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Millions of patients are suffering from ischemic stroke, it is urgent to figure out

the pathogenesis of cerebral ischemia–reperfusion (I/R) injury in order to find an

effective cure. After I/R injury, pro-inflammatory cytokines especially interleukin-1β (IL-1β)

upregulates in ischemic brain cells, such as microglia and neuron. To ameliorate the

inflammation after cerebral I/R injury, nucleotide-binding oligomerization domain (NOD),

leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome

is well-investigated. NLRP3 inflammasomes are complicated protein complexes that

are activated by endogenous and exogenous danger signals to participate in the

inflammatory response. The assembly and activation of the NLRP3 inflammasome lead

to the caspase-1-dependent release of pro-inflammatory cytokines, such as interleukin

(IL)-1β and IL-18. Furthermore, pyroptosis is a pro-inflammatory cell death that occurs in

a dependent manner on NLRP3 inflammasomes after cerebral I/R injury. In this review, we

summarized the assembly and activation of NLRP3 inflammasome; moreover, we also

concluded the pivotal role of NLRP3 inflammasome and inhibitors, targeting the NLRP3

inflammasome in cerebral I/R injury.

Keywords: NLRP3 inflammasome activation, ischemic stroke, pyroptosis, cerebral I/R injury, mitochondrion

INTRODUCTION

Ischemic stroke is the leading cause of disability in adults and has been a major health
concern worldwide (Wang et al., 2017; Huang et al., 2022). Lack of understanding of the
pathogenesis leads to limitations in the treatment of ischemic stroke. Currently, the immune
response has shown both beneficial (Fernández-López et al., 2016) and detrimental effects
(Jin et al., 2010) on the pathogenesis and prognosis of cerebral ischemia–reperfusion (I/R)
injury. Oxidative stress, neuron death, and inflammation are involved in the pathogenesis
of cerebral I/R injury (Pan et al., 2022a,b). Regarding neuroinflammation, the most definite
mediator of inflammation after cerebral I/R injury is the cytokine interleukin-1 (IL-1) (Barrington
et al., 2017). Nucleotide-binding oligomerization domain (NOD), leucine-rich repeat (LRR),
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and pyrin domain-containing protein 3 (NLRP3) inflammasome
act as the upstream of IL-1, which regulates the mature and
secretion of proinflammatory cytokines. After transient middle
cerebral artery occlusion (MCAO) in mice, NLRP3 is the major
contributor among the inflammasomes (Franke et al., 2021). It
is confirmed that NLRP3 inflammasome has been a therapeutic
target for cerebral I/R injury. As a new detective signaling
platform, the NLRP3 inflammasome could be activated by a
range of microbial infections, such as coronavirus (Zheng et al.,
2020), Staphylococcus aureus (Mariathasan et al., 2006), and
candida albicans hyphae (Joly et al., 2009). As shown in Figure 1

and Table 1, the activation of NLRP3 inflammasome is involved
with the onset and progression of various diseases, and the
research for medicines that inhibit the activation of NLRP3
inflammasome could be therapeutically beneficial. Therefore,
numerous studies are pursuing to figure out the physiological
structure, assembly, and activation of NLRP3 inflammasome and
detect the potential pathogenic mechanisms.

THE ASSEMBLY OF NLRP3
INFLAMMASOME

Inflammasome was first described by Fabio Martinon in 2002,
which was the identification of a caspase-activating complex
that consisted of a sensor (PRRs), an adaptor (ASC), and an
effector (caspase1) (Martinon et al., 2002; Swanson et al., 2019).
The PRRs are expressed in innate immune system cells (such as
macrophages and neutrophils cells) (Abderrazak et al., 2015), and
PRRs sense pathogen-associated molecular patterns (PAMPs)
or damage/danger-associated molecular patterns (DAMPs)
(Matzinger, 2002; Karasawa and Takahashi, 2017) for the innate
immune system to defend against these “danger signals.” PRRs
can be divided into many subgroups, including members of Toll-
like receptors (TLRs), C-type lectin receptors (CLRs), NOD-
like receptors (NLRs), and absent-in-melanoma 2 receptors
(ALRs) (Lamkanfi and Dixit, 2014; Kelley et al., 2019). NLRP3
inflammasome is the most well-characterized inflammasome and
closely related to the cleavage of caspase-1 (Martinon et al.,
2002). NLRP3 is composed of central NOD, a C-terminal LRR
domain, and an N-terminal pyrin domain (PYD) (Menu and
Vince, 2011; Alishahi et al., 2019). ASC (apoptosis speck protein)
has a C-terminal pyrin domain (PYD) and a C-terminal caspase
recruitment domain (CARD) (Alishahi et al., 2019). The CARD
in ASC is homotypic with the CARD in pro-caspase-1. After the
LRR domain is sensitized by stimuli, NLRP3 self-oligomerizes
through the interaction of homotype NODs (Alishahi et al.,
2019), then, the N-terminal PYD domain in oligomerized
NLRP3 facilitates homotypic PYD–PYD interactions between
NLRP and adapter protein ASC (Liepinsh et al., 2003), and
assembled ASC recruits pro-caspase-1 via C-terminal CARD–
CARD interactions (Srinivasula et al., 2002). The assembly and
activation of NLRP3 inflammasome promote the cleavage of pro-
caspase-1 to form active caspase-1, which leads to the maturation
and cleaves of proinflammatory cytokines, such as IL-1β
and IL-18.

THE ACTIVATION OF NLRP3
INFLAMMASOME UNDER I/R INJURY

Notably, the activation of NLRP3 inflammasome has been
detected after I/R injury. It is confirmed that NLRP3 was
upregulated significantly in 4 h after hypoxic-ischemic in rats,
and the elevated levels of IL-1βwere detected in 8 h after hypoxic-
ischemic injury (Li et al., 2021b). A study of patients with
acute ischemic stroke admitted <24 h showed that the level of
serum concentration of NLRP3 was related to the increased
risk of malignant brain edema (MBE) (Wang et al., 2021e).
Therefore, elucidating the mechanism of NLRP3 activation and
intervening early after the onset of ischemic stroke are of great
importance for the treatment and prognosis of ischemic stroke.
It is widely accepted that NLRP3 inflammasome activation
is related to two signals: in signal I (priming), cytokines or
PAMPs could lead to pro-IL-1β and NLRP3 upregulation in
a nuclear factor-κ-gene binding (NF-κB)-dependent manner in
response to the activation of proinflammatory cytokine receptors
or transcription-modulating PRRs; in signal II (activation),
various upstream DAMP and PAMP signaling events lead to the
oligomerization of NLRP3 and the assembly of ASC and pro-
caspase-1 to form NLRP3 inflammasome (Shao et al., 2015; Liu,
Q. Y et al., 2018; Sho and Xu, 2019; Swanson et al., 2019). Recent
studies demonstrate that there are mainly three models which
activate the signal II in the activation of NLRP3 inflammasome,
namely, ionic flux, mitochondrial destabilization, and lysosomal
damage (Gong et al., 2018a; Kelley et al., 2019). All these models
are shown in Figure 2. In this study, we described the activation
of NLRP3 inflammasome after cerebral I/R injury.

Ionic Flux
Intracellular ionic flux which includes K+ efflux, Ca2+

mobilization, and Cl− efflux acts as an upstream regulation
role in the activation of NLRP3 inflammasome (Gong et al.,
2018a). K+ efflux is the most investigated target, the main reason
for the decrease in intracellular K+ concentration is related to
K+ channel opening (Di et al., 2018), membrane remodeling
(Gianfrancesco et al., 2019), and membrane permeabilization
change (Franchi et al., 2014); at the same time, many stimuli
can trigger K+ effluxes such as adenosine triphosphate (ATP),
nigericin, and monosodium urate (MSU) crystals (Nomura et al.,
2015). The activation of NLRP3 could be blocked by inhibiting
K+ efflux; therefore, the low intracellular K+ concentration is a
key trigger for NLRP3 inflammasome activation (Pétrilli et al.,
2007). It has demonstrated that K+-ATP channel pore-forming
subunit Kir6.1 is a bona fide negative regulator of the NLRP3
inflammasome, and the suppression of Kir6.1 increases the
accumulation of damaged mitochondria and production of
reactive oxygen species (ROS) (Du et al., 2019; Hu et al., 2019).
K+ efflux is a well-accepted upstream regulating signal for
NLRP3 inflammasome, but some studies have reported that
other signals could also affect NLRP3 inflammasome activation
in a K+ efflux-independent manner. Imiquimod affects ROS
production by regulating the quinone oxidoreductases, namely,
NQO2 and mitochondrial Complex I to participate in the
activation of the NLRP3 inflammasome, and the activation of the
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FIGURE 1 | Diagram of NLRP3 inflammasome-related disease in human. The activation of NLRP3 inflammasome is extensively involved with the onset and

progression of various diseases. NLRP3, pyrin domain-containing protein 3.

NLRP3 inflammasome by imiquimod is K+ efflux-independent
(Groß et al., 2016).

Mitochondrial Destabilization
After beingstimulated, the products derived from mitochondria
and other mitochondrial signaling molecules contribute to the
NLRP3 inflammasome activation, such as mitochondrial ROS
(mROS), mitochondrial DNA (mtDNA), and cardiolipin (Gong
et al., 2018b; Zhong et al., 2018; Dagvadorj et al., 2021). All these
details are shown in Figure 3. It is well-agreed that inducing
ROS is the common characteristic of most NLRP3 activators
(Hornung and Latz, 2010), and the main source of cellular ROS
is the mitochondria (Dan Dunn et al., 2015). mROS is critical
for NLRP3 inflammasome activation (Tschopp and Schroder,
2010; Gurung et al., 2015; Minutoli et al., 2016; Yu and Lee,
2016). The overexpression of mROS would activate the NLRP3
inflammasome through mainly two-signal models, namely, NF-
κB pathway and mitochondria/thioredoxin-interacting protein
(TXNIP), which activates the NLRP3 inflammasome (Sho and
Xu, 2019). Accumulating studies have shown that the inhibitors
of mtDNA synthesis and mROS can alleviate diseases by
suppressing NLRP3 inflammasome activation (Zhong et al.,
2016; Guo et al., 2017; Lee et al., 2019). Cardiolipin could

activate the NLRP3 inflammasome in a ROS-independent
way during mitochondrial destabilization. In addition to
mROS, mtDNA and cardiolipin also serve as the ultimate
NLRP3 ligand for the activation of NLRP3 inflammasome
(Shimada et al., 2012; Iyer et al., 2013).

What is more, mitochondrial antiviral signaling protein
(MAVS) is a critical regulator in the recruitment of NLRP3
to mitochondria, promoting the production of IL-1β and
the pathophysiological activity of the NLRP3 inflammasome
(Subramanian et al., 2013). Park et al. further discovered that
MAVS not only accelerated the recruitment of NLRP3 to the
mitochondria and brought it close to mtROS to improve its
activation but also was involved in the assembly of NLRP3
inflammasome (Park et al., 2013). During mitochondrial
destabilization, the recruitment of dynamin-related protein
1 (Drp1) on mitochondria leads to excessive mitochondrial
fission, ultimately activating the NLRP3 inflammasome. It
was conducted that AMP-activated protein kinase (AMPK)
activation inhibited mitochondrial fission by upregulating
Drp1 phosphorylation at serine637 (Ser637) in an AMPK-
dependent manner to protect mitochondrial integrity and
then, suppressed ER stress to inhibit the activation of NLRP3
inflammasome (Li et al., 2015, 2016; Guo et al., 2018b).
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What is more, it was also shown that receptor-interacting
serine/threonine kinase (RIP) 1/RIP3 (RIP1-RIP3) complex
could phosphorylate Drp1 at serine616 (Ser616) to activate and
promote Drp1 translocation to mitochondria and ultimately
contributed to the activation of NLRP3 inflammasome via
(RIP1–RIP3)—Drp1 pathway (Wang et al., 2014). It has also
proven that RIP3 regulates potassium efflux-dependent NLRP3
inflammasome activation via mixed-lineage kinase domain-
like protein (MLKL)-induced pores and can be inhibited
by supplementing extracellular potassium (Conos et al.,
2017).

Lysosomal Damage
Pyrin domain-containing protein 3 activators induce lysosomal
damage, which is indirectly sensed by the NLRP3 inflammasome
(Hornung and Latz, 2010). Several reports attribute the activation
of the NLRP3 inflammasome to the leakage of lysosomal contents
into the cytosol following phagocytosis of particulate stimuli that
could damage their integrity (Hornung et al., 2008; Shimada
et al., 2012). Lysosomal rupture can release cathepsins and
ROS, which also significantly impacted mitochondria membrane
integrity and lead to membrane permeabilization (Shimada
et al., 2012). Leu-Leu-O-methyl ester (LLME) is a lysosome-
damaging compound when LLME is transported to the lysosome,
resulting in lysosomal membrane permeability (LMP) (Hornung
and Latz, 2010). It is proved that low-dose LLME causes mild
LMP and strongly activates the inflammasome (Schilling, 2016).
What is more, lysosomes are emerging as intracellular Ca2+

stores (Zhong et al., 2017), and the activity of lysosomal ion
channels and transporters maintains concentration gradients
of K+, Ca2+, Na+, and Cl− across the lysosomal membrane.
Once the lysosomal damage occurs, it would contribute to
the Ca2+ overloading and the disorder of lysosomal ion
channel activity, which stimulates the activation of the NLRP3
inflammasome (Kendall and Holian, 2021). It has been proven
that the restoration of lysosomal dysfunction could augment
neuroprotection against ischemic stroke in neurons (Zhang et al.,
2022).

NLRP3 INFLAMMASOME IN CEREBRAL
I/R INJURY

Themain pathogenesis of ischemic stroke includes inflammation,
oxidative stress, and programmed cell death (PCD) (Jin et al.,
2010; Ren et al., 2021). With the involvement of the innate
immune system, the activation and expression site of NLRP3
inflammasome act as a critical role in the development of
ischemic stroke. In this study, we explained in detail the
involvement of NLRP3 inflammasome in the pathogenesis of
cerebral I/R injury, and the details are shown in Figure 4.

Inflammation
After cerebral I/R injury, various cellular responses are aroused,
such as the activation of inflammatory cytokines and the
accumulation of ROS and other oxygen free radicals (Fann
et al., 2013; Guo et al., 2016), which exacerbate I/R injury by
promoting brain oxidative stress, inflammation, and cerebral

infarction volume (Jiang et al., 2019; Franke et al., 2021; Joaquim
et al., 2021). The activation of the NLRP3 inflammasome plays an
important role in the development of inflammation after cerebral
I/R injury. NLRP3 inflammasome is first expressed in microglia
and then in microvascular endothelial cells and neurons, but
finally mainly in neurons at 24 h (Gong et al., 2018b).

Microglia
After ischemic I/R injury, the circulating macrophages
were recruited to the ischemic tissue to be involved in
cerebral I/R injury (Cai et al., 2018). As brain resident
macrophages, microglia could be activated first after I/R
injury, and macrophages/microglia change their M1 or M2
phenotype depending on the microenvironment of the central
nervous system (CNS) (Hanisch and Kettenmann, 2007;
Dong et al., 2021). M1 phenotype recognizes harmful stimuli
and consequently generates inflammatory cytokines such as
IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) (Cherry
et al., 2014). M2 phenotype shifts into an anti-inflammatory
state where extracellular matrix deposition, debris clearance,
and angiogenesis are promoted (Varin and Gordon, 2009).
Regulating the polarization of macrophage/microglia could
alleviate brain damage after ischemic stroke (Ye et al., 2019).
Thirty minutes after modeling MCAO in mice, activated
microglia were detected in the ischemic lesions (Rupalla et al.,
1998). After ischemic stroke, DAMPs and PAMPs such as
ischemia, hypoxia, and inflammatory factors could activate
microglia (Gülke et al., 2018) and facilitate the proinflammatory
role via hypoxia-inducible factor 1α (HIF-1α) in microglia (Yang
et al., 2014). Additionally, anti-inflammatory factors, such as
IL-10 and IL-4, could induce the M2 phenotype of microglia
to protect against ischemic stroke (Xiong et al., 2015). As the
monitoring of the microenvironment, immune system response
after ischemic stroke can also affect the polarization of microglia,
such as interferon regulatory factor (IRF) 4/5 signaling (Al
Mamun et al., 2018). IRF5 is required for the M1 phenotype
in microglia, and IRF4 was identified as a key transcription
factor for M2 polarization in microglia (Al Mamun et al.,
2018). In the mouse model of MCAO, the inhibition of NLRP3
inflammasome activation in activated microglia significantly
improved functional neurological deficits (Sapkota and Choi,
2021). Additionally, the polarization of M2 microglia could
protect against cerebral ischemic injury via the NF-E2–related
factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NLRP3 pathway
(Wang et al., 2021c). Therefore, it is therapeutic in ischemic
stroke to inhibit inflammatory response via inhibiting phenotype
switch of microglia and NLRP3 inflammasome activation.

Indoleamine 2,3-dioxygenase 1 (IDO-1) is an
immunosuppressive metabolic enzyme and elicits
neuroprotective effects on ischemic injury (Park et al., 2020).
IDO-1 is mainly expressed in the macrophage/microglia of
the perivascular but not the parenchymal microglia of the
brain (Ji R. et al., 2021). As the downstream enzyme of the
NLRP3 inflammasome, the inhibition of IDO-1 with curcumin
decreased NLRP3 expression (Zhang W.-Y et al., 2019); in
contrast, the inhibition of IDO-1 reduced NLRP3 expression,
and inhibiting NLRP3 also increased IDO-1 expression,
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TABLE 1 | Diseases associated with pyrin domain-containing protein 3 (NLRP3) inflammasome.

Disease NLRP3

inflammasome

inhibitor

Model Animals and cells Signaling Effects References

Rheumatoid arthritis MCC950 MCAO/R and

OGD/R

Mice and SH-SY-5Y

cells

The mitochondrial

translocation of Drp1

Mitochondrial

Function, ER Stress Guo et al., 2018a

Endothelial

inflammation and

atherosclerosis

NLRP3 shRNA Diabetes mellitus

model

Diabetes patients

and diabetic

ApoE−/− mice and

human umbilical vein

endothelial cells

(HUVECs).

NLRP3

inflammasome

signaling

Endothelial

inflammation Wan et al., 2019

Inflammatory bowel

diseases

Glyburide IL-10 mice C57BL/6 mice and

Patients with

diagnosis of CD

NLRP3

inflammasome

signaling

Inflammation
Liu et al., 2017

Renal fibrosis MCC950 Renal fibrosis model C57BL/6 mice NLRP3

inflammasome

signaling

Oxidative stress,

inflammation, renal

dysfunction,histological

injury, and interstitial

fibrosis

Li et al., 2019

Renal

ischemia/reperfusion

injury

Hydroxychloroquine Renal I/R injury

model

C57BL/6J mice and

HK-2 cells

NF-κB signaling Renal inflammation
Tang et al., 2018

Renal inflammation B-cell lymphoma 6

(BCL6)

Spontaneously

hypertensive rats

(SHR) and

Inflammation models

SHR, Wistar-Kyoto

rats (WKY), and

HK-2 cell

NLRP3 transcription Inflammation in the

renal cortex Chen et al., 2017

Chronic renal

dysfunction

Phloretin Hyperuricemia

model

C57BL/6 male mice

and HK-2 cell

NLRP3 pathway Inflammation
Cui et al., 2020

Traumatic brain

injury (TBI)

NIMA-related kinase

7 (NEK7)-shRNA

Controlled Cortical

Impact (CCI) Model

C57BL/6 mice and

Primary Cortical

Neurons

NEK7–NLRP3

signaling

Neuroinflammation

and pyroptosis Chen et al., 2019b

Acute pancreatitis

(AP)

INF-39 Severe acute

pancreatitis (SAP)

Model

NLRP3−/− C57BL/6

mice

NLRP3

inflammasome

signaling

Inflammatory

cascade and

neutrophil infiltration

Fu et al., 2018

Systemic lupus

erythematosus (SLE)

Methylprednisolone SLE patients – NEK7-NLRP3

inflammasome

signaling pathway

Inflammation
Ma et al., 2018

Ischemic stroke Ketogenic Diet MCAO Model and

OGD/R

C57BL/6 mice and

SH-SY-5Y cells

Mitochondrial

translocation of Drp1

ER stress, apoptosis

and inflammation Guo et al., 2018b

Breast cancer MiRNA-233-3p Breast cancer cell

lines

HMEC,

MDA-MB231,

MCF-7, and SKBR3

cell lines

MiR-233/NLRP3

inflammasome

pathway

Immunoactivation

and the growth of

breast cancer

Zhang L. P. et al.,

2019

Myocardial infarction Colchicine Myocardial Infarction

Mouse Model

C57BL/6J mice NLRP3

inflammasome

signaling

Acute Inflammation
Fujisue et al., 2017

Diabetic

cardiomyopathy

Empagliflozin Diabetic db/db mice Mice sGC-cGMP-PKG

pathway

Cardiomyocyte

pyroptosis Xue et al., 2019

Myocardial

Ischemia/Reperfusion

(I/R) Injury

BAY11-

7082/MCC950

Myocardial

ischemia/reperfusion

(MI/R) injury and H/R

Injury model

Sprague-Dawley

rats and H9C2 Cell

NLRP3

inflammasome

signaling

Pyroptotic cell death
Qiu et al., 2017

Diabetic

nephropathy (DN)

Optineurin High glucose culture DN patient and

Murine primary renal

tubular epithelial

cells (RTECs)

Mitophagy Mitochondrial

dysfunction Chen et al., 2019a

Diabetic retinopathy Fenofibrate Diabetes model C57BL/6 mice Nrf2 signaling Retinal leukostasis

and vascular

leakage

Liu Q. P. et al., 2018

(Continued)
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TABLE 1 | Continued

Disease NLRP3

inflammasome

inhibitor

Model Animals and cells Signaling Effects References

Parkinson’s disease

(PD)

FTY720 PD model C57BL/6J mice,

BV-2 microglial, and

SH-SY5Y

neuroblastoma cell

PI3K/AKT/GSK-3β

signaling pathway

Neuronal damage

and microglia

activation

Yao et al., 2019

Alzheimer’s disease

(AD)

MCC950 APPswe/PS1dE9

mice

Mice and microglia NLRP3

inflammasome

signaling

Amyloid

accumulation Dempsey et al.,

2017

Intracerebral

hemorrhage (ICH)

Adiponectin ICH model (the

injection of

autologous blood)

Sprague-Dawley

rats

NLRP3

inflammasome

signaling

Inflammation
Wang S. H. et al.,

2020

Septic shock Cardamonin,

MCC950

Injection of LPS C57BL/6 mice and

Bone-marrow-

derived

macrophages

(BMDMs)

NLRP3

inflammasome

signaling

Inflammation
Wang et al., 2019

Osteoporosis (OP) Irisin OP model

(ovariectomy)

Sprague-Dawley

rats

Nrf2 signaling Apoptosis and

inflammation Xu et al., 2020

Non-alcoholic fatty

liver disease

(NAFLD)

Naringenin Methionine-choline

deficient (MCD) diet

and cellular steatosis

model with LPS and

oleic acid (OA)

C57BL/6 mice,

Primary

hepatocytes, KCs,

and HepG2 cells

NLRP3/NF-κB

pathway

Inflammatory

activation and lipid

deposition

Wang Q. Y. et al.,

2020

Liver inflammation

and fibrosis

MCC950, IL-1

receptor antagonist

(anakinra)

Atherogenic diet-fed

foz/foz model and

Methionine and

choline deficient diet

model

Mice, bone

marrow-derived

macrophages,

primary

hepatocytes, Kupffer

cells

NLRP3

inflammasome

signaling

Hepatocyte

pyroptosis, liver

inflammation and

fibrosis

Wree et al., 2014;

Mridha et al., 2017

Intervertebral disc

degeneration (IVDD)

Melatonin Human IVDs and AF

puncture surgery for

rats

Rats and nucleus

pulposus (NP)

IL-1β/NF-κB-NLRP3

inflammasome

positive feedback

loop

Inflammatory

response Chen et al., 2020

Depression Fluoxetine Chronic mild stress

model

C57BL/6 mice and

primary

macrophage/microglia

ROS-

double-stranded

RNA-dependent

protein kinase

(PKR)-NLRP3

Signaling Pathway

Inflammatory

response Du et al., 2016

Acute lung injury Glybenclamide Acute lung injury

model induced by

administering

paraquat (PQ)

Sprague–Dawley

rats

NLRP3-ASC-

caspase-1

pathway

Inflammatory injury
Liu et al., 2015

Gout β-

hydroxybutyrate(BHB),

Ketogenic Diet

Gout Model and

Peritonitis Model

Human and

C57BL/6 mice

NLRP3

inflammasome

signaling

Inflammatory

response Goldberg et al.,

2017

indicating that the relationship between NLRP3 and IDO-1
is bidirectional, and the direction depends on the activation
status of macrophages/microglia (Ji R. et al., 2021). It is
indicated that IDO-1 may decrease the expression of NLRP3
in macrophage/microglia of the perivascular space to inhibit
inflammation and protect the integrity of the blood-brain barrier
(BBB) against cerebral I/R injury.

Microvascular Endothelial Cell
As the important structure of BBB, microvascular endothelial
cells play a vital role in cerebral I/R injury. With regard to I/R

inflammation, the adhesion of neutrophils to vascular endothelial
cells is fundamental to the development of I/R inflammation
(Dong et al., 2019). It has been studied that endothelial
cells can secrete inflammatory factors such as vascular cell
adhesion molecule-1 (VCAM-1) to recruit neutrophils and/or
lymphocytes, leading to the infiltration of inflammatory cells in
the ischemic region (Gao et al., 2021). Lysophosphatidylcholine
(LPC) is the main active component of oxidized low-density
lipoproteins (ox-LDLs), and it has been proven that LPC
could facilitate inflammatory response in brain microvascular
endothelial cells (BMECs) via G protein-coupled receptor 4
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(GPR4)-mediated activation of NLRP3 inflammasomes (Liu
et al., 2021a). The expression inhibition of NLRP3 inflammasome
in endothelial cells could improve the integrity of BBB and
behavioral outcomes (Cao et al., 2016). The functional integrity
of BMECs has shown a significant protective effect against brain
I/R injury (Wang et al., 2021a).

Neuron
After the onset of cerebral I/R injury, cellular damage is
mainly triggered by excitotoxicity, mitochondrial disturbances,
dysfunction of the endoplasmic reticulum, ROS production,
calcium toxicity, nitric oxide toxicity, zinc toxicity, and PCD
(Lo et al., 2005; Hossmann, 2006). After the ischemic injury,
neuron death occurs within minutes (Amantea et al., 2009),
and the neuronal cell death after cerebral I/R injury included
apoptosis, autophagy, pyroptosis, ferroptosis, parthanatos,
phagoptosis, and necroptosis (Tuo et al., 2022). With the time
prolongation, the neuron cell and nuclear membrane in the
center of the ischemic region ruptured, and the cells were
lysed (Gou et al., 2021). As mentioned earlier, the cellular
damage could contribute to the activation of the NLRP3
inflammasome, ultimately exacerbating the inflammatory
response. Based on the fact that NLRP3 inflammasome
is ultimately mainly expressed in neurons after ischemic
stroke, drugs that inhibit NLRP3 inflammasome to alleviate
cerebral I/R injury and reduce inflammatory response must
be studied.

Pyroptosis
Pyroptosis is one kind of pro-inflammatory PCD, which has
been shown to be involved in cerebral I/R injury (Voet et al.,
2019). Different from other PCD, pyroptosis is characterized by
the rupture of the plasma membrane to form pores, increases
in cell permeability, and the release of inflammatory cytokines
(Fink and Cookson, 2005). The occurrence of pyroptosis relies
on caspase-1/4/5/11, and caspase-1 and caspase-11 are the main
activated inflammatory caspases during cerebral ischemia (Gou
et al., 2021). The oxidative stress and inflammatory response
activate the NLRP3 inflammasome and consequently induce the
cleave of pro-caspase-1 to form active caspase-1, which ultimately
promotes pyroptosis via the canonical inflammasome pathway
(Broz, 2015). Caspase-1 cleaves pro-IL-1β and pro-IL-18 into a
mature form of IL-1β and IL-18. Caspase-1 could also cleave
Gasdermin D (GSDMD), expose Asp280 amino acid sites, and
promote the recruitment of the N-domain of GSDMD to the cell
membrane, leading to the cell membrane pore formation and
pyroptosis (Zhang et al., 2019; Ji et al., 2021), thereby releasing
IL-1β and IL-18, and leading to cascade inflammatory response
and inflammatory cell recruitment (Vande Walle and Lamkanfi,
2016).

Pyroptosis has been shown to be expressed in various CNS
cells, such as microglia, neuron, oligodendrocytes, and astrocytes
(McKenzie et al., 2018; Zhou et al., 2019; Hu et al., 2021;
Zhao et al., 2021). Additionally, it has been proven that the
pyroptosis of endothelial cells participates in the pathogenesis
of cerebral I/R injury (Wang et al., 2021d). Regarding the
critical downstream effector of pyroptosis (Shi et al., 2015), the

expression of GSDMD was found to increase after I/R and peak
at 3–5 days inmice (Lu et al., 2021) and so aggravates I/R-induced
cerebral infarction and brain injury. The ablation of GSDMD
exerts a neuroprotective effect by inhibiting microglia pyroptosis
in mice after cerebral I/R injury (Wang et al., 2020a). Moreover,
the inhibition of NLRP3 inflammasome-dependent pyroptosis
could reduce neuronal injury and cerebral infarct after I/R injury
(Kang et al., 2021; Shi et al., 2022). Regarding the upstream of
pyroptosis, the suppression of NLRP3 inflammasome is a critical
target for the treatment of cerebral I/R injury.

THERAPEUTIC APPROACHES TARGETING
NLRP3 INFLAMMASOME FOR CEREBRAL
I/R INJURY

As a neurological disease with a high disability rate, ischemic
stroke still lacks efficient therapeutic treatment in the clinic.
As previously mentioned, NLRP3 inflammasome plays a major
role in cerebral I/R injury, and many drugs that inhibit NLRP3
inflammasome activation have been studied for the treatment of
ischemic stroke. In this study, we summarized the therapeutic
approaches involving NLRP3 inflammasome and classified these
drugs as follows: clinical treatment, herbal/natural component,
and novel inhibitor.

Novel Inhibitor
To find out the potential pathogenesis and therapeutic drugs
for cerebral I/R injury application, many novel inhibitors have
been found to mitigate cerebral I/R injury by suppressing
the activation of the NLRP3 inflammasome. The most well-
studied inhibitor is MCC950, which is proven specificity in
inhibiting NLRP3 inflammasome targeting for the assembly of
NLRP3 inflammasome (Wu et al., 2020). MCC950 can modify
the active conformation of NLRP3, and it prevents NLRP3
oligomerization in response to external stimulation (Tapia-
Abellán et al., 2019). Experimental studies have found that
the treatment of MCC950 could reduce the infarction and
edema and improved neurological deficits and BBB integrity
via inhibiting inflammatory cytokines, pyroptosis, and brain
oxidative stress in the ischemic region after MCAO (Ismael et al.,
2018; Bellut et al., 2021; Joaquim et al., 2021). CY-09 could inhibit
ATPase activity and block NLRP3 oligomerization to inhibit the
activation of NLRP3 inflammasome (Jiang et al., 2017). It has
shown the therapeutic effect of CY-09 in cerebral I/R injury
via inhibiting NLRP3 inflammasome-induced inflammation and
pyroptosis (Sun et al., 2020; Franke et al., 2021). Oridonin
could prevent NLRP3 inflammasome complex assembly against
NLRP3 inflammasome activation (He et al., 2018). The study
found oridonin prevented oxidative stress-induced endothelial
injury via promoting the Nrf2 pathway and thereby repaired BBB
integrity, alleviated neuroinflammation, and infarct volume after
ischemic stroke (Li et al., 2021a).

Clinical Treatment
Although the pathogenesis of ischemic stroke remains unclear,
many conventional medicines revealed the therapeutic effect on
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FIGURE 2 | Diagram of NLRP3 inflammasome activation. The priming induces NLRP3 and pro-IL-1β upregulation in an NF-κB-dependent manner through

translocating to the nucleus. The upstream DAMP and PAMP signaling events lead to the oligomerization of NLRP3 and the assembly of ASC and pro-caspase-1 to

form NLRP3 inflammasome. There are mainly three models, which activate the activation of NLRP3 inflammasome: K+ efflux, ROS, and lysosomal damage, and

specifically it also includes Cl− efflux, Ca2+ overload, mtDNA, cardiolipin, and the nuclear translocation of Nrf2. The assembly and activation of the NLRP3

inflammasome lead to the cleavage of Caspase-1, which promotes the maturation and cleaves proinflammatory cytokines IL-1β and IL-18. NLRP3, pyrin

domain-containing protein 3; NF-κB, nuclear factor-k-gene binding; HO-1, Hemeoxygenase-1; TNXIP, thioredoxin interacting protein; PRR, pattern recognition

receptor; DAMPs, damage/danger-associated molecular patterns; Nrf2, NF-E2-related factor 2; ROS, reactive oxygen species; mtDNA, mitochondrial DNA.

ischemic stroke function by inhibiting the activation of NLRP3
inflammasome. As an oxygen radical scavenger, Edaravone
reduced neurotoxicity, oxidative stress, and inflammatory
response after cerebral I/R injury (Xu et al., 2021a). Indobufen
and Aspirin and their Combinations with Clopidogrel or
Ticagrelor (IACT) could alleviate pyroptosis via NF-κB/NLRP3
pathway after cerebral I/R injury, which indicated that the
combination of antiplatelet drugs is a promising strategy for
the curation of cerebral I/R injury (Li et al., 2021c). In
addition, idebenone, as a mitochondrial protectant, was found
to decrease ROS and cytosolic oxidized mtDNA, suppress
uncontrolled NLRP3 activation, and consequently alleviate

cerebral inflammatory response after cerebral I/R injury (Peng
et al., 2020). Hypothermia is used for clinical neuroprotective
purposes after ischemic stroke. It was suggested that hypothermia
downregulated the expression of NLRP3 and attenuated I/R-
induced pyroptosis partially via the phosphatidylinositol-
3-kinase (PI3K)/Akt/Glycogen synthase kinase-3β (GSK-3β)
pathway (Diao et al., 2020). Electroacupuncture (EA) is
commonly used to relieve chronic pain and stroke rehabilitation,
and some studies have uncovered that EA pretreatment protects
against transient cerebral I/R injury (Wang et al., 2012). EA
stimulus has a neuroprotective effect through α7nAChR by
modulating the inhibition of NLRP3 inflammasome-associated
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FIGURE 3 | Diagram of the role of the mitochondrion in NLRP3 inflammasome activation. Ca2+ which released from ER influxes into mitochondria, and the overload

of Ca2+ contributes to the high mitochondrial membrane potential (1ψm) depolarizes and the opening of mPTP, thus releasing mitochondria-derived molecules such

as mROS, mtDNA and cardiolipin which produced during mitochondrial destabilization. The cardiolipin and ox-mtDNA release into cytosol and then bind to NLRP3,

which might serve as NLRP3 ligands to activate the NLRP3 inflammasome. The infection of the virus accelerates the recruitment of NLRP3 to mitochondria and binds

between NLRP3 and MAVS and regulates the mitochondrial destabilization and NLRP3 inflammasome activation in Drp1 phosphorylation-dependent ways. NLRP3,

pyrin domain-containing protein 3; ER, endoplasmic reticulum; mPTP, mitochondrial permeability transition pore; MAVS, mitochondrial antiviral signaling protein;

AMPK, AMP-activated protein kinase; RIP1/RIP3, receptor-interacting serine/threonine kinase 1 and RIP3; 1ψm, mitochondrial membrane potential.

inflammatory response and cellular apoptosis (Jiang et al.,
2019).

Herbal/Natural Component
Herbs andtheir extracts have been an important source of
approach for the treatment of ischemic stroke, many herbal
medicines have shown neuroprotection after cerebral I/R
injury via inhibiting NLRP3 inflammasome activation, and
the detailed information is summarized in Table 2. Tongxinluo
(TXL) is a common Chinese patent drug used clinically in
the treatment of stroke, and TXL could protect ischemic
brain tissues against pyroptosis in astrocytic by inactivating
caspase-11/GSDMD (Wang et al., 2021b). Xingnaojing injection
(XNJ) is isolated from famous traditional Chinese medicine

prescriptions named An-Gong-Niu-Huang Wan, which is
well-accepted in the clinic due to its significant therapeutic
effect (Lai et al., 2017). XNJ ameliorated neurological deficits
and BBB disruption following I/R injury in a manner of
NLRP3 inflammasome suppression (Qu et al., 2019). The
effective compounds extracted from Buyang Huanwu Decoction
(BYHWD) can alleviate neuronal damage and inhibit NLRP3
inflammasome-mediated neuronal pyroptosis (She et al., 2019).
Hispidulin is a component widely existing in traditional Chinese
medicine and could inhibit I/R-induced pyroptosis in the
ischemic cortex by modulating AMPK/GSK3β signaling (An
et al., 2019). Resveratrol, anthocyanin, melodinhenine B, and 6-
Gingerol could alleviate cerebral I/R injury by inhibiting NLRP3
inflammasome activation (He et al., 2017; Cui et al., 2018;
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FIGURE 4 | Diagram of NLRP3 inflammasome-related mechanisms after cerebral I/R injury. The involvement of NLRP3 inflammasome in the pathogenesis of cerebral

I/R injury mainly includes two aspects: inflammation and pyroptosis. NLRP3 inflammasome is expressed in microglia, neuron, and endothelial cell to regulate

inflammation after cerebral I/R injury. In addition, NLRP3 inflammasome is expressed in astrocytes, oligodendrocytes, microglia, neuron and endothelial cell involved

with pyroptosis in ischemic tissue. In this figure, we also conclude the pathways in this review, which regulate the activation and inhibition of NLRP3 inflammasome in

cerebral I/R injury. The upward arrow represents the suppression of NLRP3 inflammasome, and the downward arrow represents the activation of NLRP3

inflammasome. NLRP3, pyrin domain-containing protein 3; I/R, ischemia–reperfusion.

Li et al., 2020a; Luo et al., 2021). Icariin, a flavonol glycoside
extracted from Epimedium brevicornumMaxim (Berberidaceae),
has shown an anti-inflammatory effect against Oxygen and
Glucose Deprivation/Reoxygenation (OGD/R) through
the inositol-requiring enzyme-1 (IRE1)/X-box binding
protein 1 (XBP1) pathway in microglia (Mo et al., 2021).
Moreover, the pretreatment of sulforaphane (SFN) in
the ischemic stroke model could protect neurovascular
and alleviate neurological deficits and BBB disruption
via the Nrf2/HO-1 defense pathway (Alfieri et al., 2013;
Warpsinski et al., 2020). Herbal medicines especially traditional
Chinese medicines have been an essential approach for the
recovery of ischemic stroke, identifying natural herbs which
ameliorate I/R injury via NLRP3 inflammasome that has
prospective value.

Others
Intriguingly, non-coding RNA (ncRNA), including long non-
coding RNA and microRNA, is involved in the pyroptosis,
inflammatory response, oxidative stress, apoptosis, and BBB
permeability in a manner of NLRP3 inflammasome after cerebral
I/R injury (Ghafouri-Fard et al., 2020), and all the information is

shown in Table 3. It is of great importance to develop drugs that
inhibit NLRP3 by targeting ncRNAs.

Bone marrow mesenchymal stem cell-derived exosomes
(BMSC-Exos) can attenuate the activation of NLRP3
inflammasome and NLRP3 inflammasome-mediated
pyroptosis via promoting AMPK-dependent autophagic
flux in OGD/R injury (Zeng et al., 2020), by a mechanism
that switches microglial phenotypes from M1 to M2,
so as to ameliorate cerebral I/R injury (Liu et al.,
2021b). Moreover, intermittent fasting can attenuate the
inflammation and neuronal damage following cerebral I/R
injury through the suppression of NLRP3 inflammasome
activation (Fann et al., 2014). Additionally, an enriched
environment (EE) could rescue neurological deficits
after I/R injury via inhibiting the activities of NLRP3
inflammasome and attenuating neuronal pyroptosis (Liu
et al., 2021c).

The continuous studies for NLRP3 inflammasome
will promote the new drug research and development
for cerebral I/R injury clinical treatment, but further
research is needed for the clinical application of
new compounds.
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TABLE 2 | Herbal drugs that target NLRP3 inflammasome after cerebral ischemia–reperfusion (I/R) injury.

Drugs Type Source Target Signaling Animals and

cells

Models Current

clinical trial

References

Icariin (ICA) Glycoside Epimedium

brevicornum

Maxim

(Berberidaceae)

NLRP3 and

caspase-1

IRE1/XBP1s

pathway

Microglia Oxygen-

glucose

deprivation

(OGD/R)

–
Mo et al., 2021

Tongxinluo TCM

prescription

Jiang Xiang,

Ru Xiang, Bing

Pian, Ren

Shen, Chi Sao,

Suan Zao Ren,

Tan Xiang, Can

Tui, Shui Zhi,

Tu Bie Chong,

Quan Xie, Wu

Gong

Inhibited

Astrocytic

Pyroptosis

Caspase-

11/GSDMD

Sprague–

Dawley

rats

Middle

cerebral artery

occlusion/

reperfusion

(MCAO/R)

Cardiocere

brovascular

diseases of

blood stasis

syndrome

Wang et al.,

2021b

6-Gingerol Phenolic

compound

Ginger NLRP3 and

caspase-1

TRPV1/FAF1

complex

Sprague–

Dawley

rats

MCAO –
Luo et al.,

2021

Bakuchiol

(BAK)

Prenylated

phenolic

mono-terpene

the seeds of

psoralea

corylifolia

NLRP3 and

caspase-1

Nrf2 signaling Mice and BV-2

cells

MCAO and

OGD/R

–
Xu et al.,

2021b

Gastrodin

(GAS)

Versatile

compound

Traditional

Chinese herb

Tianma

NLRP3 and

caspase-1

LncRNA

NEAT1/miR-

22-3p/

NLRP3

Sprague–

Dawley

rats

MCAO –
Zhang et al.,

2021

Oridonin (Ori) Diterpenoid

isolated

Rabdosia

rubescens

NLRP3 and

caspase-1

NF-κB

signaling

C57BL/6 mice

and BV-2 cells

MCAO and

OGD/R

–
Jia et al., 2021

D-Carvone D- carvone

dietary

monoterpenes

Seed variety

caraway

essential oil

NRLP3 TLR4/NLRP3

signaling

pathway

Sprague–

Dawley

rats

MCAO –
Dai et al., 2020

Cepharanthine

(CEP)

Bibenzyliso

quinoline (BBI)

alka-loids

Stephania

cepharantha

NRLP3 12/15-LOX

signaling

Mice and BV-2

cells

MCAO and

OGD/R

–
Zhao et al.,

2020

Tetrandrine Alkaloid Radix

Stephania

tetrandra

NRLP3 Sirt-1 Mice MCAO –
Wang et al.,

2020b

Astilbin Dihydroflavonol

derivative

Rhizoma

Smilacis

glabrae (RSG)

NRLP3 MAPK

pathway and

PI3K/AKT

pathway

PC12 cell OGD/R –
Li et al., 2020b

Melodinhenine

B

Eburnean-

vindolinine-

type bisindole

alkaloid

M. henryi NRLP3 BBB integrity Sprague–

Dawley

rats

MCAO –
Li et al., 2020a

XingNaoJing TCM

prescription

named

An-Gong-Niu-

Huang

pill

Moschus,

Radix

Curcumae,

borneol and

Fructus

gardeniae

NLRP3 BBB integrity Sprague–

Dawley

rats

MCAO the treatment

of stroke Qu et al., 2019

Glycosides Astragaloside

IV, paeoniflorin,

and amygdalin

Buyang

Huanwu

Decoction

NLRP3 Classical

pyroptosis

pathway

Sprague–

Dawley

rats

MCAO Prevent and

treat cerebral

ischemia

She et al.,

2019

Hispidulin Flavonoid Chinese herbal

medicines

NLRP3 AMPK/GSK3β

signaling

pathway

Sprague–

Dawley rats

and primary

cerebral

astrocytes

MCAO and

OGD/R

–
An et al., 2019

(Continued)
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TABLE 2 | Continued

Drugs Type Source Target Signaling Animals and

cells

Models Current

clinical trial

References

Anthocyanin Phenolics or

polyphenolics

Myrica rubra NLRP3 TLR4/NF-κB

and NLRP3

Pathways

ICR mice MCAO –
Cui et al., 2018

Resveratrol

(RSV)

Poly-phenolic

compound

Veratrum

grandiflorum

NLRP3 Sirt1-

dependent

autophagy

induction

Sprague–

Dawley

rats

MCAO –
He et al., 2017

Sulforaphane

(SFN)

Isothiocyanate Cruciferous

vegetables

NLRP3 The activation

of NLRP3

inflammasome

Sprague–

Dawley

rats

MCAO –
Yu et al., 2017

TABLE 3 | Selected noncoding RNAs involving NLRP3 inflammasome in cerebral I/R injury.

ncRNA TUG1 NEAT1 MiR-139 MiR-668

Target miR-200a-3p miR-22-3p c-Jun Mitochondrial function

Expression Upregulation Upregulation Downregulation Upregulation

Species Adult C57BL/6 mice Male Sprague–Dawley rats Human neuroblastoma cells and mouse

microglia cells

Male Sprague-Dawley rats

Model MCAO MCAO OGD/R MCAO

Treatment Knockdown of TET2 Gastrodin MiR-139 mimics MiR-668 inhibitor

Pathway TUG1/miR-200a-3p/NLRP3 NEAT1/miR-22-3p Axis c-Jun/NLRP3 inflammasome MiR-668/NLRP3

Therapeutic

effect

Attenuate I/R-induced

inflammatory response and brain

injuries

Improve the neurological scores of

rats, reduce the area of cerebral

infarction, and inhibit pyroptosis

Inhibit NLRP3 inflammasome-mediated

pyroptosis and inflammatory response

Modulate mitochondrial function

and regulate NLRP3 signaling

Yin et al., 2021 Zhang et al., 2021 Wang Q.-S et al., 2020 He and Zhang, 2020References

DISCUSSION

Despite efforts to understand the pathophysiology of ischemic

stroke, no effective neuroprotective drugs have been identified to

modulate brain damage following ischemic stroke in human due

to the complexity of ischemic stroke. With a fall of cerebral blood
flow in ischemic stroke, the ischemic region contains two aspects,
namely, ischemic core and penumbra, the damage to the brain
in the penumbra is reversible based on the ionic homeostasis
and transmembrane electrical potentials (Astrup et al., 1981),
and how to restore blood flow in penumbra is a therapeutic
target for the ischemic stroke clinic treatment (Ramos-Cabrer
et al., 2011). Due to the sudden and rapid onset, ischemic
stroke is often treated out of the therapeutic time window
and, therefore, produces irreversible neuronal death (Sommer,
2017). As the most well-characterized inflammasome, NLRP3
inflammasome is closely related to the inflammatory response
and pyroptosis; therefore, the blocking of NLRP3 inflammasome
becomes a significant therapeutic target for ischemic stroke.
Therefore, it is meaningful to downregulate the expression of
NLRP3 inflammasome after cerebral I/R injury. The abnormal
expression of NLRP3 inflammasome is not only detected in
lab experiments but also is exactly confirmed in burgeoning
clinical evidence (Chen et al., 2013; Zheng et al., 2013). It is
shown that the neuronal upregulation of NLRP3 is an early event

within the first 24 h of cerebral I/R injury which corresponds
to the hyperacute and acute phase of human stroke (Franke
et al., 2021). After the onset of ischemic stroke, the inhibition of
NLRP3 inflammasome according to its expression time sequence
could be considered as a future therapeutic target. Within 24 h
of the occurrence of ischemic stroke, the early activation of
NLRP3 inflammasome in microglia and subsequent activation
in neurons should be effectively targeted according to the cell
type, thereby, reducing cerebral I/R injury (Chumboatong et al.,
2022; Wang et al., 2022), but the exact time needs further
experimental studies. The NLRP3 inflammasome is a critical part
of the innate immune system which regulates the cleaves and
secretion of proinflammatory cytokines, such as IL-1β and IL-
18 in response to the DAMP and PAMP signaling. Inflammatory
cytokines are involved with the secondary brain injury in cerebral
I/R, especially IL-1β and IL-18. It is influential for the treatment
of cerebral I/R to regulate the expression of inflammatory
cytokines under control, thus the involvement with inflammatory
response makes NLRP3 inflammasome extensively investigated
for assembly and activation. In addition to inflammation, the
activation of NLRP3 inflammasome in ischemic brain tissue
promotes the activities of pyroptosis and eventually aggravates
brain injury. According to the activation and assembly of the
NLRP3 inflammasome, molecules and compounds interfering
with NLRP3 activation can alleviate cerebral I/R injury by
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downregulating the expression of the NLRP3 inflammasome in
animal experiments. Importantly, these inhibitors have not been
conducted in clinical trials due to their limited pharmacokinetic
profiles and safety. Moreover, it is proven that the impact of the
unspecific medications (SFN, Genipin) on the inflammasomes
besides NLRP3 is negligible in the treatment of ischemic stroke
(Franke et al., 2021). Therefore, highly specific and efficient
inhibitors that focus on inhibiting the NLRP3 inflammasome and
can effectively permeate the cell membrane and BBB will be an
important topic for their research and clinical application.

Interestingly, it is a hot spot where mitochondria are closely
related to NLRP3 inflammasome activation. Mitochondria are
the central hub in innate and adaptive immune cells (Breda
et al., 2019), and at the same time, mitochondria also participate
in pyroptosis, a kind of cell death, which is related to
cerebral I/R injury (Gurung et al., 2015). NLRP3 inflammasome
triggers caspase-1-dependent mitochondrial damage. Caspase-
1 activates multiple pathways to precipitate mitochondrial
disassembly, which leads to the mROS production and
dissipation of mitochondrial membrane potential, mitochondrial
permeabilization, and mitochondrial network fragmentation (Yu
et al., 2014). The molecules derived from mitochondria such as
mROS, mtDNA, and cardiolipin are important regulators for the
activation of the inflammasome, and mtDNA and cardiolipin are
found to bind to NLRP3 and serve as a ligand for the activation of
NLRP3 inflammasome. Now that the proven studies conducted
that mitochondria are essential for NLRP3 inflammasome
activation, the further studies are kindly suggested to focus on
the specific mechanism by which mitochondria regulate the
activation of NLRP3 inflammasomes.

CONCLUSION AND FUTURE
PERSPECTIVE

The role of NLRP3 inflammasome in cerebral I/R injury is mainly
concentrated on NLRP3 inflammasome-dependent cytokine

release and pyroptosis, which makes NLRP3 inflammasome a
target therapeutic protein in cerebral I/R injury. Although the
essential of NLRP3 inflammasome activation in ischemic stroke
has been proved, its specific role needs to be further explored.
It is expected that the more effective pharmacokinetic profiles
and safe medicines for NLRP3 inflammasome could be used for
cerebral I/R injury treatments in clinical.
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