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+e popularity of private cars has brought great convenience to citizens’ travel. However, the number of private cars in society is
increasing yearly, and the traffic pressure on the road is also increasing. +e number of traffic accidents is increasing yearly, and
the vast majority are caused by small private cars. +erefore, it is necessary to improve the traffic safety awareness of drivers and
help carmanufacturers to design traffic risk prediction systems.+e Backpropagation neural network (BPNN) algorithm is used as
the technical basis, combined with the MATLAB operation program, to simulate the driving process of the car. Dynamic
predictive models are built to predict and analyze vehicle safety risks. Multiple experiments found that: (1) in various simulations,
the simulation driving process ofMATLAB is more in line with the actual car driving process; (2) the error between BPNN and the
actual driving prediction is within 0.4, which can meet the actual needs. Predictive models are optimized to deploy and predict in
various traffic situations. +e model can effectively prompt risk accidents, reduce the probability of traffic accidents, provide a
certain degree of protection for the lives of drivers and passengers, and significantly improve the safety of traffic roads.

1. Introduction

With the continuous development of social science and
technology, automobiles play a major role in traffic travel.
Traffic accidents have caused widespread concern, seriously
threatening the safety of human life and property [1]. Sta-
tistics show that about 1.2 million people are killed in traffic
accidents every year around the world. Driver factors cause
about 80% of tragedies. Bad driving behavior will cause great
discomfort for passengers and even cause psychological
pressure on drivers [2]. +e driver needs to process the
information in time while receiving the traffic information
while driving, and the driving risk is everywhere. Safe
driving requires drivers to maintain a vigilant attitude in
driving [3].

+ere are numerous studies on the relationship between
drivers and traffic accidents, but few studies on the risk

warning of the vehicle itself. According to the basic phys-
iological and psychological characteristics of drivers, com-
bined with the specific functions of the car, the prediction of
traffic risk is an emerging topic [4]. An artificial neural
network (ANN) is a multilevel early-warning model, which
uses data analysis technology to predict driver behavior and
system, showing strong flexibility and adaptability [5]. +e
BPNN can perform correlation analysis onmultiple complex
relationships, make macro predictions of accidents, reduce
the risk of accidents, and provide security [6].

First, a simulation driver system based on the MATLAB
computer program is proposed. Dynamic simulationmodels
are built to perform dynamic analysis of vehicle driving.
Second, the BPNN is used to build different structures and
analyze driving safety risk and accident prediction. +e
driver’s association with accident occurrence is explored.
Finally, combined with the error backpropagation
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algorithm, different experimental data are detected, recor-
ded, and compared. Driving safety risks and effective
countermeasures are analyzed. +is work intends to study
the relevant factors of car accidents during driving, reduce
the risk index of driving safety in people’s travel and traffic,
give early warning of possible accident risks, and conduct
research. It is committed to reducing and preventing driving
errors from the root cause and effectively improving the
status quo of road traffic safety.

2. Materials and Methods

2.1. Realization and Simulation of Driving Simulation in
MATLAB. Today, in the automotive industry, it is planned
to use computer simulation to integrate more real system
data, various machine plate components, and electronic
control units into the vehicle model to develop and operate
various types of automotive products. Research in this area
has become one of the hot spots [7]. +e operation of the
internal electronic control system and mechanical dynamics
of the automobile requires the use of related technologies to
simulate the transient motion process of the automobile.+e
actual motion state process of the car is shown in Figure 1.

2.1.1. Simulation Environment. MATLAB software has been
widely used in the design and simulation of control systems.
At this stage, the field of simulation technology is a relatively
mature scientific computing language, which is good at
efficiently processing large amounts of data and visualizing
data [8]. MATLAB is used to simulate the driving process of
the car and analyze how the car engine and clutch, and other
components break and operate in an emergency.+e control
system is simulated, and the risk factors affecting the driving
control system of the vehicle are obtained more intuitively,
which provides a strong scientific basis for the risk esti-
mation and performance improvement of the vehicle in the
future. MATLAB software is used to simulate the car driving
system.+e frame line of the car simulation driving system is
shown in Figure 2.

Figure 2 is the frame line of the car simulation driving
system. First, we open the window of the car simulation
driving system and input various parameter values required
for simulated driving, including the number of gears of the
transmission, the number of front-wheel rotation angles,
and the degree of throttle opening. [9]. +e system will
match the corresponding actual road conditions on the
ground according to the different scenarios selected and
import it into the dynamic simulation system of the car as
the parameters to be matched later. After matching, the
system performs dynamic simulation and presents the re-
sults with virtual technology. When different scenarios are
selected to be simulated again, only the parameters of the car
driving system need to be changed [10].

2.1.2. Mathematical Model of the Algorithm. In the vehicle
driving speed control system, the position transmission
belongs to the speedmanipulation tool and is the main input
part of the system. Its functions mainly include reasonable

control of the speed and transition of car driving, as shown
in the following:

v � ax + b, x ∈ [0, 1], (1)

x represents the position of the speed control mechanism; v

represents the driving speed corresponding to it; and a and b
represent constants.

In the vehicle control system, proportion-integral-
derivative (PID) belongs to the core part, which mainly
compares the current speed of the car with the speed at
which it is specified. +e difference between the two
speeds is the current vehicle traction [11]. +e calculation
of the driving controller is shown in equations (2)-(4)as
follows:

Calculus equation part: x(n) � x(n − 1) + u(n), (2)

Differential equation part: d(n) � u(n) − u(n − 1). (3)
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Figure 1: +e flow of the motion state of the car.
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Figure 2: +e simulated driving frame of the car.
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The output section of the system:

y(n)Pu(n) + Ix(n) + D d(n),
(4)

u(n) represents the system input value, that is, the dif-
ference between the current speed of the car and the
specified speed; y(n) represents the system output value,
representing the traction force of the car; and x(n) represents
the state of the system.

In the vehicle driving control system, the vehicle power
mechanism belongs to the actuator. Its function mainly uses
the traction force to change the vehicle’s speed so that the
speed is the same as the specified value. +e mathematical
expression between traction and speed is F � mv + bv. F
represents the traction force generated by the car; m rep-
resents the mass of the car; v represents the speed of the car;
and b represents the drag factor of the car [12].

2.1.3. Parameter Setting. After opening the MATLAB in-
terface, we enter the relevant parameter values in the GUI
interface. Simulink’s default simulation time is 10 seconds.
In the initial stage of the engine, there is a certain initial
speed, which is set to 2000 n/min [13].+e car is running at a
constant speed at this stage. We accelerate and apply the
brake while the car is driving at a constant speed.+e specific
parameter value settings are shown in Table 1.

According to the operation of the actual vehicle starting
process, MATLAB simulation software is used to establish
the simulation model of vehicle starting. +e model includes
four plates: engine, transmission, body, and road resistance
plates [14]. According to the modeling idea of the simulation
model, the complex molecules in the system are subdivided

into smaller plates. +e vehicle driving simulation model is
shown in Figure 3.

In Figure 3, after the simulation model is built, the
simulation parameters are set according to the system re-
quirements. +e position transmission part of the speed
control mechanism adopts the Slider Gain module. It can
limit the range of the input signal x of the position trans-
mission. Among them, the parameter minimum value is set
to 0, the maximum value is set to 1, and the initial value is set
to 0.55. In the Gain module, the gain value is set to 50. In the
Constant 1 module, the constant value is set to 45. In the
vehicle powertrain subsystem model, the Gain module is
adopted, its value is 1/m, and the specific value is 1/1000.+e
value of the Gain 1 module is b/m, and the specific value is
20/1000. +e automotive powertrain adopts the Integrator
integral module. +e initial state is set to 0, which is the
initial speed value of the car. In the driving controller
subsystem model, the Delay block is used to implement the
PID controller, the initial state is set to 0, and the sampling
time is set to 0.02 s. +e simulation time range of the system
is set from 0 to 500 s. +e variable-step continuous solver is
selected. +e rest of the other modules and simulation
parameters use MATLAB default values [15].

3. ANN

Based on the basic characteristics of artificial intelligence to
simulate the brain of living things, a new network model
ANN is proposed. It can simply simulate and simplify
different biological networks and provide help for the re-
search of various functions of the real biological brain
nervous system. +e basic components of ANN include

Table 1: Basic parameter values.

Road slope Adhesion coefficient Initial speed n +rottle opening Steering wheel angle Brake percentage Gear
0.05 0.8 66.7 0.7 0.0 0.0 2

Engine 
speed

Feedback 
torque

Engine 
torque

Oil filling 
pressure

Obstruction

Input 
speed

Input 
torque

Oil filling pressure curve

engine

Torque
output

clutch
car body

Output
speed

Road resistance

Engine 
speed

Feedback 
torque

Engine 
torque

Figure 3: Simulation model of car driving.
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neurons and synapses. Among them, the function of a
neuron is called a processing unit, which can use digital
language to express the information processing method of
the biological neuron, formally describe the biological
neuron, and simulate the function and function of the ex-
pression structure [16].

3.1. Structure of an Artificial Neuron. An artificial neuron is
an abstract concept of a biological neuron.+e transmission of
signals between neurons is also a transmission of values.
Multiple signals are received and then converted into a new
round of signals to be transmitted, which belongs to a non-
linear structure. +e specific structure is shown in Figure 4.

Figure 4 shows the structural model of an artificial
neuron, which is seen as a simple processor that performs a
weighted summation of incoming signals. +e specific de-
scription is shown in the following:

Y � W0 + W1X1 + W2X2 + . . . + WmXm. (5)

In equation (5), (X1), (X2), . . ., Xm represent the input
value;W1,W2, . . .,Wm represent the weights corresponding
to the input value, that is, the synapse of the simulated
neuron; Y represents the output of the neuron; and W0
represents the system bias.

+e network composed of artificial neurons is ANN.
Since the emergence of this theory, it has been continuously
improved, and now a relatively complete theory has been
formed, which is widely used in different fields [17]. +e
application research of neural networks in traffic safety risk
warning is based on the practical application background of
the deep learning theory, combined with the actual driving
situation, analyzes the possibility of vehicle risk in some
cases, and carries out early warning according to the op-
erationmechanism of the neural network, so as to reduce the
possibility and harm of traffic accidents [18].

3.2. Establishment of the Risk Assessment Model. +ere have
been many attempts at applying ANN in risk assessment.
Many practices have confirmed that it is a better risk as-
sessment method and can be used as a supplement to tra-
ditional risk assessment. +e system can analyze the risk
assessment with the law of actual risk occurrence and
provide a basis for the early-warning system. An ANN risk
assessment model is proposed, as shown in Figure 5.

Based on ANN, a risk model for driving safety is
established. +e practical application is divided into six
steps. (1) +e number of layers in the middle hidden layer of
the neural network is determined, including the number of
input, output, and hidden layer nodes. (2) Characteristic
parameters and state parameters are determined. In the
process of risk analysis, the internal structure and external
parameters in the risk assessment system are determined,
and it is ensured that the results and state characteristics of
the input parameters can be correctly reflected. (3) +e
neural network system needs to provide a variety of learning
samples for feedback learning during execution and analyze
the network system for parameter values in different states.

+is process is that the neural network determines the
connection weights and errors of the network system
according to the selected samples. (4)+e nonlinear sigmoid
function is chosen as the action function. (5) Network
learning is used to confirm the structure of the neural
network to establish a knowledge base for risk analysis of the
nervous system so that the evaluation system has certain
inference and prediction functions. (6) +e actual driving
situation is analyzed. +e actual eigenvalues of the system
that have been calculated are input into the neural network
with a prediction function. After the data are processed by
the internal risk assessment system, the evaluation results are
obtained. Additionally, this result is fed into the neural
network as a new computational sample, which enriches the
risk assessment system database [19].

4. BPNN Model

4.1. ;e Principle of BPNN. +e BPNN is a multilayer feed-
forward network trained according to the error back-
propagation algorithm, and it is one of the most widely used
neural network models. It can learn and store many input-
output relative relationships without revealing the mathe-
matical equations describing this mapping in advance. +e
learning method of BPNN uses the steepest descent method
and backpropagation to repeatedly modify the weights and
thresholds of the system tominimize the sum of squared errors
[20]. +e BPNN structure includes three parts: input, hidden,
and output layers. +e specific structure is shown in Figure 6.

In Figure 6, the operation process of BPNN consists of
two parts: forward propagation of data and backpropagation
of error. During forward propagation, data are passed in
from the input layer. After passing through the hidden layer,
it is passed out from the output layer. If the actual output
situation of the output layer is different from the ideal
output, the result turns to the backpropagation stage of the
error [21]. +e backpropagation of the error means that the
output error enters the hidden layer in a certain way and is
transmitted back to the input layer, and the error data are
apportioned to all units of each layer to obtain the error data
of each layer unit. +ese error data are used as the basis for
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Figure 4: +e nonlinear structure of an artificial neuron.
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correcting the weights of each unit [22]. +e BPNN consists
of input, output, and hidden layers. N1 is the input layer, Nm
is the output layer, and the rest are hidden layers.

4.2. Algorithm Derivation of Backpropagation ;ree-Layer
Neural Network. During the forward propagation, the ac-
tivation function of neuron j produces the induced local
domain Vj(n) at the input, as shown in the following:

vj(n) � 
m

i�0
wji(n)yi(n). (6)

∅j is the activation function. +e representation of the
function signal yj(n) at the output of neuron j is shown in
the following:

yj(n) � φj vj(n) . (7)

In the process of error backpropagation, yj(n) repre-
sents the actual output of neuron j; dj(n) represents the
expected output of neuron j, which is the j-th element of the
expected response vector d(n). +e error signal ej(n) is
shown in the following:

ej(n) � dj(n) − yj(n). (8)

Minimizing the root mean square error makes the
function continuously differentiable. Here, the instanta-
neous error energy of neuron j is given, as shown in the
following:

Ej(n) �
1
2

e
2
j(n). (9)

+e error energies of all output layer neurons are
summed up, i.e., the sum of the instantaneous error energies
of the entire network is obtained, as shown in the following:
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En � 
j∈C

Ej(n) �
1
2


j∈C

e
2
j(n). (10)

In equation (10), set C refers to all neurons in the output
layer.

+e backpropagation algorithm minimizes En by mod-
ifying the weights multiple times. +e iterative gradient
descent method is used to apply a correction value ∆wji(n)

to the synaptic weights wij(n). It is proportional to the
partial derivative δE(n)/δwji(n). According to the differ-
ential chain method, this gradient is given by the following:

zE(n)

zwji(n)
�

zE(n)

zej(n)

zej(n)

zyj(n)

zyj(n)

zvj(n)

zvj(n)

zwji(n)
. (11)

+e partial derivative δE(n)/δwji(n) represents a sen-
sitive factor, which determines the search direction of the
synaptic weight wji(n) in the weight space.

zE(n)

zej(n)
� ej(n), (12)

zej(n)

zyj(n)
� −1, (13)

zyj(n)

zvj(n)
� φj
′ vj(n) , (14)

zvj(n)

zwji(n)
� yi(n). (15)

Equations (7)-(10) are substituted into equation (6), as
shown in the following equations (16) and (17):

zE(n)

zwji(n)
� −ej(n)φj

′ vj(n) yi(n), (16)

∆wji(n) � −η
zE(n)

zwji(n)
. (17)

∆wji(n) is the correction function of wji(n); η represents the
learning rate of error backpropagation; the negative sign
represents gradient descent. Equation (11) is substituted into
equation (12), as shown in the following:

∆wji(n) � ηδj(n)yi(n). (18)

In equation (18), δj(n) is the local gradient defined
according to the delta law. It indicates the required changes
in synaptic weights, as shown in the following:

δj(n) � −
zE(n)

zej(n)

zej(n)

zyj(n)

zyj(n)

zvj(n)
� ej(n)φj

′ vj(n) . (19)

4.3. Algorithm Flow of BPNN. +e backpropagation three-
layer neural network has been recognized by the public as

the most suitable model for simulating input, output, and
early warning [23]. +e specific operation process is shown
in Figure 7.

In Figure 7, the algorithm operation process includes
forward and backward propagations. During forward
propagation, information data enter from the input layer
and are processed by the hidden unit to the output layer. +e
state of a neuron in each layer only affects the state of
neurons in the layer below it [24]. If the output layer does
not get the desired result after a series of operations, the data
are transmitted back to the backpropagation, and the error
signal is returned along the original neuron connection path.
When returning, the weights of the neuron connections will
be modified one by one [25]. +is process is iteratively
processed. Finally, the signal error value is within the al-
lowable range. Eventually, the output value is close to the
desired output.

5. Tips for Traffic Risk Information

+ere may be latent risk information in the static and dy-
namic information of traffic. Information that may lead to
risk events is risk information. In China’s urban road en-
vironment, with mixed and nonmotor vehicles, the risk
information is mainly motor vehicles, nonmotor vehicles,
and pedestrians. +ere may be latent risk information in the
static and dynamic information of traffic. If the response to
avoid the risk information is not made in time, it will lead to
risk events. Risk events can lead to traffic conflicts, and traffic
conflicts can lead to traffic accidents, as shown in Figure 8.

In Figure 8, when the risk information appears, the
driver’s physiological and psychological factors significantly
impact the reaction speed, including the influence of factors
such as age, gender, personality, and education level. In
addition, the driver’s sensitivity to risk information, judg-
ment ability, and feedback speed during driving are also
related to the type of risk information. During the driving
process, people or things that affect the normal driving
trajectory and driving speed of the vehicle can become risk
information. In addition to common people and vehicles,
there may also be sediment, falling rocks, animals, and
poultry on various mountain roads or country trails.+e risk
information mainly includes pedestrians, nonmotor vehi-
cles, and motor vehicles.

+e risk warning model must be consistent with the level
of human security risk perception before it can be accepted
in practical applications. During the driving process, the
driver subjectively feels the changes in the information of the
road segment and has a stress response to the information of
hidden risks, which is a comprehensive performance. For
example, when a driver suddenly encounters a pedestrian
crossing the road in front of him, illegally climbing over the
guardrail, or the car in front of him suddenly braking,
suddenly changing lanes, and so on in normal driving, the
driver needs to pay attention and discover the risk infor-
mation in time in advance. +e driver’s skills can respond to
the predicted risk information and take actions such as
braking or steering in advance to avoid dangerous situations.
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+erefore, analyzing the driver’s perception ability of risk
information is the premise of designing a risk early-warning
system. Driving a vehicle is an acquired skill that grows with
driving experience. An ideal risk warning system should be able
to reach or be better than a skilled driver’s ability to perceive
risks. Otherwise, if the system cannot perform better than the
driver, it will lose the meaning of assisted driving. Studies have
shown a big difference in driving stability between experienced
and novice drivers. +is experiment will quantify the driver’s
perception of risk to provide an effective risk warning threshold
for the risk warning system. +e architecture of the early-
warning systembased on radar sensing technology at this stage is
shown in Figure 9.

Figure 9 shows the composition and architecture of
the vehicle-mounted early-warning system. Laser sensors
and other sensing devices collect information such as
speed, acceleration, and position and upload them to the
central processor for data integration and processing. +e
system calculates the alarm distance according to the
designed early-warning model. +en, the central pro-
cessing unit sends instructions to the signal output device
to promptly and effectively remind the driver through
sound and light on the display screen, alarm, and warning
lights.

6. Results and Discussion

6.1. Analysis of the Output of the Model. When a simulator
drives a car, the speed display is one indicator of the
accuracy of the simulation. Different places have different
requirements in the driving speed test of the car. +e car’s
speed should be 30–60 km/h when driving in an urban
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area. +e traffic flow in the urban area is large, and there
are many people, so the speed should not be too fast,
generally at a constant speed of 40 km. +e road surface of
the expressway is relatively smooth and belongs to the fast
lane, and the speed is generally 80–120 km/h. +e road
arrangement in this experiment is relatively remote for
safety reasons; the traffic flow is small; and the road is
smooth, so it is a relatively normal speed to maintain the
vehicle speed at 60–80 km/h. Figures 10–13 show the
driver’s speed change based on the MATLAB simulation
driving environment:

Figure 10 shows the score fluctuation of the longitudinal
and horizontal speed of the simulated car under the ac-
celeration state. +e longitudinal speed has been in a state of
steady growth, and the speed value is between 60 km/h and
70 km/h, which is in line with the car’s speed in the actual
driving process. +e lateral speed fluctuates greatly, the
speed is controlled below 50 km/h, and the numerical in-
stability factor is too strong. +e simulation is in good
agreement with the actual situation.

Figure 11 compares the longitudinal and lateral accel-
erations of the simulated car under the acceleration state.

+e longitudinal acceleration fluctuates less than the lateral
acceleration, and the acceleration value fluctuates up and
down at 5m/s2 and is always higher than the lateral ac-
celeration value. +e lateral acceleration value is negative,
and the value is between −5 and 0m/s2. Additionally, its
instability is also high.+e state displayed by the data is more
in line with the actual driving situation of the car.

Figure 12 is a comparison of the driving speed of the
simulated car under braking. +e longitudinal speed has
been in a state of steady deceleration, and the value is
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controlled between 20 km/h and 40 km/h.+e lateral speed
fluctuates up and down. +e situation is like the driving
speed in the acceleration state. It fluctuates erratically
below 20 km/h, and the lateral speed value is always lower
than the longitudinal speed value. +e state displayed by
the data is more in line with the actual driving situation of
the car.

Figure 13 compares the acceleration of a simulated car
under braking. +e value of longitudinal acceleration varies
less than that of lateral acceleration, and the deceleration
value is controlled from −5 to 0m/s2. When braking, the
deceleration value is always lower than the lateral acceler-
ation value, and the situation is relatively stable. +e lateral
deceleration value fluctuates around 0m/s2, and the insta-
bility is strong, which is more in line with the actual driving
situation.

Among the driver’s speed change values obtained by
MATLAB’s simulation of the driving environment, the
simulation results are like the actual driving conditions of
the car and have a high degree of coincidence. In the pa-
rameter value debugging process, the stability of the model is
relatively good, which meets the simulation requirements.
Additionally, in terms of data processing, there are relatively
few comparisons of models. +e car’s driving conditions
under acceleration and braking are compared and analyzed.
+e application of MATLAB in the computer simulation
driver needs more practical analysis to ensure that it can be
widely used in driving safety risk analysis.

7. Risk Analysis of Driving Safety Based onANN

+is paper uses an ANN model to train driving behavior,
resulting in multiple individual networks. +en, the neural
network dynamic integration algorithm is used for integration
to establish a driving behaviormodel that is closer to the actual
situation. +e output result is the maximum weighted average
of each corresponding neuron in the individual network al-
liance, which is the output of driving behavior. +e error
values of the output and the actual situation are compared.+e
accuracy and optimization scheme of the neural network
algorithm is derived. +e data results are shown in Figure 14.

Figure 14 is the output comparison between the BPNN
simulation result and the actual value. +e actual operating

values of the driver are simulated. After the input signal
value in the network undergoes algorithm operation and
program transformation, the neural network model obtains
a series of data. Compared with the actual value, the error
between the two is analyzed.

+e error range between the BPNN simulation results and
the actual value is about 0.4, and the error value is relatively
low. +e data show that ANN can predict and track data to a
certain extent in the process of driving safety risk assessment
and effectively reduce risks in actual driving safety.

+e ANN dynamic ensemble learning method is used to
learn driving preferences from historical driving behavior
records and save them to the data system to solve the
nonlinear relationship between the driving environment and
driver behavior.+e driving behavior is pretested in terms of
the opening degree and time of the driver stepping on the
brake pedal and the accelerator pedal, and the steering wheel
angle and time. A possible risk indication is drawn from the
historical database, and an early warning is issued. +e
results are consistent with the overall trend of the sample
data and reflect the personality of driving behavior.
+erefore, when the ANN algorithm is actually applied to
driving safety risk analysis, the driver’s historical driving
behavior should be recorded in the early stage and stored in
the database. In this way, after the corresponding situation
occurs, more accurate warning prompts can be issued to
ensure drivers’ safe driving and road traffic.

+e research is limited to the theoretical and simulation
level and lacks actual data support. +ere are few mature
theories in domestic research in this area, so the established
model is still far from the actual situation. +e experimental
simulation data in the driving behavior research come from
the driving simulator, not the data collected on the spot, and
the situation of the early-warning system in the actual ap-
plication process lacks verification. +erefore, the next step is
to get out of the simulator, try to collect real driving behavior
and driving environment data, and establish a driving be-
havior and a road condition database for driving behavior
learning, so that this research has high practical value.

8. Conclusions

In road driving, the driver operating system is multichannel
and nonlinear. +e MATLAB driving simulator is used to
analyze the car’s dynamic characteristics during driving and
the possible factors of risk occurrence. Combined with the
simulated driving environment and the speed change value of
the driver, the simulation results are like the actual driving
conditions of the car, with a high degree of coincidence. In the
parameter value debugging process, the stability of the model
is relatively good, which meets the simulation requirements.

+e application of ANN in driving safety risk warning is
combined with an example of risk prediction. Deep learning,
combined with the actual driving situation, analyzes the
possibility that the car may have a risk in some cases and
issues an early warning based on the ANN operating
mechanism to reduce the possibility and injury of traffic
accidents. +e BPNN is used to model the behavioral
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characteristics of drivers. +e neural network system is
practiced and trained many times. +e test results are
compared with the driver’s actual risk value. +e error range
between the BPNN simulation results and the actual value is
about 0.4, and the error value is relatively low. +e BPNN
model can track the changes of different instructions very
well. For imminent hazards, the model warns the driver and
exhibits certain predictive and data-tracking capabilities.

Additionally, the data processor also showed certain
shortcomings. +ere are relatively few comparisons of the
models. +is work only compares and analyzes the driving
situation of the car under acceleration and braking state. In
the later stage, MATLAB needs to do more practical analysis
on the application of computer simulation drivers to ensure
that it can be widely used in driving safety risk analysis.

Data Availability

All data used to support the findings of the study can be
obtained from the corresponding author upon request.
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