is expressed
to replace the Cu-dependent counterparts under copper star-
vation, for example during infections of the murine kidney (Li
et al. 2015). This flexibility probably tells as much about the ne-
cessity of SODs for pathogens as about the diverse metal en-
vironments C. albicans is facing during infections. In addition,
copper has an important helper role as a cofactor in multi-
copper ferroxidases to allow the uptake of iron via the reduc-
tive pathway (see above). Finally, it also has an important func-
tion as a cofactor of laccases and tyrosinases (Shaw and Kapica
1972; Williamson 1994), which are required for the biosynthe-
sis of melanin—an important virulence factor of pigmented
fungi.

However, due to its toxicity, copper has also been used as
an antimicrobial agent for much of human civilization. As a
fungicide against plant pathogens, it is part of the Bordeaux
mixture used in vineyards, and copper surfaces show promise
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as a weapon against pathogens in hospitals (Casey et al.
2010). Part of its toxic effects derives from the ability of Cu+

(under anaerobic, reducing conditions) to disrupt Fe-S clus-
ters (Macomber and Imlay 2009) and from its high capac-
ity to displace other metals from their coordination sites,
as, according to the Irving-Williams series, Cu2+ forms the
most stable complexes of the divalent transition metals (Irv-
ing and Williams 1948). Furthermore, like iron, it can also
readily form ROS by the Fenton reaction by Cu+/Cu2+ redox
cycling under aerobic conditions, although the precise role
of this for microbes is somewhat disputed (Macomber, Rens-
ing and Imlay 2007), and in fact copper seems even more
toxic under anaerobic than under aerobic conditions both for
bacteria (Evans et al. 1986) and fungi like S. cerevisiae and
C. albicans (Strain and Culotta 1996; Weissman, Shemer and
Kornitzer 2000).

Given this comparatively high toxicity, the host and fun-
gal strategies during infections differ significantly from the Fe-
based nutritional immunity: instead of limiting access, the host
seems to actively pump copper into microbe-containing phago-
somes via the P-type ATPase ATP7A (Wagner et al. 2005; White
et al. 2009). In fact, Cr. neoformans copper detoxification is ac-
tivated during murine pulmonary infections, and the relevant
MTs are required for virulence in this model (Ding et al. 2013).
According to some reports, copper limitation may also play a
role as an immune defense mechanism. A Cr. neoformans cop-
per transporter was seen to be upregulated after phagocyto-
sis by macrophage-like cells and during human cryptococcosis
(Waterman et al. 2007, 2012), and the C. albicans copper trans-
porter similarly shows upregulation upon phagocytosis (Lorenz,
Bender and Fink 2004). Whether these observations represent
a bona fide copper limitation or a loss of bioavailability due to
the oxidative phagosomal environment (Waterman et al. 2007)
remains to be seen. However, overlapping regulation of Cu up-
take and resistance pathways (Ding et al. 2011), as well as pos-
sible confounding effects of the deletion and detection systems,
seem to call for further investigation into the matter (Ding et al.
2013). Thus, the jury is still out whether both Cu ion overload
and withholding are complementary strategies employed by the
host, possibly depending on themicroenvironment the fungus is
facing.

Copper homeostasis and uptake

Similar to iron, copper is usually reduced from Cu2+ to Cu+

(in part by the same cell-surface metalloreductases as for Fe)
for efficient uptake and then imported via high-affinity Cu+

importers—Ctr1 in C. albicans (Marvin, Williams and Cashmore
2003), the functionally redundant Ctr1 and Ctr4 in Cr. neoformans
(Ding et al. 2011), and at least two importers (CtrA2 and CtrC) in
A. fumigatus (Park et al. 2014). In contrast to iron, no oxidase is
involved in this process. In S. cerevisiae at least, the iron trans-
porter Fet4 also imports copper with low affinity (Hassett et al.
2000). Another source of copper in addition to the surrounding
medium is the vacuolar storage. In S. cerevisiae, the transmem-
brane copper transporter Ctr2, a homolog of Ctr1, allows copper
mobilization from this organelle (Rees, Lee and Thiele 2004) with
the help of a metalloreductase in the vacuolar membrane (Rees
and Thiele 2007), mimicking the cytoplasmic membrane setup.
Pathogenic fungi like C. albicans possess orthologs of these pro-
teins, but their role in virulence has not been investigated so far.

Once intracellular, the potentially toxic Cu+ is immediately
bound by different specific chaperones, which allow its quick
and targeted transport to Cu-requiring enzymes. For exam-

ple, Ccs1 proteins deliver copper to the Cu/Zn-SODs of C. al-
bicans (Gleason et al. 2014b), Cr. neoformans, S. cerevisiae (Liu
et al. 1997) and in fact nearly all eukaryotes (Leitch et al.
2009). Similarly, Atx1 homologs escort copper to Ccc2 Cu-
transporting ATPases of the Golgi membrane (Lin et al. 1997;
Huffman and O’Halloran 2000). These then pump the metal
into late secretory vesicles to serve as a cofactor, for exam-
ple, in the aforementioned Fe multicopper oxidases or laccases.
This also intimately links copper to iron homeostasis, as multi-
copper oxidases are required for efficient iron uptake in fungi
like yeast or C. albicans (Askwith et al. 1994; Eck et al. 1999;
Cheng et al. 2013).

A similar binding mechanism prevents toxicity under high
copper conditions. MTs, small proteins rich in cysteine residues,
can sequester Cu (and, especially in non-fungal organisms,
other metals) to render it biologically inactive. They are also
present in plants and animals, but in very few bacteria—one
example being specifically the pathogenic mycobacteria (Gold
et al. 2008). Characteristically, the genes coding for MTs vary
strongly in numbers between species: in pathogenic fungi, some
C. glabrata strains harbormore than 30 copies of theMT-IIa gene,
in addition to one copy each of MT-IIb and MT-I (Mehra, Garey
and Winge 1990; Mehra et al. 1992). Similarly, S. cerevisiae can in-
crease its copy number of the CUP1 metallothionein gene and
thereby obtain higher Cu resistance (Fogel and Welch 1982). No
suchmechanism has been described for C. albicanswith its three
known MTs or C. neoformans with its two (Ding et al. 2011) so far.
Similarly, it seems that in S. cerevisiae copper is also detoxified,
like other metals, via the vacuolar storage (Szczypka et al. 1997;
Jo et al. 2008), but little is known about this process in other fungi.

In S. cerevisiae (and likely other fungi), high intracellular Cu
levels furthermore rapidly block the Ctr1 Cu importer by direct
binding and subsequent conformational changes to restrict cop-
per influx (Wu et al. 2009). However, C. albicans achieves its high
intrinsic Cu resistance (when compared to S. cerevisiae) also by
active outward transport over the plasma membrane by Crp1,
a P-type ATPase (Riggle and Kumamoto 2000; Weissman et al.
2000), in a process functionally resembling the copper trans-
port by Ccc2 ATPase into the Golgi (Weissman, Shemer and Ko-
rnitzer 2002)—or even into the phagosome by the host’s ATP7A,
in an interesting example of a molecular-level arms race using
the samemechanism on both sides. This export mechanism, al-
though common in bacteria (reviewed in Samanovic et al. 2012)
and present in other eukaryotes, has so far been found only in
C. albicans and—very recently—in A. nidulans (Antsotegi-Uskola,
Markina-Inarrairaegui and Ugalde 2017).

Copper sensing and transcriptional regulation

Low copper levels lead to an activation of the transcription fac-
tor Mac1 in S. cerevisiae (Jungmann et al. 1993), and the same is
true for its orthologs in C. albicans (Mac1; Marvin, Mason and
Cashmore 2004), A. fumigatus (Afmac1; Kusuya et al. 2017) and
most likely also C. glabrata. The Mac1 activator comprises a cop-
per fist DNA-binding domain to recognize copper response el-
ements, and a Cu-binding domain to gauge the intracellular
copper concentration and inhibit DNA binding under copper
replete conditions (Graden and Winge 1997). Under copper star-
vation, Mac1 binding leads to the expression of the dedicated
copper transporter and metalloreductase genes via their up-
stream regulatory elements (Yamaguchi-Iwai et al. 1997). Under
copper excess, Mac1 is quickly degraded to avoid copper toxicity
(Zhu et al. 1998), and in contrast to copper-depleted conditions,
MAC1mRNA exists in a readily degradable isoformwhen copper
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is present (Peccarelli et al. 2016). This Cu-dependent regulation
directly influences virulence: deletion of the Mac1 ortholog Cuf1
reduces dissemination of C. neoformans to the mouse brain, and
abolishes transcription of the copper-dependent laccase (Jiang
et al. 2009). In C. albicans, Mac1 is—among other functions—
responsible for shifting from the Cu-dependent Sod1 to the Cu-
independent Sod3, by repressing the former and activating the
latter (Li et al. 2015).

The Cr. neoformans Cuf1 (Lin et al. 2006; Waterman et al. 2007)
is not only responsible for upregulation of copper uptake un-
der starvation, but also positively regulates MTs under Cu ex-
cess (Ding et al. 2011). In fact, Cuf1 seems to be a hybrid fac-
tor, as in C. glabrata and S. cerevisiae these roles are separated,
and in C. glabrata another transcription factor, called Amt1 [ho-
mologous to Cup2 or Ace1 in S. cerevisiae (Buchman et al. 1989;
Szczypka and Thiele 1989)], is activated under high copper lev-
els by the binding of four Cu+ ions to its N-terminal domain
(Thorvaldsen et al. 1994). Active Amt1 then induces the tran-
scription of all threeMT genes and itself, leading to a positive au-
toregulatory loop and thus a robust copper resistance response
(Zhou et al. 1992; Zhou and Thiele 1993; Koch et al. 2001). The
role of its homolog in C. albicans is not well investigated so far
(although it likely has similar functions), but the cAMP pathway
has been implicated in copper resistance in this fungus. A dele-
tion of C. albicans GPA2 (encoding the G-protein α subunit up-
stream of protein kinase A) decreases Cu uptake, increases MT
expression and hence renders the fungus more resistant to cop-
per (Schwartz et al. 2013). Overall, the typical fungal response
to high copper thus seems to be determined by a fast inactiva-
tion and degradation of the Mac1 activator homologs, and cop-
per sequestration via upregulation of MTs by different mecha-
nisms. However, our knowledge of these regulatory systems still
lacks behind what we have learned about zinc and especially
iron homeostasis in fungal pathogenesis.

NICKEL

Nickel is a comparatively rare metal, but an efficient fungi-
cide that seems to exert its effects mainly by interfering with
the carbohydrate metabolism and DNA repair, by production of
ROS (albeit less than copper or iron), and by membrane dam-
age (reviewed in Macomber and Hausinger 2011). Many of these
effects are exerted by nickel replacing the original metal in
metalloenzymes—and as nickel is rather stable in the Ni2+ state,
this replacement abolishes the redox function of the metal co-
factor (Macomber and Hausinger 2011). At high external con-
centrations, nickel can non-specifically enter the microbial cell
via the magnesium transport system. Still, dedicated uptake
systems for this mostly toxic transition metal also exist, espe-
cially in bacteria (Zhang et al. 2009), and a functional Ni per-
mease with high similarity to its bacterial co-family members
has, for example, been found in Sc. pombe (Eitinger et al. 2000).
So why would microbes, and especially fungi, actively import
nickel? In Sc. pombe, this seems to be related to its urease ac-
tivity (Eitinger et al. 2000), which requires Ni to allow the use
of urea as a nitrogen source and the concomitant alkalization
of the environment. For pathogens, ureases (and with them,
most likely dedicated nickel permeases) often play important
roles as virulence factors, for example, in Coccidioides immitis
and in Cr. neoformans (Singh et al. 2013). With no known Ni met-
alloenzymes in vertebrates, nickel homeostasis has thus been
suggested as a promising avenue for fighting infections (Mor-
row and Fraser 2013). However, the Saccharomycetes—like S. cere-

visiae, C. albicans and C. glabrata—do not employ a Ni-requiring
urease (Navarathna et al. 2010), and consequently seem to
lack Ni permeases—instead, these fungi use non-nickel, biotin-
requiring urea amidolyases tometabolize urea (Navarathna et al.
2010). In A. fumigatus, a nickel permease homolog can be found
in the genome, but little is known so far about its potential role in
virulence.

Excess nickel, as is so often the case with toxic metals, is se-
questered into the vacuole by S. cerevisiae (Nishimura, Igarashi
and Kakinuma 1998)—in this case with the help of the avid
nickel binder, histidine (Pearce and Sherman 1999). It seems
likely that pathogenic fungi have similar mechanisms at their
disposal, paralleling the existence of nickel resistance mech-
anisms in many bacteria. Overall, however, little is currently
known about the role of nickel in fungal pathogenesis, and we
may yet be surprised by unexpected findings in the future.

MANGANESE

Manganese is required in the function of polymerases, sugar
transferases of the Golgi and of course for the Mn-SODs espe-
cially of the mitochondria (reviewed for baker’s yeast in Reddi,
Jensen and Culotta 2009). Its intracellular concentration has
been shown to vary significantly, over nearly two orders of
magnitude (Reddi, Jensen and Culotta 2009). One reason may
be that—in contrast to most of the other metals described
here—manganese acts as an anti-oxidant at high concentra-
tions, rather than a ROS producer. In fact, at high intracellu-
lar concentrations Mn-containing complexes can take the role
of SODs in certain bacteria and in yeast SOD deletion mutants
(Reddi et al. 2009). Excessive levels are nonetheless toxic to
yeasts leading to the induction of apoptosis (Liang and Zhou
2007).

External manganese is taken up in baker’s yeast via the
Nramp transporters, Smf1 and Smf2 (Supek et al. 1996; Cohen,
Nelson and Nelson 2000; Portnoy, Liu and Culotta 2000), and a
possible ortholog in C. neoformans has been described to trans-
port Mn and other metals (Agranoff et al. 2005). It has been sug-
gested that Smf1 is responsible for keeping up the intracellu-
lar Mn levels required for its anti-oxidant action, while Smf2
imports manganese for the Mn-requiring enzymes (Luk and
Culotta 2001; Reddi et al. 2009). These transporters are continu-
ously expressed and regulated mainly post-translationally, and
at sufficiently high (physiological) Mn levels they are continu-
ally targeted for vacuolar degradation (Reddi et al. 2009). Further-
more and in a manner similar to zinc, high extracellular man-
ganese can be imported by yeast in complex with phosphate via
the Pho84 transmembrane transporter (Jensen, Ajua-Alemanji
andCulotta 2003). Once inside the cell, it can then be transported
by the Golgi P-type Ca2+/Mn2+ ATPase, Pmr1, to serve as a cofac-
tor in the secretory pathway (Dürr et al. 1998). In fact, a Pmr1
homolog is required for full C. albicans virulence due to this co-
factor role in glycosylation (Bates et al. 2005). Finally, in S. cere-
visiae at least, excess manganese is excreted via the secretory
pathway, but also sequestered to the vacuole (like iron via Ccc1;
Li et al. 2001), and in C. albicans its complexation with polyphos-
phate has been shown (Ikeh et al. 2016). If and how manganese
can leave the vacuole again is still an open question, as no ded-
icated exporter has been described so far.

Due to these biological functions, the host employs Mn star-
vation to fight bacteria and possibly fungi. Macrophage phago-
somes are severely limited for manganese (Jabado et al. 2000),
and the host-defense protein, calprotectin, chelates manganese
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in addition to zinc (Corbin et al. 2008) and—as shown recently—
iron (Nakashige et al. 2015). In vitro at least, Mn chelation by cal-
protectin reduces growth ofA. fumigatus (Amich et al. 2014; Clark
et al. 2016), and Mn withdrawal may thus play a role in fungal
infections—although in contrast to bacteria, the effects of man-
ganese limitation on fungal virulence are probably eclipsed by
the removal of zinc and iron. As with nickel, research into the
role ofmanganese in fungimay yet reveal someunexpected con-
nections to pathogenesis, as our knowledge so far is compara-
tively incomplete.

CONCLUSIONS

Metals clearly play a central role during fungal pathogenesis.
This is shown by the sheer number and diversification of the reg-
ulatory, uptake and detoxification systems in fungal pathogens,
and of course by the host’s many efforts to efficiently withhold
metals. We seem to have a good concept of how iron and—with
a few gaps—zinc are acquired by fungi during infections, but
for many of the metals that are experimentally more difficult
to address, our knowledge is still quite limited. The protection
mechanisms against manymetals with toxic effects are not well
established, nor are the uptake systems for those which are re-
quired only in minute amounts—from cobalt to silver or cad-
mium. It seems likely that fungal research can learn a lot from
the bacterial field, as even though the molecular mechanisms
may differ, the basic problems themicrobes are facing are essen-
tially the same, and analogous solutions may have been found
by both groups of pathogens.

Metal homeostasis also presents a largely untapped resource
for potential treatment options. The natural response of the host
already indicates the effectiveness of targeting the microbial
requirement for metals. Strategies that may be worthwhile to
follow in the future include a knowledge-guided combination
of deprivation and excess: withholding one metal to induce a
partially unspecific uptake response, which is exploited to in-
troduce toxic levels of another. It seems that the immune sys-
tem may already follow this strategy inside the phagosome, as
described above e.g. for copper. Metal-based drugs were found
highly effective against parasites like Leishmania spp. or Plas-
modium spp. (reviewed in Navarro et al. 2010), and it seems at
least possible that a similar approachmay prove useful for fungi
as well. We hope that with this review, we have enabled the
reader to see the connections and similarities between metals
and among fungi, maybe forming the kernel of a new hypothe-
sis. The potential and the need formanymore findings still exist
in this growing field.
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